Supporting Information

pH-Responsive Non-ionic Diblock Copolymers: Protonation of a Morpholine End-group Induces an Order-Order transition

N. J. W. Penfold, J. R. Lovett, N. J. Warren, P. Verstraete^b, J. Smets^b and S. P. Armes^a

Figure S1. Assigned ¹³C NMR spectrum obtained for PETTC RAFT agent in CDCl₃ at 298 K.

Figure S2. Assigned ¹³C NMR spectrum obtained for SPETTC RAFT agent in CDCl₃ at 298 K.

Figure S3. Assigned ¹³C NMR spectrum obtained for MPETTC RAFT agent in CDCl₃ at 298 K.

Figure S4. Digital images obtained for a 0.50% w/w MPETTC RAFT agent in water (a) at pH 4.5 where MPETTC is soluble due to morpholine end-group protonation and (b) at pH 7.5 where MPETTC is insoluble.

Figure S5. (a) Monomer conversion v. time curve, (b) evolution of number-average molecular weight (M_n) with conversion and (c) selected unimodal DMF GPC chromatograms obtained for the RAFT solution polymerisation of glycerol monomethacrylate in water at 44 °C (25% solids, pH 2). A degree of polymerisation of 75 was targeted and [MPETTC]/[VA-044] = 5.0. M_w and M_n values were determined by DMF GPC calibrated with a series of near-monodisperse PMMA standards.

Figure S6. DMF GPC chromatograms obtained for (a) MPETTC-PGMA₅₀ macro-CTA and MPETTC-PGMA₅₀-PHPMA₁₄₀ diblock copolymer and (b) MePETTC-PGMA₅₈ and MePETTC-PGMA₅₈-PHPMA₁₆₀ diblock copolymer synthesised by RAFT aqueous dispersion polymerisation at pH 7.0 – 7.50. Number-averaged, M_n , and weightaveraged, M_w , molecular weights are relative to PMMA standards.

Figure S7. Acid titration curves to determine the pK_a of MPETTC-PGMA₅₀ macro-CTA in water to be 6.27.

Figure S8. TEM images at pH 7 and pH 3 for MePETTC-PGMA₅₈-PHPMA₁₆₀ diblock copolymer worms synthesised by RAFT aqueous dispersion polymerisation at pH 7.0 – 7.5. As a non-ionic end-group control, no change in worm-like morphology is observed upon a pH change, as expected.