Supporting Information

The synthesis, characterization and flexible OFET application of three
 (Z)-1,2-bis(4-(tert-butyl)phenyl)ethane
 based copolymers

Yuli Huang, Wei Huang, Junwei Yang, Ji Ma, Moyun Chen, Haoyun Zhu and Weizhi Wang*
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.

E-mail: weizhiwang@fudan.edu.cn

Scheme S1 Synthesis of (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane.

Synthesis of the monomers: 1,2-bis(4-tert-butylphenyl)ethyne (1) The purchased 1-bromo-4-tertbutylbenzene ($11.35 \mathrm{~g}, 53.29 \mathrm{mmol}$) and 1-tert-butyl-4-ethynylbenzene ($8.43 \mathrm{~g}, 53.35 \mathrm{mmol}$) were both dissolved in triethylamine in the nitrogen surroundings. Then stir the mixture for about 10 min , follow by a catalytic amount of triphenylphosphine, CuI and $\mathrm{Pd}(\mathrm{II})$ acetate $(\mathrm{P}: \mathrm{Cu}: \mathrm{Pd}=3: 2: 1)$ were added in the solution all at once. This reaction blend was heated under the reflux for 6 h until to appear absolute by a test named thin layer chromatogram, the mixture was chilled down, and the filtrate after filtering was concentrated in a vacuum circumstance. Finally, the product was purified through the column chromatography on silica gel to obtain the monomer 1 as white crystals in a yield of 86.5%. 1 H NMR ($400 \mathrm{MHz}, \mathrm{CD} 2 \mathrm{Cl} 2$), $\delta(\mathrm{TMS}, \mathrm{ppm}): 7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) ; 13 \mathrm{C}$ NMR (100 MHz, CD2Cl2), δ (TMS, ppm): 151.56, 151.55, 151.54, 151.53, 151.52, 151.52, 131.19, $131.18,131.16,125.43,125.43,120.36,88.79,34.69,34.68,34.68,31.01,30.95,30.92$. Anal. Calcd for C22H26 (290.44): C, 90.90; H, 9.10; Found: C, 91.01, H, 8.99.

Synthesis of (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)ethane (2). A $100-\mathrm{mL}$ flask equipped with a reflux condenser, a magnetic stirring bar and a septum inlet, was charged with a catalytic amount of tetrakis(triphenylphosphine)platinum $\left(\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ and $\operatorname{bis}($ pinacolato $)$ diboron $(10.08 \mathrm{~g}, 39.69 \mathrm{mmol})$ and then flushed with N_{2}. DMF $(80 \mathrm{~mL})$ and $\mathbf{1}(11.52 \mathrm{~g}$, 39.72 mmol) were individually added. After stirring for around 24 h at $90^{\circ} \mathrm{C}$, the acquired mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. About 10 times of cold-water washing was used to remove DMF in succession, and dried over anhydrous magnesium sulfate ultimately. Kugelrohr distillation (0.15 mm Hg) delivered the monomer 2, white crystals with 78.4% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), δ (TMS, ppm): 7.13 $7.06(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.73(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 24 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), $\delta(\mathrm{TMS}$, ppm): 148.69, 138.77, 128.92, 128.91, 124.35, 84.01, 34.21, 34.20, 34.19, 31.03, 31.01, 31.00, 24.66. MS (MALDI-TOF): m/z (\%): 567.320 (100) [M+Na]+. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{O}_{4}$ (544.38): C, 74.95; H, 9.18; Found: C, 74.58; H, 9.33.Table S1 Summary of crystal data and reflection collection parameters for 1,2-bis(4-tert-butylphenyl)ethyne and (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-

Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{26}$	$\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{O}_{4}$
Formula weight	290.43	544.36
Crystal size, mm	$0.32 \times 0.28 \times 0.24$	$0.26 \times 0.21 \times 0.18$
Crystal system	Monoclinic, P21/c	Triclinic
space group	P2(1)/c	P-1
a, \AA	11.731(4)	10.991(18)
b, \AA	10.216(4)	12.54(2)
c, \AA	15.667(6)	13.97(4)
a, deg	90	108.83(5)
β, deg	96.915(7)	103.58(5)
$\gamma, \operatorname{deg}$	90	104.77(3)
V, \AA^{3}	1863.9(12)	1653(6)
Z	4	2
Calculated density, $\mathrm{Mg} / \mathrm{m}^{3}$	1.035	1.094
F(000)	632	592
Temperature, K	293(2)	296(2)
Wavelength, \AA	0.71073	0.71073
$\mu(\mathrm{Mo} \mathrm{Ka}), \mathrm{mm}^{-1}$	0.058	0.068
$2 \theta_{\text {max }}$, deg (Completeness)	25.00 (99.8 \%)	24.99(97.8 \%)
no. of collected reflections	9206	8152
no. of unique ref. $\left(R_{\text {int }}\right)$	3272 (0.0387)	5701 (0.0933)
Data/restraints/parameters	3272 / 6 / 200	5701 / 0 / 362
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ [obs I>2 ${ }_{\text {(}} \mathrm{I}$) $]$	0.0967, 0.1832	0.1322, 0.2363
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	0.1394, 0.1951	0.1805, 0.2686
residual peak/hole, e. \AA^{-3}	0.486 /-0.290	0.436/-0.302
transmission ratio	$0.9863 / 0.9817$	0.9878/0.9824
Goodness-of-fit on F^{2}	1.013	1.196

Fig. S1 The MALDI-TOF of (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane.

Fig. S2 The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 1,2-bis(4-tert-butylphenyl)ethyne.

Fig. S3 The ${ }^{13} \mathrm{C}$-NMR spectrum of 1,2-bis(4-tert-butylphenyl)ethyne.

Fig. S4 The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane.

Fig. S5 The ${ }^{13} \mathrm{C}$-NMR spectrum of (Z)-1,2-bis(4-tert-butylphenyl)-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane.

Fig. S6 GPC data of (a) PBPT, (b) PBPTT and (c) PBPDT
(a)

$$
\mathrm{a}
$$

$$
{ }^{a}
$$

Fig. S7 (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $(b)^{13} \mathrm{C}-\mathrm{NMR}$ spectra of PBPT

(b)

Fig. S8 (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $(\mathrm{b})^{13} \mathrm{C}-\mathrm{NMR}$ spectra of PBPTT

Fig. S9 (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $(\mathrm{b}){ }^{13} \mathrm{C}$-NMR spectra of PBPDT
(a)

(b)

Fig. S10 (a)TGA and (b)DSC curves of PBPT
(a)

(b)

Fig. S11 (a)TGA and (b)DSC curves of PBPTT

Fig. S12 (a)TGA and (b)DSC curves of PBPDT

Fig. S13 Cyclic voltammograms of PBPT, PBPTT and PBPDT

Fig. S14 AFM photo of PBPTT film.

Fig. S15 POM photos of (a) PBPT, (b) PBPTT and (c) PBPDT in the bright field.

(b)

(d)

(f)

Fig. S16 The output curves of OFET devices based on (a) PBPT, (c) PBPTT and (e) PBPDT. The linear fitting information of OFET devices based on (b) PBPT, (d) PBPTT and (f) PBPDT.

Fig. S17 The linear fitting information of OFET device based on PBPTT in two bending condition. (a) belongs to the condition shown in Fig. 5 (a), while (b) belongs to the condition shown in Fig. 5 (d)

Table S2 The characteristics and performance of the OFET device based on PBPTT during two weeks.

Time	μ	on/off ratio	V_{TH}
(day)	$\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$		(V)
0	0.27	1×10^{4}	-0.13
2	0.36	1.4×10^{4}	-0.09
4	0.38	8.1×10^{3}	-0.27
6	0.40	6.8×10^{3}	-0.19
8	0.28	3.8×10^{3}	-0.09
10	0.38	2.9×10^{3}	-0.14
12	0.32	1.5×10^{3}	-0.20
14	0.50	1.6×10^{3}	-0.70

Fig. S18 The transfer plots, output curves and linear fitting information of the OFET device based on PBPTT during two weeks:

2 days

Summary

	Intercept			Slope	
	Salue	Standard Error	Value	Standard Error	Adj. R-Square
C	$-1.88655 \mathrm{E}-4$	$1.37592 \mathrm{E}-5$	-0.00211	$5.82084 \mathrm{E}-6$	0.9981

4 days

6 days

Summary

	Intercept			Slope	
	Value	Standard Error	Value	Standard Error	Adj. R-Square
C	0.00182	1.89393 E-5	-0.00151	$8.01226 \mathrm{E}-6$	0.99302

10 days

Summary
Summary

	Intercept		Slope		Statistics
	Value	Standard Error	Value	Standard Error	Adj. R-Square
C	$2.9309 \mathrm{E}-4$	$5.58783 \mathrm{E}-6$	-0.00217	$2.36393 \mathrm{E}-6$	0.9997

12 days

14 days
Summary
Summary

	Intercept			Slope	
	Value	Standard Error	Value	Standard Error	Adj. R-Square
C	-0.00174	$4.71887 \mathrm{E}-5$	-0.00249	$1.99632 \mathrm{E}-5$	0.98419

