Supporting Information

A Poly (amidoamine) Dendrimer-Based Nanocarrier Conjugated with Angiopep-2 for Dual-Targeting Function in Treating Gliomas Cells

Zejun Xu,^a Yao Wang,^a Zhiyong Ma,^a Zhijian Wang,^a Yen Wei^b and Xinru Jia^{a*}

 ^a Beijing National Laboratory for Molecular Sciences and Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. E-mail: <u>xrjia@pku.edu.cn</u>.
^b Department of Chemistry, Tsinghua University, Beijing, China.

Experimental

Synthesis of thiolated doxorubicin (DOX-SH)

Thiolated doxorubicin (DOX-SH) was prepared according to the literature.¹ DOX-SH was synthesized by mixing DOX and 2-iminothiolane under argon protection (Scheme S1). The solution was stirred for 48 h at dark to ensure the high conversion efficiency of DOX to DOX-SH (ESI-MS calculated [M+1]⁺ for DOX-SH: 645.6, observed [M+1]⁺: 645.2, Fig. S1).

Synthesis of G4-DOX-PEG

G4-DOX-PEG was synthesized by the reactions described in Scheme S2. The activated DOX was coupled to the exterior of G4 dendrimers via a disulfide linkage. ¹H NMR was employed to characterize the obtained compounds. Then PEG chains were grafted onto G4-DOX.

Synthesis of G4-Angiopep-PEG

G4-Angiopep-PEG (Scheme S3) was synthesized by reacting G4 PAMAM with MAL-PEG2000-NHS, and next Angiopep was coupled to G4-MAL. The linking of target ligands was performed subsequently in the aqueous solution within a short reaction time to reduce the possibility of protein denaturation. Finally mPEG2000-SCM chains were grafted onto G4-Angiopep. The number of Angiopep-2 moieties on per G4 PAMAM was determined by ¹H NMR measurements (Fig. S2).

Scheme S1. Synthesis of thiolated doxorubicin (DOX-SH).

Scheme S2. The synthetic route of G4-DOX-PEG. Reagents and conditions: (a) H_2O , DMF, rt, 2 h, (b) N_2 , H_2O , DMF, rt, 2 h, (c) H_2O , DMSO, rt, over night. (rt = room temperature)

Scheme S3. The synthetic route of dual-targeting drug carrier of G4-Angiopep-PEG. Reagents and conditions: (a) H_2O , DMSO, rt, 15 min, (b) H_2O , DMSO, rt, 30 min, (c) H_2O , DMSO, rt, over night. (rt = room temperature)

Fig. S1 ESI-MS spectra of DOX-SH.

Fig. S2 ¹H NMR spectrum of G4-Angiopep-PEG and G4 (inset).

Fig. S3 DLS graphs of (a) G4-DOX-PEG and (b) G4-DOX-Angiopep -PEG. Data were presented as the mean \pm standard deviation (n = 3).

		04	CD1			1 .	0.1	1	•	•		
1.4	ahle	SI	The	zeta	notential	data	of the	druo	carriers	1n	wat	er
1.6	inic	DI •	1110	Lota	potential	uuuu	or the	urug	carriers	111	wat	ωı.
					1			<u> </u>				

Drug carriers	Zeta potential (mV)				
G4-DOX-Angiopep	16.22 ± 1.37				
G4-DOX-PEG	2.61 ± 1.90				

Fig. S4. Confocal images of the C6 cells incubated 6 h in DMEM medium with (a) G4-DOX-PEG and (b) G4-DOX-Angiopep-PEG, respectively. For each panel, images from left to right showed the cells with nuclear staining by Hoechst 33258, with DOX fluorescence, and overlays of both images (scale bar, $100 \mu m$).

References

1 X. Wang, X. Cai, J. Hu, N. Shao, F. Wang, Q. Zhang, J. Xiao and Y. Cheng, J. Am. Chem. Soc., 2013, **135**, 9805.