Supporting Information for:

Novel Dithienosilole-based Conjugated Copolymers and its Application in Bulk Heterojunction Solar Cells

Lijie Liu^a, Jinsheng Song^{a,*}, Heng Lu^b, Hua Wang,^{a,*} Zhishan Bo^b,^{*}

^a Key Lab for Special Functional Materials of Ministry of Education, Henan University, Jinming Ave, Kaifeng, 475004, China

^b Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, No. 19 Xin Jie Kou Wai St, Hai Dian District, Beijing 100875, China

Table of Contents:

1. Quantum Calculation	2
Quantum calculation results of PBDTDTSi-1	2
Quantum calculation results of PBDTDTSi-2	3
Quantum calculation results of PBDTDTSi-3	5
2. NMR and HRMS Spectra	7
NMR, HRMS and IR Spectra of 2	7
NMR, HRMS and IR Spectra of 3	9
NMR, HRMS and IR Spectra of 4	11
NMR, HRMS and IR Spectra of 5	13
NMR, HRMS and IR Spectra of 6	15
NMR, HRMS and IR Spectra of M1	17
NMR, HRMS and IR Spectra of M2	19
NMR, HRMS and IR Spectra of M3	21
¹ H NMR Spectra of PBDTDTSi-1	23
¹ H NMR Spectra of PBDTDTSi-2	23
¹ H NMR Spectra of PBDTDTSi-3	24
3. Cyclic voltammetric behaviors of PBDTDTSi polymers	24
4. X-ray crystallographic data	25
X-ray crystallographic data of 6	25
X-ray crystallographic data of M2	32
5. Photovoltaic Performance Optimization	39
6. Hole Transfer Properties by SCLC method	41

1. Quantum Calculation

Quantum calculation results of PBDTDTSi-1

Table S1. Calculated absorption wavelength (nm), oscillator strength (*f*) and transition contributions of **PBDTDTSi-1** in chloroform solvent at TD-B3LYP/6-31G(d,p) level of theory

No	Energy	Wavelength	Osc.	Summatry	Major contribu
INO.	(cm-1)	(nm)	Strength	Symmetry	Major contribs
1	21001.20928	476.1630565	0.9683	Singlet-A	HOMO→LUMO (95%)
2	22888.55968	436.8994878	0.4269	Singlet-A	H-1→LUMO (91%)
3	23249.092	430.1243249	0.1194	Singlet-A	HOMO→L+1 (84%)
4	24495.2272	408.2427943	0.0516	Singlet-A	HOMO→L+2 (77%)
5	24797.6872	403.263414	0.1735	Singlet-A	H-2→LUMO (44%), H-1→L+1 (43%)
6	25104.98656	398.3272397	0.2421	Singlet-A	H-2→LUMO (46%), H-1→L+1 (37%)
7	25509.07312	392.0173796	0.213	Singlet-A	H-1→L+2 (12%), HOMO→L+3 (71%)
8	26089.79632	383.2916086	0.0179	Singlet-A	H-3→LUMO (56%), HOMO→L+3 (10%)
9	26445.48928	378.1363201	0.0102	Singlet-A	H-3→LUMO (19%), H-1→L+2 (54%), H-1→L+3 (15%)
10	27227.04592	367.2818575	0.0067	Singlet-A	H-1→L+2 (14%), H-1→L+3 (71%)
11	27481.91888	363.8756101	0.0414	Singlet-A	H-2→L+1 (69%)
12	28313.48224	353.1886299	0.2985	Singlet-A	H-4→LUMO (57%)
13	28346.5512	352.7766016	0.0837	Singlet-A	H-5→LUMO (15%), H-3→L+1 (41%), H-3→L+2 (10%)
14	28667.56208	348.8263136	0.2957	Singlet-A	H-4 → LUMO (13%), HOMO → L+4 (43%), HOMO→L+5 (20%)
15	28848.23152	346.6416994	0.0854	Singlet-A	H-1→L+5 (13%), HOMO→L+4 (10%), HOMO→ L+5 (34%)
16	28978.08768	345.088334	0.2896	Singlet-A	H-7→LUMO (22%), H-5→LUMO (39%), H-3→ L+1 (11%)
17	29121.65536	343.3870732	0.0693	Singlet-A	H-3→L+1 (14%), H-2→L+2 (44%)
18	29533.00096	338.6042622	0.0896	Singlet-A	H-3→L+2 (37%), H-2→L+3 (29%)
19	29632.20784	337.4706351	0.0857	Singlet-A	H-6→LUMO (59%)
20	29816.91008	335.3801575	0.0618	Singlet-A	H-7→LUMO (54%), H-5→LUMO (11%)
21	29911.2776	334.3220619	0.0005	Singlet-A	H-17→L+1 (24%), H-17→L+2 (41%)
22	20087 01424	222 2502626	0.0002	Cinclet A	H-18→L+1 (36%), H-18→L+2 (28%), H-18→
LL	50087.91424	332.3393020	0.0002	Singlet-A	L+3 (18%)
23	30181.4752	331.3290664	0.0273	Singlet-A	H-3→L+2 (24%), H-2→L+2 (17%), H-2→L+3 (25%)
24	30314.5576	329.8745155	0.0422	Singlet-A	H-2→L+3 (11%), H-1→L+4 (36%), HOMO→

					L+6 (24%)
25	30687.99488	325.8603255	0.0106	Singlet-A	H-9→LUMO (80%)
26	30778.3296	324.903922	0.1151	Singlet-A	H-4→L+1 (69%), H-4→L+2 (16%)
27	30920.28416	323.412293	0.0848	Singlet-A	H-3→L+3 (67%)
20	21017 97702	200 2047179	0.0228	Singlet A	H-8→LUMO (59%), H-8→L+1 (10%), H-3→L+3
28	51017.87792	522.5947178	0.0258	Singlet-A	(12%)
29	31350.9872	318.9692221	0.0937	Singlet-A	H-1→L+4 (36%), HOMO→L+6 (42%)
20	21641 2499	216 042152	0.0790	C:	H-5→L+1 (28%), H-1→L+5 (39%), HOMO→
30	31641.3488	316.042153	0.0789	Singlet-A	L+5 (12%)

Quantum calculation results of PBDTDTSi-2

Table S2. Calculated absorption wavelength (nm), oscillator strength (*f*) and transition contributions of **PBDTDTSi-2** in chloroform solvent at TD-B3LYP/6-31G(d,p) level of theory

N.	Energy	Wavelength	Osc.	C	Maine ann taile a
INO.	(cm-1)	(nm)	Strength	Symmetry	Major contribs
1	17879.01552	559.3149124	0.0478	Singlet-A	HOMO→L+1 (89%)
2	18331.49568	545.5092249	0.0592	Singlet-A	HOMO→LUMO (84%)
3	20288.21024	492.8971004	0.0707	Singlet-A	H-1→L+1 (88%)
4	20626.15888	484.8212437	0.9432	Singlet-A	HOMO→L+2 (83%)
5	20765.69376	481.563492	0.1342	Singlet-A	H-1→LUMO (76%), HOMO→L+2 (11%)
6	22676.4344	440.9864366	0.1316	Singlet-A	H-2→L+1 (75%), H-1→L+2 (15%)
7	22956 20729	127 51(1955	0.177	C:	H-3→LUMO (36%), H-2→LUMO (32%), H-1→
/	22850.29728	437.3101833	0.167	Singlet-A	L+2 (27%)
0	22104 71776	422 0120200	0.0004	C:	H-3→LUMO (17%), H-2→LUMO (11%), H-2→
8	25104./1//0	452.8120588	0.0904	Singlet-A	L+1 (14%), H-1 \rightarrow L+2 (54%)
9	23848.36608	419.3159383	0.1669	Singlet-A	H-3→LUMO (41%), H-2→LUMO (48%)
10	24473.45008	408.6060595	0.0728	Singlet-A	H-3→L+1 (88%)
11	24661.37856	405.4923359	0.6011	Singlet-A	HOMO→L+3 (87%)
12	25220.32464	396.5056018	0.1358	Singlet-A	H-4→L+1 (12%), H-2→L+2 (72%)
13	25596.98816	390.6709624	0.9373	Singlet-A	H-4→L+1 (72%), H-2→L+2 (12%)
14	25923.64496	385.7482239	0.2069	Singlet-A	H-5→LUMO (83%)
15	26165.61296	382.1809952	0.0211	Singlet-A	H-6→L+1 (65%), H-5→L+1 (24%)
16	26483.3976	377.595056	0.0111	Singlet-A	H-3→L+2 (33%), H-1→L+3 (55%)
17	26706.81472	374.4362667	0.0141	Singlet-A	H-3→L+2 (53%), H-1→L+3 (35%)
18	26888.29072	371.9090999	0.0008	Singlet-A	H-6→LUMO (18%), H-4→LUMO (69%)
19	27135.09808	368.5263997	0.0337	Singlet-A	H-6→LUMO (66%), H-4→LUMO (22%)
20	27302.056	366.2727818	0.0009	Singlet-A	H-6→L+1 (27%), H-5→L+1 (67%)
21	27756.14928	360.2805238	0.0025	Singlet-A	H-7→LUMO (12%), H-7→L+1 (82%)

22	28182 01296	354 8362572	0.0114	Singlet_A	$H_{-4} \rightarrow I_{+2} (29\%) HOMO \rightarrow I_{+4} (41\%)$
22	28223 14752	354 3190919	0.0003	Singlet-A	H-7 \rightarrow LUMO (85%) H-7 \rightarrow L+1 (13%)
24	28379.62016	352.3655336	0.0551	Singlet-A	H-9→L+1 (13%), H-8→L+1 (18%), H-4→L+2 (28%)
25	28440.91872	351.606082	0.0488	Singlet-A	$H-8 \rightarrow L+1$ (14%), $H-4 \rightarrow L+2$ (17%), HOMO → $L+4$ (18%)
26	28632.07344	349.2586739	0.0058	Singlet-A	H-9→LUMO (22%), H-8→LUMO (21%), H-8→ L+1 (15%), H-5→L+2 (12%)
27	28753.864	347.7793454	0.0246	Singlet-A	$H-6 \rightarrow L+2$ (12%), $H-5 \rightarrow L+2$ (34%)
28	28840.16592	346.7386432	0.3801	Singlet-A	H-2→L+3 (18%), HOMO→L+5 (42%)
29	29074.87488	343.9395712	0.0071	Singlet-A	H-9→L+1 (52%), H-8→L+1 (32%)
30	29285.38704	341.4672303	0.031	Singlet-A	H-5→L+2 (10%), H-2→L+3 (32%), HOMO→ L+5 (16%)
31	29431.3744	339.773463	0.195	Singlet-A	H-11→L+1 (15%), H-10→L+1 (13%), HOMO→ L+6 (23%)
32	29608.01104	337.746429	0.0499	Singlet-A	H-6→L+2 (39%), H-5→L+2 (21%), H-2→L+3 (20%)
33	29709.6376	336.5911135	0.0064	Singlet-A	H-9→LUMO (44%), H-8→LUMO (43%)
34	29746.73936	336.1712986	0.0676	Singlet-A	H-7→L+2 (67%)
35	30020.1632	333.1094483	0.0719	Singlet-A	H-11→L+1 (20%), H-10→L+1 (13%), HOMO→ L+6 (21%)
36	30372.62992	329.243797	0.2444	Singlet-A	H-13→L+1 (13%), H-11→L+1 (12%), H-10→ LUMO (22%), H-10→L+1 (14%)
37	30394.40704	329.0078989	0.0592	Singlet-A	H-9→L+2 (18%), H-8→L+2 (26%), H-3→L+3 (10%)
38	30442.80064	328.4848894	0.1631	Singlet-A	H-11→L+1 (11%), H-3→L+3 (49%)
39	30567.81744	327.1414461	0.0034	Singlet-A	H-10→LUMO (10%), H-9→L+2 (12%), H-8→ L+2 (24%), H-3→L+3 (17%)
40	30843.66096	324.2157282	0.0733	Singlet-A	H-1→L+4 (66%), HOMO→L+6 (15%)
41	31009.00576	322.48696	0.0092	Singlet-A	H-13→LUMO (11%), H-12→L+1 (12%), H-10→ LUMO (23%)
42	31084.8224	321.7004064	0.0173	Singlet-A	H-13→LUMO (22%), H-12→L+1 (12%), H-10→ LUMO (25%), H-10→L+1 (19%)
43	31137.2488	321.1587531	0.0042	Singlet-A	H-9→L+2 (43%), H-8→L+2 (25%)
44	31758.3	314.8783153	0.0015	Singlet-A	H-13→LUMO (24%), H-11→LUMO (53%)
45	31943.8088	313.0497075	0.0108	Singlet-A	H-4→L+3 (21%), H-1→L+5 (25%), H-1→L+6 (25%)
46	32144.64224	311.0938341	0.0061	Singlet-A	H-14→LUMO (22%), H-12→LUMO (37%), H-11 →LUMO (23%)
47	32222.072	310.3462744	0.0065	Singlet-A	H-14→L+1 (19%), H-12→L+1 (23%), H-1→L+5 (11%), HOMO→L+7 (13%)
48	32246.2688	310.1133983	0.005	Singlet-A	H-12 \rightarrow L+1 (10%), H-4 \rightarrow L+3 (24%), H-1 \rightarrow L+5 (30%)
49	32284.17712	309.7492608	0.016	Singlet-A	H-4→L+3 (25%), HOMO→L+7 (32%)

Quantum calculation results of PBDTDTSi-3

Table S3. Calculated absorption wavelength (nm), oscillator strength (f) and transition contributions of **PBDTDTSi-3** in chloroform solvent at TD-B3LYP/6-31G(d,p) level of theory

No	Energy	Wavelength	Osc.	Crimana atmr	Major contribe
INO.	(cm-1)	(nm)	Strength	Symmetry	Major contribs
1	16604.65072	602.2409124	0.0206	Singlet-A	HOMO→L+1 (94%)
2	17039.38656	586.8755876	0.021	Singlet-A	H-1→LUMO (15%), HOMO→LUMO (82%)
3	18271.00368	547.3153076	0.0251	Singlet-A	H-1→L+1 (94%)
4	18743.64784	533.5140782	0.0019	Singlet-A	H-1→LUMO (82%), HOMO→LUMO (15%)
5	21027.82576	475.5603415	0.0238	Singlet-A	H-2→L+1 (92%)
6	21224 6264	171 1509129	0.0224	Singlet A	H-3→LUMO (12%), H-2→LUMO (12%), HOMO
0	21224.0204	4/1.1506156	0.9334	Singlet-A	→L+2 (71%)
7	21272.94	167 9616177	0 1241	Simplet A	H-3→LUMO (24%), H-2→LUMO (49%), HOMO
/	21575.84	407.8010477	0.1341	Singlet-A	→L+2 (22%)
8	22565.93568	443.1458169	0.0731	Singlet-A	H-3→LUMO (59%), H-2→LUMO (35%)
9	22911.94992	436.4534679	0.0941	Singlet-A	H-3→L+1 (76%), H-1→L+2 (17%)
10	23043.4192	433.9633764	0.3316	Singlet-A	H-3→L+1 (18%), H-1→L+2 (76%)
11	24471.0304	408.6464622	0.6312	Singlet-A	H-4→L+1 (50%), HOMO→L+3 (32%)
12	24670.25072	405.3465088	0.5964	Singlet-A	H-5→LUMO (66%), H-4→L+1 (20%)
12	24707 6972	102 262 11 1	0 1002	Simplet A	H-5→LUMO (14%), H-4→L+1 (17%), HOMO→
15	24797.0872	405.205414	0.1002	Singlet-A	L+3 (58%)
14	25200 40526	205 4054610	0 1572	Simplet A	H-7 \rightarrow L+1 (45%), H-5 \rightarrow L+1 (19%), H-2 \rightarrow L+2
14	23290.49330	595.4054019	0.1375	Singlet-A	(27%)
15	25211 52100	204 5622700	0.2401	Singlet A	H-7→L+1 (21%), H-5→L+1 (10%), H-2→L+2
15	23344.33488	374.3023799	0.3491	Singlet-A	(50%)
16	25789.756	387.7508574	0.0058	Singlet-A	H-6→L+1 (95%)
17	25830.89056	387.1333811	0	Singlet-A	H-4→LUMO (91%)
18	25876.86448	386.4455838	0.0147	Singlet-A	H-7→LUMO (87%)
19	25959.1336	385.2208689	0.002	Singlet-A	H-7→L+1 (29%), H-5→L+1 (58%)
20	26088.1832	383.3153088	0.057	Singlet-A	H-1→L+3 (82%)
21	26253.528	380.9011878	0.0001	Singlet-A	H-6→LUMO (96%)
22	26890.7104	371.8756348	0.0278	Singlet-A	H-9→L+1 (52%), H-3→L+2 (31%)
23	26980.23856	370.6416449	0.0101	Singlet-A	H-9→L+1 (30%), H-3→L+2 (52%)
24	27185.91136	367.8375857	0.0008	Singlet-A	H-8→L+1 (83%)
25	27218.98032	367.3906914	0.0003	Singlet-A	H-9→LUMO (83%)
26	27830.3528	359.3199149	0.0025	Singlet-A	H-8→LUMO (95%)
27	28349.77744	352.7364552	0.0955	Singlet-A	H-2→L+3 (30%), HOMO→L+4 (41%)

28	28732.89344	348.0331704	0.3833	Singlet-A	H-2→L+3 (23%), HOMO→L+4 (21%), HOMO→ L+5 (30%)
					$H_{4} \rightarrow I_{+2} (45\%) \rightarrow HOMO \rightarrow I_{+5} (16\%) \rightarrow HOMO \rightarrow $
29	28970.02208	345.1844107	0.0862	Singlet-A	L+6 (10%)
30	29148.27184	343.0735124	0.114	Singlet-A	H-2→L+3 (16%), H-1→L+5 (14%), HOMO→
					L+5 (16%), HOMO \rightarrow L+6 (13%)
31	29206.34416	342.3913635	0.0961	Singlet-A	H-7→L+2 (19%), H-5→L+2 (49%)
32	29279.74112	341.5330743	0.0762	Singlet-A	H-10→L+1 (66%)
33	29541.06656	338.511813	0.179	Singlet-A	H-11→LUMO (11%), H-10→LUMO (45%), H-7
55	275 11.00050	550.511015	0.175	Singlet II	\rightarrow L+2 (10%)
34	29624.14224	337.5625164	0.0295	Singlet-A	H-6→L+2 (53%), H-6→L+3 (10%)
35	20822 556	225 2166642	0.2086	Singlet A	H-16→LUMO (10%), H-15→LUMO (15%), H-10
55	29822.330	555.5100045	0.2080	Singlet-A	→LUMO (16%), H-7→L+2 (22%)
26	20027 00074	225 1444469	0.1005	0°14A	H-12→L+1 (15%), H-6→L+2 (18%), H-1→L+4
30	29837.88064	335.1444468	0.1825	Singlet-A	(14%), HOMO→L+6 (14%)
					H-14→L+1 (24%), H-11→L+1 (37%), H-10→
37	30000.80576	333.3243807	0.0035	Singlet-A	L+1 (11%)
					H-15→LUMO (12%), H-7→L+2 (14%), H-5→
38	30185.508	331.2848006	0.2281	Singlet-A	L+2 (19%), H-3→L+3 (21%)
39	30423.4432	328.6938935	0.0227	Singlet-A	H-14→L+1 (43%), H-11→L+1 (24%)
40	30530.71568	327.5389973	0.0535	Singlet-A	H-3→L+3 (50%)
					H-15→LUMO (24%), H-12→LUMO (31%), H-11
41	30570.23712	327.1155523	0.0048	Singlet-A	→LUMO (20%)
					H-12→L+1 (40%), H-11→L+1 (12%), H-9→L+2
42	30611.37168	326.6759851	0.2893	Singlet-A	(13%), H-1→L+4 (20%)
					H-15→LUMO (13%), H-14→LUMO (46%), H-11
43	30629.116	326.4867324	0.0006	Singlet-A	→LUMO (26%)
					H-16→L+1 (10%), H-15→L+1 (20%), H-12→
44	30792.84768	324.7507377	0.0063	Singlet-A	L+1 (19%)
45	30825.11008	324.4108447	0.0581	Singlet-A	H-9→L+2 (54%), H-1→L+4 (12%)
					H-16→L+1 (13%), H-15→L+1 (22%), H-1→L+4
46	30877.53648	323.8600335	0.0313	Singlet-A	(15%), HOMO→L+6 (15%)
					H-16→LUMO (17%), H-13→L+1 (28%), H-12→
47	30970.29088	322.8900897	0.0005	Singlet-A	LUMO (16%), H-11→LUMO (17%)
48	31014.65168	322.4282543	0.0002	Singlet-A	H-13→L+1 (54%)
49	31113.85856	321.4001883	0.0009	Singlet-A	H-8→L+2 (65%), H-8→L+3 (12%)
					H-16→LUMO (32%), H-15→LUMO (17%), H-13
50	31342.9216	319.0513038	0.0015	Singlet-A	→LUMO (11%), H-12→LUMO (32%)

_

2. NMR and HRMS Spectra

NMR, HRMS and IR Spectra of 2

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2

Elemental Composition Report

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0% Monoisotopic Mass, Odd and Even Electron Ions 25 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Minimum: 80.00 -1.5

Figure S4. IR spectrum of 2

NMR, HRMS and IR Spectra of 3

Figure S5. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 3

.*Figure S6.* ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3**

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistr Chinese Academic of Sciences High Resolution MS DATA REPORT

instrument: IonSpec 4.7 Tesla FTMS

Card Serial Number: WI14 813

Sample Serial Number: Ilj-2-50-ptlc2

Operator : HuaQin Date: 2014/05/12

Operation Mode: MALDI/DHB

Elemental Composition Search Report:

Target Mass: Target m/z = 508.2133 ± 0.002 Charge = +1

Possible Elements:

Element	Exact Mass:	Min:	Max
C	12.000000	0	100
н	1.007825	0	100
0	15.994915	0	3
Si	27.976927	0	3
S	31.972071	0	3

Additional Search Restrictions: DBE Limit Mode = Both Integer and Half-Integer Minimum DBE = 0

Search Results:

Number of Hits = 3

m/z	Deita m/z	DBE	Formula
508.21341	-0.00011	8.0	C27H40O3S3*1
508.21359	-0.00029	4.0	C25H44OSi3S2*1
508.21382	-0.00052	5.0	C26H44Si2S3*1

Figure S8 IR spectrum of compound 3

NMR, HRMS and IR Spectra of 4

Figure S9¹H NMR (400 MHz, CDCl₃) spectrum of compound 4

Figure S10¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4

Shanghai Mass Spectrometry Center Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS Data Report

Instrument: Waters Micromese	GCT Premier	Ionisation Mod	e: El+	Electron Energy:	70eV	
Card Serial Number:	GCT-P-T14-06-0	253468				
Sample Sorial Number:	LLJ-2-77-CCL					
Operator: Li						
Date: 2014/06/06						
Elemental Composition R	eport					
Single Mass Analysis To erance = 5.0 P2M / Element prediction: Cff	DBE: min = -1	.5, max = 50	.0			
Monoisotopic Kass, Odd 458 formula(e) evaluate Elements Used:	and Even Ricctro d with 6 results	n Ions within limit	in (all res	ults (up to)	000: for each	mass)
C: 5-€C II: 0-80 O	: C-4 S: 0-3	Si: 0-3				
Mürz Emorte Merz Emorte	2.0	- 0	-1.5			
Mana Calc. Mass	nlla	PPM	DBE	2-117	Formula	

 Description
 Calc. Hass
 Dia
 PPM
 DSC
 1-Fit
 Description

 S04.1983
 Calc. Hass
 Dia
 PPM
 DSC
 1-Fit
 Description

 S04.1983
 S06.1983
 0.0
 0.0
 9.0
 34.9
 C27
 H38
 C3
 S3

 S06.1983
 S06.1983
 -0.2
 6.4
 9.0
 31.4
 C26
 H38
 C4
 Z2
 S1

 S06.1985
 -0.2
 -0.4
 8.0
 27.7
 C25
 H42
 O
 S2
 S13

 S06.1987
 -0.4
 -0.8
 R.C
 12.6
 C26
 H42
 S2
 S12

Figure S11 HRMS spectrum of compound 4

Figure S12 IR spectrum of compound 4

Figure S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of 5

Figure S15. HRMS spectrum of 5

Figure S16. IR spectrum of 5

NMR, HRMS and IR Spectra of 6

Figure S17 ¹H NMR (300 MHz, CDCl₃) spectrum of compound **6**

Figure S18¹³C NMR (75 MHz, CDCl₃) spectrum of compound 6

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M151232

Sample Serial Number: LLJ-3-80-COL

Operator : HUAQIN Date: 2015/04/22

Operation Mode: DART Postive

Elemental	compositio	on search	on man	5 443.09
m/z= 430.	09-448.09			
n/z	Theo. Main	Delta (ppm)	RDB equiv.	Composition
443.0913	443.0914	-0.13	12.5	C :: H :: 0 : N : S : S :
	443.0914	-0.16	22.5	C 29 H 15 O 5
	443.0912	0.39	12.5	CooHosO4N2SSiz
	443.0911	0.42	2.5	Car Has Or Ne Sa Sia
	443.0916	-0.65	12.5	C 22 H 23 O 2 N 2 S 3
	443.0909	0.91	12.5	C 18 H 23 O 8 N 2 SL 3
	443.0918	-1.05	11.5	CoeHerNeSeSia
	443.0918	-1.08	21.5	Cze Has Oz Siz
	443.0907	1.34	3.5	C13 H27 O5 N4 S3 S1
	443.0907	1.43	22.0	CITHITNISSI

NMR, HRMS and IR Spectra of M1

Figure S21 ¹H NMR (400 MHz, CDCl₃) spectrum of compound M1

Figure S22 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound M1

Figure S24 IR spectrum of compound M1

Figure S25 ¹H NMR (300 MHz, CDCl₃) spectrum of compound M2

Figure S26¹³C NMR (75 MHz, CDCl₃) spectrum of compound M2

			Shanghai M Shanghai Ii Chinese High Reso	fass Spectrom istitute of Org Academic of a lution MS Da	etry Center anic Chemistry Sciences ta Report	
Instrument:	Waters Micromass GC	T Ionisat	ion Mode: EI+	Electron I	inergy: 70eV	2
Card Seria	1 Number: GCT-	1°14-06-OS0469				
Sample Ser	ial Number:	LLJ-2-152-W				
Operator:	LĹ					
Date: 2014	1206206					
Flerents] Single Mas Tolerance Isotope cl	Composition Ropo a Analysis - 2.0 mDa / Later parameters	rt CSE: min = - : Separation	1.5, max = 50 = 1.0 Abur).0 :dance - 1.0	4	
Konoisotog 664 formul	ic Mass, Odd and a(e) evaluated w	Sven Electr 11r 4 result	on Ions s within limi	ts (all res	ults (up to	1000) for each mass)
Minimun:				-1.5		
Maximum:	0.1. 0	2.0	5.0	50.0	Saara	Example 1
nass Nac gaby	594 9467	C 0	0.19	42.5	4	C41 H 02 S ⁴ S
	554.9469	-0.2	-0.3	42.5	3	C42 H 0 S2
004.0401					12.00	COM 1107 11 (02 C1 02 Def
551.540	594,9463	C.4	0.7	21.0	12-11	C22 123 N C2 2- 32 DIA

Figure S27 HRMS spectrum of compound M2

Figure S28 IR of compound M2

NMR, HRMS and IR Spectra of M3

Figure S29 ¹H NMR (300 MHz, CDCl₃) spectrum of compound M3

Figure S30¹³C NMR (75 MHz, CDCl₃) spectrum of compound M3

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M151231

Sample Serial Number: LLJ-3-83-COL

Operator : HUAQIN Date: 2015/04/22

Operation Mode: DART Postive

8/2= 449.	03-459.03			
n/z	Theo. Main	Delta (ppm)	HDB equiv.	Composition
454.0336	454.8335	0.07	11.5	CINHONSBESS SLO
	454.8336	-0.12	13.0	C11 HeO3N3Br S:SI3
	454,0334	0.27	14.0	C19 H2 Os No Br S3
	454.0338	-0.44	11.5	CieHoNoBroSoSi
	454.0330	-0.46	21.5	CasHOaBra
	454.8333	0.57	11.5	Cit RoOt No Bro Sia
	454.8339	-0.63	13.0	C1: H40: N3Br S3S1:
	454.8340	-0.94	2.0	CellisOsNBrzSSia
	454.0331	0.97	12.5	CI4HSO4N:BEES
	454.8331	1.00	2.5	CeH1002N4Br:S)Si

Figure S31 HRMS spectrum of compound M3

Figure S32 IR spectrum of compound M3

¹H NMR Spectra of PBDTDTSi-1

Figure S33 ¹H NMR (400 MHz, CDCl₃) spectrum of polymer **PBDTDTSi-1**

¹H NMR Spectra of PBDTDTSi-2

Figure S34 ¹H NMR (400 MHz, CDCl₃) spectrum of polymer **PBDTDTSi-2**

¹H NMR Spectra of PBDTDTSi-3

Figure S35¹H NMR (400 MHz, CDCl₃) spectrum of polymer PBDTDTSi-3

3. Cyclic voltammetric behaviors of PBDTDTSi polymers

Figure S36. Cyclic voltammograms of polymer films in acetonitrile solution containing 0.1 M Bu₄NPF₆, Ag/AgNO₃ as the reference electrode.

4. X-ray crystallographic data

X-ray crystallographic data of 6

Table S4. Crystal data and structure refinement for 6.

Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 9.117(3) A alpha = $86.3520(10) deg.$
	b = 9.2590(18) A beta = 86.1700(10) deg.
	c = 16.283(3) A gamma = 69.853(3) deg.
Volume	1286.3(5) A^3
Z, Calculated density	2, 1.517 Mg/m^3
Absorption coefficient	3.378 mm^-1
F(000)	592
Crystal size	0.46 x 0.27 x 0.13 mm
Theta range for data collection	2.35 to 25.00 deg.
Limiting indices	-10<=h<=8, -11<=k<=10, -19<=l<=15
Reflections collected / unique	6569 / 4483 [R(int) = 0.0228]
Completeness to theta $= 25.00$	99.00%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6678 and 0.3056
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4483 / 13 / 271
Goodness-of-fit on F^2	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.1221
R indices (all data)	R1 = 0.0586, $wR2 = 0.1326$
Largest diff. peak and hole	0.837 and -0.623 e.A^-3

Table S5. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for 6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
Br(1)	3463(1)	-2848(1)	6804(1)	53(1)
Br(2)	9048(1)	-2286(1)	8406(1)	70(1)
Si(1)	7134(1)	1026(1)	6805(1)	38(1)
S (1)	6379(1)	-3294(1)	7813(1)	49(1)
S(2)	4501(1)	2908(1)	5443(1)	39(1)
O(1)	-796(3)	3618(3)	3761(2)	64(1)
O(2)	-155(3)	5652(3)	3267(2)	50(1)
N(1)	2904(4)	5934(4)	4161(3)	68(1)
C(5)	4673(3)	379(4)	6235(2)	34(1)
C(1)	5081(4)	-2190(4)	7095(2)	40(1)
C(3)	6740(4)	-776(4)	7204(2)	40(1)
C(12)	1414(4)	4013(4)	4263(2)	38(1)
C(11)	1826(4)	2718(4)	4752(2)	39(1)
C(6)	5425(4)	1456(4)	6135(2)	35(1)
C(13)	2255(4)	5062(4)	4207(2)	45(1)

C(7)	3354(4)	730(4)	5757(2)	38(1)
C(14)	38(4)	4376(4)	3743(2)	43(1)
C(15)	-1443(4)	6109(5)	2719(2)	52(1)
C(16)	-1257(5)	7382(6)	2162(3)	77(2)
C(17)	-2527(6)	7974(7)	1546(3)	102(2)
C(18)	-2269(10)	9281(11)	988(6)	185(4)
C(19)	-3190(15)	10545(10)	750(9)	296(8)
C(20)	-2837(14)	11630(10)	148(6)	197(5)
C(21)	-2650(11)	12900(10)	428(5)	170(4)
C(22)	-2407(12)	14042(10)	-193(6)	172(4)
C(2)	5404(4)	-908(4)	6825(2)	37(1)
C(8)	3088(4)	2082(4)	5290(2)	36(1)
C(10)	6842(5)	2381(5)	7645(3)	61(1)
C(4)	7351(4)	-1965(4)	7741(2)	44(1)
C(9)	9086(4)	586(5)	6264(3)	60(1)

Table S6. Bond lengths [A] and angles [deg] for 6.

Br(1)-C(1)	1.877(4)	C(8)-C(11)-H(11A)	114.4
Br(2)-C(4)	1.876(4)	C(5)-C(6)-S(2)	110.8(2)
Si(1)-C(9)	1.857(4)	C(5)-C(6)-Si(1)	113.6(2)
Si(1)-C(10)	1.858(4)	S(2)-C(6)-Si(1)	135.5(2)
Si(1)-C(6)	1.876(3)	N(1)-C(13)-C(12)	178.5(4)
Si(1)-C(3)	1.892(4)	C(8)-C(7)-C(5)	112.5(3)
S(1)-C(1)	1.735(3)	C(8)-C(7)-H(7A)	123.8
S(1)-C(4)	1.741(4)	C(5)-C(7)-H(7A)	123.8
S(2)-C(6)	1.715(3)	O(1)-C(14)-O(2)	124.6(3)
S(2)-C(8)	1.747(3)	O(1)-C(14)-C(12)	123.6(3)
O(1)-C(14)	1.198(5)	O(2)-C(14)-C(12)	111.8(3)
O(2)-C(14)	1.336(4)	O(2)-C(15)-C(16)	106.9(3)
O(2)-C(15)	1.452(4)	O(2)-C(15)-H(15A)	110.3
N(1)-C(13)	1.150(5)	C(16)-C(15)-H(15A)	110.3
C(5)-C(6)	1.388(5)	O(2)-C(15)-H(15B)	110.3
C(5)-C(7)	1.408(5)	C(16)-C(15)-H(15B)	110.3
C(5)-C(2)	1.477(4)	H(15A)-C(15)-H(15B)	108.6
C(1)-C(2)	1.359(5)	C(15)-C(16)-C(17)	112.7(4)
C(3)-C(4)	1.344(5)	C(15)-C(16)-H(16A)	109
C(3)-C(2)	1.446(5)	C(17)-C(16)-H(16A)	109
C(12)-C(11)	1.350(5)	C(15)-C(16)-H(16B)	109
C(12)-C(13)	1.426(5)	C(17)-C(16)-H(16B)	109
C(12)-C(14)	1.489(5)	H(16A)-C(16)-H(16B)	107.8
C(11)-C(8)	1.428(5)	C(16)-C(17)-C(18)	110.3(6)

C(11)-H(11A)	0.93	C(16)-C(17)-H(17A)	109.6
C(7)-C(8)	1.378(5)	C(18)-C(17)-H(17A)	109.6
C(7)-H(7A)	0.93	C(16)-C(17)-H(17B)	109.6
C(15)-C(16)	1.490(6)	C(18)-C(17)-H(17B)	109.6
C(15)-H(15A)	0.97	H(17A)-C(17)-H(17B)	108.1
C(15)-H(15B)	0.97	C(19)-C(18)-C(17)	131.5(9)
C(16)-C(17)	1.515(7)	C(19)-C(18)-H(18A)	104.4
C(16)-H(16A)	0.97	C(17)-C(18)-H(18A)	104.4
C(16)-H(16B)	0.97	C(19)-C(18)-H(18B)	104.4
C(17)-C(18)	1.541(10)	C(17)-C(18)-H(18B)	104.4
C(17)-H(17A)	0.97	H(18A)-C(18)-H(18B)	105.6
C(17)-H(17B)	0.97	C(18)-C(19)-C(20)	126.4(11)
C(18)-C(19)	1.239(11)	C(18)-C(19)-H(19A)	105.7
C(18)-H(18A)	0.97	C(20)-C(19)-H(19A)	105.7
C(18)-H(18B)	0.97	C(18)-C(19)-H(19B)	105.7
C(19)-C(20)	1.459(11)	C(20)-C(19)-H(19B)	105.7
C(19)-H(19A)	0.97	H(19A)-C(19)-H(19B)	106.2
C(19)-H(19B)	0.97	C(21)-C(20)-C(19)	118.1(10)
C(20)-C(21)	1.355(11)	C(21)-C(20)-H(20A)	107.8
C(20)-H(20A)	0.97	C(19)-C(20)-H(20A)	107.8
C(20)-H(20B)	0.97	C(21)-C(20)-H(20B)	107.8
C(21)-C(22)	1.478(10)	C(19)-C(20)-H(20B)	107.8
C(21)-H(21A)	0.97	H(20A)-C(20)-H(20B)	107.1
C(21)-H(21B)	0.97	C(20)-C(21)-C(22)	117.4(9)
C(22)-H(22A)	0.96	C(20)-C(21)-H(21A)	108
C(22)-H(22B)	0.96	C(22)-C(21)-H(21A)	108
C(22)-H(22C)	0.96	C(20)-C(21)-H(21B)	108
C(10)-H(10A)	0.96	C(22)-C(21)-H(21B)	108
C(10)-H(10B)	0.96	H(21A)-C(21)-H(21B)	107.2
C(10)-H(10C)	0.96	C(21)-C(22)-H(22A)	109.5
C(9)-H(9A)	0.96	C(21)-C(22)-H(22B)	109.5
C(9)-H(9B)	0.96	H(22A)-C(22)-H(22B)	109.5
C(9)-H(9C)	0.96	C(21)-C(22)-H(22C)	109.5
C(9)-Si(1)-C(10)	112.3(2)	H(22A)-C(22)-H(22C)	109.5
C(9)-Si(1)-C(6)	116.29(19)	H(22B)-C(22)-H(22C)	109.5
C(10)-Si(1)-C(6)	114.79(17)	C(1)-C(2)-C(3)	112.8(3)
C(9)-Si(1)-C(3)	112.26(17)	C(1)-C(2)-C(5)	133.6(3)
C(10)-Si(1)-C(3)	110.81(18)	C(3)-C(2)-C(5)	113.6(3)
C(6)-Si(1)-C(3)	88.00(15)	C(7)-C(8)-C(11)	124.4(3)
C(1)-S(1)-C(4)	90.05(17)	C(7)-C(8)-S(2)	111.0(2)
C(6)-S(2)-C(8)	92.07(16)	C(11)-C(8)-S(2)	124.7(3)
C(14)-O(2)-C(15)	116.9(3)	Si(1)-C(10)-H(10A)	109.5
C(6)-C(5)-C(7)	113.7(3)	Si(1)-C(10)-H(10B)	109.5
C(6)-C(5)-C(2)	113.9(3)	H(10A)-C(10)-H(10B)	109.5

C(7)-C(5)-C(2)	132.4(3)	Si(1)-C(10)-H(10C)	109.5
C(2)-C(1)-S(1)	112.3(3)	H(10A)-C(10)-H(10C)	109.5
C(2)-C(1)-Br(1)	128.8(3)	H(10B)-C(10)-H(10C)	109.5
S(1)-C(1)-Br(1)	118.91(19)	C(3)-C(4)-S(1)	113.7(3)
C(4)-C(3)-C(2)	111.2(3)	C(3)-C(4)-Br(2)	127.4(3)
C(4)-C(3)-Si(1)	137.8(3)	S(1)-C(4)-Br(2)	119.0(2)
C(2)-C(3)-Si(1)	110.9(2)	Si(1)-C(9)-H(9A)	109.5
C(11)-C(12)-C(13)	122.9(3)	Si(1)-C(9)-H(9B)	109.5
C(11)-C(12)-C(14)	119.6(3)	H(9A)-C(9)-H(9B)	109.5
C(13)-C(12)-C(14)	117.5(3)	Si(1)-C(9)-H(9C)	109.5
C(12)-C(11)-C(8)	131.3(3)	H(9A)-C(9)-H(9C)	109.5
С(12)-С(11)-Н(11А)	114.4	H(9B)-C(9)-H(9C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S7. Anisotropic displacement parameters (A² x 10³) for 6. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

U11	U22	U33		U23	U13	U12
Br(1)	53(1)	50(1)	68(1)	8(1)	-10(1)	-33(1)
Br(2)	67(1)	70(1)	75(1)	6(1)	-36(1)	-21(1)
Si (1)	36(1)	39(1)	46(1)	-2(1)	-9(1)	-19(1)
S (1)	54(1)	40(1)	53(1)	9(1)	-11(1)	-18(1)
S(2)	40(1)	38(1)	45(1)	4(1)	-9(1)	-22(1)
O(1)	56(1)	67(2)	83(2)	20(1)	-32(1)	-38(1)
O(2)	48(1)	49(1)	56(2)	9(1)	-20(1)	-19(1)
N(1)	68(2)	59(2)	92(3)	24(2)	-33(2)	-41(2)
C(5)	32(2)	35(2)	39(2)	-5(1)	1(1)	-16(1)
C(1)	39(2)	40(2)	44(2)	3(2)	-6(2)	-18(1)
C(3)	38(2)	37(2)	48(2)	-7(2)	-2(2)	-14(1)
C(12)	34(2)	39(2)	40(2)	-6(2)	-2(2)	-12(1)
C(11)	35(2)	43(2)	45(2)	-8(2)	-2(2)	-18(1)
C(6)	36(2)	35(2)	38(2)	-2(1)	-2(1)	-15(1)
C(13)	45(2)	42(2)	48(2)	6(2)	-17(2)	-15(2)
C(7)	37(2)	39(2)	44(2)	-2(2)	-2(2)	-20(1)
C(14)	39(2)	44(2)	45(2)	-3(2)	-4(2)	-13(2)
C(15)	46(2)	59(2)	51(2)	4(2)	-16(2)	-16(2)
C(16)	63(3)	90(3)	75(3)	30(3)	-18(2)	-25(2)
C(17)	82(3)	126(5)	71(4)	40(3)	-10(3)	-8(3)
C(18)	138(6)	219(7)	150(6)	79(6)	-6(5)	-17(5)
C(19)	326(13)	115(7)	354(16)	52(9)	201(12)	-7(9
C(20)	326(14)	122(6)	143(8)	10(6)	28(9)	-85(8

C(21) 183(7)	185(8)	160(8)	77(7)	-74(6)	-89(7)
C(22	2) 208(9)	143(7)	155(8)	56(6)	-12(7)	-57(6)
C(2)	35(2)	35(2)	41(2)	-1(1)	-1(2)	-15(1)
C(8)	33(2)	40(2)	39(2)	-6(1)	-4(1)	-18(1)
C(10) 78(2)	59(2)	57(3)	-4(2)	-10(2)	-35(2)
C(4)	41(2)	47(2)	48(2)	-1(2)	-10(2)	-17(2)
C(9)	46(2)	50(2)	87(3)	-5(2)	0(2)	-23(2)

Table S8. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **6**.

	Х	У	Z	U(eq)
H(11A)	1173	2140	4737	47
H(7A)	2731	119	5756	46
H(15A)	-2435	6459	3032	63
H(15B)	-1413	5247	2401	63
H(16A)	-247	7017	1866	93
H(16B)	-1273	8224	2491	93
H(17A)	-3541	8351	1837	122
H(17B)	-2515	7140	1211	122
H(18A)	-1466	9530	1249	222
H(18B)	-1772	8787	485	222
H(19A)	-3591	11117	1244	355
H(19B)	-4064	10333	542	355
H(20A)	-1886	11073	-163	237
H(20B)	-3671	11970	-236	237
H(21A)	-1762	12564	777	204
H(21B)	-3568	13419	773	204
H(22A)	-2422	14939	77	258
H(22B)	-3227	14326	-576	258
H(22C)	-1415	13602	-484	258
H(10A)	7052	3284	7430	92
H(10B)	7541	1890	8074	92
H(10C)	5781	2669	7864	92
H(9A)	9238	1530	6074	89
H(9B)	9146	-29	5802	89
H(9C)	9883	31	6636	89

Table S9. Torsion angles [deg] for 6.

C(4)-S(1)-C(1)-C(2)	0.4(3)
C(4)-S(1)-C(1)-Br(1)	-178.8(2)
C(9)-Si(1)-C(3)-C(4)	62.0(5)
C(10)-Si(1)-C(3)-C(4)	-64.5(5)
C(6)-Si(1)-C(3)-C(4)	179.7(4)
C(9)-Si(1)-C(3)-C(2)	-118.1(3)
C(10)-Si(1)-C(3)-C(2)	115.4(3)
C(6)-Si(1)-C(3)-C(2)	-0.4(3)
C(13)-C(12)-C(11)-C(8)	-0.7(6)
C(14)-C(12)-C(11)-C(8)	178.4(3)
C(7)-C(5)-C(6)-S(2)	-0.3(4)
C(2)-C(5)-C(6)-S(2)	-179.8(2)
C(7)-C(5)-C(6)-Si(1)	177.6(2)
C(2)-C(5)-C(6)-Si(1)	-1.9(4)
C(8)-S(2)-C(6)-C(5)	0.4(3)
C(8)-S(2)-C(6)-Si(1)	-176.8(3)
C(9)-Si(1)-C(6)-C(5)	115.3(3)
C(10)-Si(1)-C(6)-C(5)	-110.7(3)
C(3)-Si(1)-C(6)-C(5)	1.4(3)
C(9)-Si(1)-C(6)-S(2)	-67.5(3)
C(10)-Si(1)-C(6)-S(2)	66.5(3)
C(3)-Si(1)-C(6)-S(2)	178.5(3)
C(11)-C(12)-C(13)-N(1)	-144(16)
C(14)-C(12)-C(13)-N(1)	37(17)
C(6)-C(5)-C(7)-C(8)	-0.1(4)
C(2)-C(5)-C(7)-C(8)	179.4(3)
C(15)-O(2)-C(14)-O(1)	-2.0(5)
C(15)-O(2)-C(14)-C(12)	178.8(3)
C(11)-C(12)-C(14)-O(1)	4.0(6)
C(13)-C(12)-C(14)-O(1)	-176.9(4)
C(11)-C(12)-C(14)-O(2)	-176.8(3)
C(13)-C(12)-C(14)-O(2)	2.4(5)
C(14)-O(2)-C(15)-C(16)	-170.7(3)
O(2)-C(15)-C(16)-C(17)	179.7(4)
C(15)-C(16)-C(17)-C(18)	-179.9(6)
C(16)-C(17)-C(18)-C(19)	-135.8(15)
C(17)-C(18)-C(19)-C(20)	-173.0(11)
C(18)-C(19)-C(20)-C(21)	-104.1(17)
C(19)-C(20)-C(21)-C(22)	-175.7(10)
S(1)-C(1)-C(2)-C(3)	-0.3(4)
Br(1)-C(1)-C(2)-C(3)	178.9(3)
S(1)-C(1)-C(2)-C(5)	-179.7(3)
Br(1) - C(1) - C(2) - C(5)	-0.5(6)

C(4)-C(3)-C(2)-C(1)	-0.1(4)
Si(1)-C(3)-C(2)-C(1)	179.9(3)
C(4)-C(3)-C(2)-C(5)	179.4(3)
Si(1)-C(3)-C(2)-C(5)	-0.5(4)
C(6)-C(5)-C(2)-C(1)	-179.0(4)
C(7)-C(5)-C(2)-C(1)	1.5(7)
C(6)-C(5)-C(2)-C(3)	1.6(4)
C(7)-C(5)-C(2)-C(3)	-177.9(3)
C(5)-C(7)-C(8)-C(11)	-179.6(3)
C(5)-C(7)-C(8)-S(2)	0.4(4)
C(12)-C(11)-C(8)-C(7)	179.9(4)
C(12)-C(11)-C(8)-S(2)	-0.1(6)
C(6)-S(2)-C(8)-C(7)	-0.5(3)
C(6)-S(2)-C(8)-C(11)	179.5(3)
C(2)-C(3)-C(4)-S(1)	0.5(4)
Si(1)-C(3)-C(4)-S(1)	-179.6(3)
C(2)-C(3)-C(4)-Br(2)	-178.1(3)
Si(1)-C(3)-C(4)-Br(2)	1.8(6)
C(1)-S(1)-C(4)-C(3)	-0.5(3)
C(1)-S(1)-C(4)-Br(2)	178.2(2)

Symmetry transformations used to generate equivalent atoms:

X-ray crystallographic data of M2

Table S10.	Crystal	data and	structure refinement	for M2 .
------------	---------	----------	----------------------	-----------------

M2
C20 H26 N2 S2 Si3
442.82
296(2) K
0.71073 A
Monoclinic, P2(1)/c
a = 12.979(10) A alpha = 90 deg.
b = 12.411(9) A beta = 92.684(15)
deg.
c = 15.532(12) A gamma = 90 deg.
2499(3) A^3
4, 1.177 Mg/m^3
0.365 mm^-1
936
0.30 x 0.25 x 0.23 mm
2.10 to 25.00 deg.
-15<=h<=12, -14<=k<=14, -18<=l<=18

Reflections collected / unique	12484 / 4405 [R(int) = 0.0527]
Completeness to theta $= 25.00$	99.70%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9208 and 0.8984
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4405 / 0 / 244
Goodness-of-fit on F^2	1.005
Final R indices [I>2sigma(I)]	R1 = 0.0462, wR2 = 0.1060
R indices (all data)	R1 = 0.0912, $wR2 = 0.1276$

Table S11. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **M2**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
S(1)	8292(1)	8728(1)	-1681(1)	58(1)
S(2)	6073(1)	11157(1)	1396(1)	58(1)
Si(1)	9468(1)	10830(1)	-2095(1)	59(1)
Si(2)	7139(1)	7078(1)	-606(1)	61(1)
Si(3)	7669(1)	11660(1)	-180(1)	53(1)
N(1)	3096(2)	8831(2)	3520(2)	86(1)
C(7)	7454(2)	8514(2)	-856(2)	47(1)
C(5)	7879(2)	10395(2)	-812(2)	45(1)
C(19)	4398(2)	11052(2)	2796(2)	63(1)
C(4)	8468(2)	10083(2)	-1489(2)	49(1)
C(18)	4312(2)	9946(2)	2603(2)	49(1)
C(16)	8855(2)	12206(3)	355(2)	81(1)
C(3)	9123(3)	12280(2)	-2185(2)	86(1)
C(20)	3622(2)	9337(2)	3111(2)	59(1)
C(13)	6012(2)	9236(2)	780(2)	52(1)
C(12)	6813(2)	10878(2)	543(2)	51(1)
C(6)	7309(2)	9504(2)	-463(2)	44(1)
C(1)	9543(2)	10207(2)	-3177(2)	68(1)
C(15)	6939(2)	12756(2)	-742(2)	77(1)
N(2)	4462(2)	11938(2)	2969(2)	103(1)
C(17)	4846(2)	9443(2)	1992(2)	53(1)
C(2)	10724(3)	10685(3)	-1485(2)	114(2)
C(14)	5585(2)	9859(2)	1417(2)	50(1)
C(11)	6700(2)	9814(2)	281(2)	47(1)
C(10)	5755(2)	6771(2)	-515(2)	77(1)
C(8)	7580(3)	6241(3)	-1512(3)	138(2)

C(9	<i>7</i> 833(3)	6726(3) 4	20(3)	138(2)
<i>Table S12</i> . Bo	and lengths [A] and ang	les [deg] for M2 .		
S(1)-C(4)	1.721(3)	C(4)-C(5)-C(6)	112.4	(2)
S(1)-C(7)	1.740(3)	C(4)-C(5)-Si(3)	136.8	8(19)
S(2)-C(12)	1.708(3)	C(6)-C(5)-Si(3)	110.6	6(17)
S(2)-C(14)	1.732(3)	N(2)-C(19)-C(18)	178.6	5(3)
Si(1)-C(2)	1.856(4)	C(5)-C(4)-S(1)	109.3	8(18)
Si(1)-C(1)	1.858(3)	C(5)-C(4)-Si(1)	131.2	9(19)
Si(1)-C(3)	1.858(3)	S(1)-C(4)-Si(1)	118.9	3(14)
Si(1)-C(4)	1.882(3)	C(17)-C(18)-C(19)	124.1	(2)
Si(2)-C(9)	1.845(4)	C(17)-C(18)-C(20)	119.7	(2)
Si(2)-C(10)	1.849(3)	C(19)-C(18)-C(20)	116.2	(2)
Si(2)-C(8)	1.860(4)	Si(3)-C(16)-H(16A)	109.5	
Si(2)-C(7)	1.873(3)	Si(3)-C(16)-H(16B)	109.5	
Si(3)-C(16)	1.844(3)	H(16A)-C(16)-H(16B	B) 109.5	
Si(3)-C(15)	1.853(3)	Si(3)-C(16)-H(16C)	109.5	
Si(3)-C(5)	1.878(3)	H(16A)-C(16)-H(16C	C) 109.5	
Si(3)-C(12)	1.885(3)	H(16B)-C(16)-H(16C	C) 109.5	
N(1)-C(20)	1.143(3)	Si(1)-C(3)-H(3A)	109.5	
C(7)-C(6)	1.389(3)	Si(1)-C(3)-H(3B)	109.5	
C(5)-C(4)	1.384(3)	H(3A)-C(3)-H(3B)	109.5	
C(5)-C(6)	1.450(3)	Si(1)-C(3)-H(3C)	109.5	
C(19)-N(2)	1.134(3)	H(3A)-C(3)-H(3C)	109.5	
C(19)-C(18)	1.408(4)	H(3B)-C(3)-H(3C)	109.5	
C(18)-C(17)	1.354(3)	N(1)-C(20)-C(18)	178.0	(3)
C(18)-C(20)	1.435(4)	C(14)-C(13)-C(11)	113.1	(2)
C(16)-H(16A)	0.96	C(14)-C(13)-H(13A)	123.4	
C(16)-H(16B)	0.96	C(11)-C(13)-H(13A)	123.4	-
C(16)-H(16C)	0.96	C(11)-C(12)-S(2)	111.4	0(18)
C(3)-H(3A)	0.96	C(11)-C(12)-Si(3)	111.8	4(18)
C(3)-H(3B)	0.96	S(2)-C(12)-Si(3)	136.6	0(15)
C(3)-H(3C)	0.96	C(7)-C(6)-C(5)	115.3	(2)
C(13)-C(14)	1.390(3)	C(7)-C(6)-C(11)	131.4	(2)
C(13)-C(11)	1.407(3)	C(5)-C(6)-C(11)	113.2	(2)
C(13)-H(13A)	0.93	Si(1)-C(1)-H(1A)	109.5	
C(12)-C(11)	1.388(3)	Si(1)-C(1)-H(1B)	109.5	
C(6)-C(11)	1.480(3)	H(1A)-C(1)-H(1B)	109.5	
C(1)-H(1A)	0.96	Si(1)-C(1)-H(1C)	109.5	
C(1)-H(1B)	0.96	H(1A)-C(1)-H(1C)	109.5	
C(1)-H(1C)	0.96	H(1B)-C(1)-H(1C)	109.5	
C(15)-H(15A)	0.96	Si(3)-C(15)-H(15A)	109.5	
C(15)-H(15B)	0.96	Si(3)-C(15)-H(15B)	109.5	

C(15)-H(15C)	0.96	H(15A)-C(15)-H(15B)	109.5
C(17)-C(14)	1.437(3)	Si(3)-C(15)-H(15C)	109.5
C(17)-H(17A)	0.93	H(15A)-C(15)-H(15C)	109.5
C(2)-H(2A)	0.96	H(15B)-C(15)-H(15C)	109.5
C(2)-H(2B)	0.96	C(18)-C(17)-C(14)	130.5(2)
C(2)-H(2C)	0.96	C(18)-C(17)-H(17A)	114.7
C(10)-H(10A)	0.96	C(14)-C(17)-H(17A)	114.7
C(10)-H(10B)	0.96	Si(1)-C(2)-H(2A)	109.5
C(10)-H(10C)	0.96	Si(1)-C(2)-H(2B)	109.5
C(8)-H(8A)	0.96	H(2A)-C(2)-H(2B)	109.5
C(8)-H(8B)	0.96	Si(1)-C(2)-H(2C)	109.5
C(8)-H(8C)	0.96	H(2A)-C(2)-H(2C)	109.5
C(9)-H(9A)	0.96	H(2B)-C(2)-H(2C)	109.5
C(9)-H(9B)	0.96	C(13)-C(14)-C(17)	122.8(2)
C(9)-H(9C)	0.96	C(13)-C(14)-S(2)	110.24(18)
C(4)-S(1)-C(7)	95.97(12)	C(17)-C(14)-S(2)	126.92(18)
C(12)-S(2)-C(14)	92.60(12)	C(12)-C(11)-C(13)	112.6(2)
C(2)-Si(1)-C(1)	109.80(16)	C(12)-C(11)-C(6)	115.0(2)
C(2)-Si(1)-C(3)	109.60(17)	C(13)-C(11)-C(6)	132.4(2)
C(1)-Si(1)-C(3)	110.95(14)	Si(2)-C(10)-H(10A)	109.5
C(2)-Si(1)-C(4)	107.89(14)	Si(2)-C(10)-H(10B)	109.5
C(1)-Si(1)-C(4)	108.29(13)	H(10A)-C(10)-H(10B)	109.5
C(3)-Si(1)-C(4)	110.24(13)	Si(2)-C(10)-H(10C)	109.5
C(9)-Si(2)-C(10)	108.79(17)	H(10A)-C(10)-H(10C)	109.5
C(9)-Si(2)-C(8)	111.5(2)	H(10B)-C(10)-H(10C)	109.5
C(10)-Si(2)-C(8)	106.11(16)	Si(2)-C(8)-H(8A)	109.5
C(9)-Si(2)-C(7)	107.56(15)	Si(2)-C(8)-H(8B)	109.5
C(10)-Si(2)-C(7)	115.70(12)	H(8A)-C(8)-H(8B)	109.5
C(8)-Si(2)-C(7)	107.27(14)	Si(2)-C(8)-H(8C)	109.5
C(16)-Si(3)-C(15)	109.88(15)	H(8A)-C(8)-H(8C)	109.5
C(16)-Si(3)-C(5)	113.88(13)	H(8B)-C(8)-H(8C)	109.5
C(15)-Si(3)-C(5)	116.78(13)	Si(2)-C(9)-H(9A)	109.5
C(16)-Si(3)-C(12)	115.11(14)	Si(2)-C(9)-H(9B)	109.5
C(15)-Si(3)-C(12)	110.80(14)	H(9A)-C(9)-H(9B)	109.5
C(5)-Si(3)-C(12)	89.16(12)	Si(2)-C(9)-H(9C)	109.5
C(6)-C(7)-S(1)	106.92(17)	H(9A)-C(9)-H(9C)	109.5
C(6)-C(7)-Si(2)	135.65(19)	H(9B)-C(9)-H(9C)	109.5
S(1)-C(7)-Si(2)	116.62(13)		

Symmetry transformations used to generate equivalent atoms:

Table S13. Anisotropic displacement parameters (A² x 10³) for M2. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h² a*² U11 + ...

+ 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
 S(1)	59(1)	56(1)	62(1)	-3(1)	24(1)	-7(1)
S(2)	70(1)	43(1)	63(1)	-3(1)	24(1)	-7(1)
Si(1)	55(1)	71(1)	52(1)	6(1)	11(1)	-20(1)
Si(2)	54(1)	43(1)	86(1)	10(1)	20(1)	4(1)
Si(3)	60(1)	47(1)	52(1)	0(1)	12(1)	-15(1)
N(1)	76(2)	86(2)	100(2)	27(2)	39(2)	0(1)
C(7)	43(1)	50(2)	50(1)	3(1)	13(1)	-1(1)
C(5)	42(1)	49(2)	43(1)	5(1)	3(1)	-7(1)
C(19)	62(2)	61(2)	67(2)	-11(2)	25(2)	-8(1)
C(4)	46(2)	51(2)	51(2)	3(1)	3(1)	-10(1)
C(18)	49(2)	46(2)	53(2)	3(1)	14(1)	1(1)
C(16)	80(2)	99(2)	64(2)	-20(2)	15(2)	-39(2)
C(3)	125(3)	65(2)	72(2)	-3(2)	35(2)	-33(2)
C(20)	55(2)	57(2)	65(2)	6(1)	19(2)	6(1)
C(13)	62(2)	37(1)	59(2)	3(1)	20(1)	-3(1)
C(12)	54(2)	46(2)	53(2)	-1(1)	12(1)	-6(1)
C(6)	39(1)	46(1)	47(1)	6(1)	3(1)	-4(1)
C(1)	69(2)	69(2)	69(2)	1(2)	28(2)	-4(2)
C(15)	96(2)	53(2)	83(2)	8(2)	17(2)	-2(2)
N(2)	121(2)	68(2)	125(2)	-36(2)	51(2)	-25(2)
C(17)	59(2)	37(1)	65(2)	2(1)	17(2)	-1(1)
C(2)	65(2)	185(4)	91(3)	34(3)	-6(2)	-42(2)
C(14)	58(2)	39(1)	54(2)	3(1)	19(1)	-3(1)
C(11)	48(2)	45(2)	47(1)	5(1)	11(1)	2(1)
C(10)	68(2)	57(2)	109(2)	-6(2)	19(2)	-12(2)
C(8)	165(4)	60(2)	199(4)	-28(2)	112(3)	-4(2)
C(9)	112(3)	112(3)	183(4)	81(3)	-50(3)	-18(3)

	Х	У	Ζ	U(eq)
H(16A)	9243	12589	-58	121
H(16B)	9264	11626	595	121
H(16C)	8676	12689	807	121
H(3A)	8473	12353	-2501	129
H(3B)	9647	12656	-2482	129
H(3C)	9070	12580	-1619	129
H(13A)	5858	8511	694	63
H(1A)	9732	9462	-3114	102
H(1B)	10052	10576	-3495	102
H(1C)	8884	10260	-3481	102
H(15A)	7388	13142	-1107	116
H(15B)	6673	13240	-325	116
H(15C)	6377	12453	-1086	116
H(17A)	4713	8710	1935	64
H(2A)	10905	9936	-1444	171
H(2B)	10672	10978	-917	171
H(2C)	11247	11066	-1780	171
H(10A)	5490	7175	-47	116
H(10B)	5670	6015	-409	116
H(10C)	5384	6964	-1042	116
H(8A)	7217	6454	-2037	207
H(8B)	7443	5496	-1398	207
H(8C)	8307	6342	-1567	207
H(9A)	7593	7175	872	206
H(9B)	8559	6837	366	206
H(9C)	7707	5984	554	206

Table S14. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **6**.

Table S15.	Torsion	angles	[deg]	for M2 .	

C(4)-S(1)-C(7)-C(6)	1.4(2)
C(4)-S(1)-C(7)-Si(2)	-169.87(15)
C(9)-Si	(2)-C(7)-C(6)	-61.7(3)
C(10)-S	i(2)-C(7)-C(6)	60.1(3)
C(8)-Si	(2)-C(7)-C(6)	178.3(3)
C(9)-Si	(2)-C(7)-S(1)	106.4(2)
C(10)-S	i(2)-C(7)-S(1)	-131.80(17)
C(8)-Si	(2)-C(7)-S(1)	-13.6(2)
C(16)-S	i(3)-C(5)-C(4)	-58.2(3)
C(15)-S	i(3)-C(5)-C(4)	71.6(3)
C(12)-S	i(3)-C(5)-C(4)	-175.5(3)
C(16)-S	ii(3)-C(5)-C(6)	117.80(19)
C(15)-S	ii(3)-C(5)-C(6)	-112.4(2)
C(12)-S	i(3)-C(5)-C(6)	0.57(19)
C(6)-C(5)-C(4)-S(1)	0.8(3)
Si(3)-C	(5)-C(4)-S(1)	176.78(19)
C(6)-C(5)-C(4)-Si(1)	-171.7(2)
Si(3)-C	(5)-C(4)-Si(1)	4.3(4)
C(7)-S(1)-C(4)-C(5)	-1.3(2)
C(7)-S(1)-C(4)-Si(1)	172.26(15)
C(2)-Si	(1)-C(4)-C(5)	85.2(3)
C(1)-Si	(1)-C(4)-C(5)	-156.0(2)
C(3)-Si	(1)-C(4)-C(5)	-34.4(3)
C(2)-Si	(1)-C(4)-S(1)	-86.7(2)
C(1)-Si	(1)-C(4)-S(1)	32.1(2)
C(3)-Si	(1)-C(4)-S(1)	153.66(16)
N(2)-C((19)-C(18)-C(17)	-151(13)
N(2)-C((19)-C(18)-C(20)	28(14)
C(17)-C	C(18)-C(20)-N(1)	49(9)
C(19)-C	C(18)-C(20)-N(1)	-130(9)
C(14)-S	(2)-C(12)-C(11)	-0.6(2)
C(14)-S	(2)-C(12)-Si(3)	174.3(2)
C(16)-S	i(3)-C(12)-C(11)	-118.3(2)
C(15)-S	i(3)-C(12)-C(11)	116.3(2)
C(5)-Si	(3)-C(12)-C(11)	-2.2(2)
C(16)-S	i(3)-C(12)-S(2)	66.8(3)
C(15)-S	i(3)-C(12)-S(2)	-58.6(3)
C(5)-Si	(3)-C(12)-S(2)	-177.1(2)
S(1)-C(7)-C(6)-C(5)	-1.2(3)

Si(2)-C(7)-C(6)-C(5)	167.6(2)
S(1)-C(7)-C(6)-C(11)	-178.6(2)
Si(2)-C(7)-C(6)-C(11)	-9.7(5)
C(4)-C(5)-C(6)-C(7)	0.3(3)
Si(3)-C(5)-C(6)-C(7)	-176.76(18)
C(4)-C(5)-C(6)-C(11)	178.1(2)
Si(3)-C(5)-C(6)-C(11)	1.1(3)
C(19)-C(18)-C(17)-C(14)	-0.1(5)
C(20)-C(18)-C(17)-C(14)	-178.9(3)
C(11)-C(13)-C(14)-C(17)	178.7(2)
C(11)-C(13)-C(14)-S(2)	-1.3(3)
C(18)-C(17)-C(14)-C(13)	-175.4(3)
C(18)-C(17)-C(14)-S(2)	4.6(4)
C(12)-S(2)-C(14)-C(13)	1.1(2)
C(12)-S(2)-C(14)-C(17)	-178.9(2)
S(2)-C(12)-C(11)-C(13)	-0.1(3)
Si(3)-C(12)-C(11)-C(13)	-176.29(18)
S(2)-C(12)-C(11)-C(6)	179.51(18)
Si(3)-C(12)-C(11)-C(6)	3.3(3)
C(14)-C(13)-C(11)-C(12)	0.9(3)
C(14)-C(13)-C(11)-C(6)	-178.6(3)
C(7)-C(6)-C(11)-C(12)	174.5(3)
C(5)-C(6)-C(11)-C(12)	-2.9(3)
C(7)-C(6)-C(11)-C(13)	-6.0(5)
C(5)-C(6)-C(11)-C(13)	176.6(3)

Symmetry transformations used to generate equivalent atoms:

5. Photovoltaic Performance Optimization

Table S16. Photovoltaic Performances with different ratios of polymer:PC₇₁BM and different spin speed.

Polymer	Polymer:PC ₇₁ BM	Spin speed (rpm/min)	V _{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	FF PCE (%) 0.31 1.57 0.32 1.99 0.34 2.16 0.37 2.79 0.36 2.44 0.35 1.80 0.40 2.41 0.39 2.30 0.38 2.08	
PBDTDTSi-1	1:1	2000	1.00	5.09	0.31	1.57
	1:2	2000	1.03	5.93	0.32	1.99
	1:3	2000	1.02	6.23	0.34	2.16
	1:4	2000	1.04	7.13	0.37	2.79
	1:5	2000	1.00	6.71	0.36	2.44
	1:4	1000	1.05	4.84	0.35	1.80
	1:4	1500	1.08	5.60	0.40	2.41
	1:4	2500	1.07	5.52	0.39	2.30
	1:4	3000	1.01	5.43	0.38	2.08

PBDTDTSi-2	1:1	2000	0.95	1.69	0.23	0.36
	1:2	2000	0.87	2.15	0.28	0.53
	1:3	2000	0.87	3.95	0.30	1.04
	1:4	2000	0.80	6.28	0.29	1.46
	1:5	2000	0.85	4.04	0.32	1.10
PBDTDTSi-3	1:1	2000	0.89	1.98	0.27	0.47
	1:2	2000	0.91	2.08	0.27	0.52
	1:3	2000	0.85	3.38	0.29	0.85
	1:4	2000	0.91	3.46	0.29	0.92
	1:5	2000	0.90	3.39	0.29	0.90

Table S17. Photovoltaic Performances with different concentrations of DIO and the interfacial layer.

Polymer	Polymer:PC ₇₁ BM	DIO%	TiOx interfacial layer	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE (%)
PBDTDTSi-1	1:4	0.5	w/o	1.03	7.25	0.37	2.77
PBDTDTSi-1	1:4	1.5	w/o	1.05	7.12	0.40	2.98
PBDTDTSi-1	1:4	2	w/o	1.03	7.49	0.40	3.11
PBDTDTSi-1	1:4	2.5	w/o	1.09	7.31	0.38	3.01
PBDTDTSi-1	1:4	2	with	1.07	7.53	0.41	3.29
PBDTDTSi-2	1:4	2	with	1.01	6.52	0.35	2.30
PBDTDTSi-3	1:4	2	with	1.00	3.88	0.30	1.16

6. Hole Transfer Properties by SCLC method

Figure S37. $J^{1/2}$ –V curves of hole-only devices.