Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

SI for Polymer Chemistry

Supporting Information (SI)

Hydrolytically Degradable, Dendritic Polyglycerol Sulfate based Injectable Hydrogels using Strain Promoted Azide-Alkyne Cycloaddition Reaction

Pradip Dey,* Shabnam Hemmati, and Rainer Haag*

Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin,

Germany

(E-mail: pradipdey.chem@gmail.com, haag@chemie.fu-berlin.de)

Contents

1. Supplementary results	3
1.1. Characterization of dPGS N ₃	3
1.2. Characterization of BCP	5
1.3. Characterization of PEG-PCL-DIC	6
1.3.1. Characterization of PEG-OH	6
1.3.2. Characterization of PEG-PCL-OH	7
1.3.3. Characterization of PEG-PCL-OMs	8
1.3.4. Characterization of PEG-PCL-N ₃	9
1.3.5. Characterization of PEG-PCL-DIC	10
1.4. Morphology of the hydrogels	12
1.5. Cytocompatibility of non-degradable dPGS gel	13

1 Supplementary Results

1.1 Characterization of dPGS N₃

Figure S2. ¹H NMR of dPG N_3 (DF 8.8 %)

SI for Polymer Chemistry

1.2. Characterization of bicyclo[6.1.0]non-4-yn-9-ylmethyl N-(2-propyn-1-yl) carbamate

Figure S5. ¹H NMR of bicyclo[6.1.0]non-4-yn-9-ylmethyl *N*-(2-propyn-1-yl) carbamate

Figure S6. ESI MS of bicyclo[6.1.0]non-4-yn-9-ylmethyl N-(2-propyn-1-yl) carbamate

1.3. Characterization of PEG-PCL-DIC

1.3.1. Characterization of PEG-OH

Figure S8. ¹³C NMR of PEG-OH

1.3.2. Characterization of PEG-PCL-OH

Figure S10. ¹³C NMR of PEG-PCL-OH

1.3.3. Characterization of PEG-PCL-OMs

Figure S12. ¹H- ¹H correlation spectroscopy of PEG-PCL-OMs

1.3.4. Characterization of PEG-PCL- N_3

Figure S13. ¹H NMR of PEG-PCL-N₃

Figure S14. ¹H-¹H correlation spectroscopy of PEG-PCL-N₃

SI for Polymer Chemistry

Figure S15. ¹³C NMR of PEG-PCL-N₃

1.3.5. Characterization of PEG-PCL-DIC

Figure S16. ¹H NMR of PEG-PCL-DIC

Figure S17. ¹³C NMR of PEG-PCL-DIC

1.4. Morphology of hydrogels

Figure S18. SEM micrographs of gel 1(a), gel 2 (b), and a cross-sectional image of gel 2 (c). The scale bar is $20 \ \mu m$.

1.5. Cyto-compatibility of non-degradable dPGS gel

Figure S19. CLSM image showing mouse fibroblast L929 cells encapsulated in dPGS – PEG-DIC non-degradable hydrogels after 24 h culture. Cell seeding density: 20,000/ 50 μ L of gel (4×10⁵ cells/ml). The live cells were stained with calcein (green) and the dead cells were stained by ethidium bromide. The scale bar is 200 μ m.