Supporting Information Available:

Azo-linked Porous Triptycene Network as absorbents for

CO₂ and iodine uptake

Qin-Qin Dang, Xiao-Min Wang, Yu-Fen Zhan, and Xian-Ming Zhang*

†School of Chemistry& Material Science, Shanxi Normal University, Linfen, Shanxi 041004, China

E-mail: zhangxm@dns.sxnu.edu.cn

Section 1. Materials and Measurements

Triptycene, zinc, and activated carbon (BET=600 m² g⁻¹) were obtained from Aldrich. Zeolite 13X (pore volume = $0.34 \text{ cm}^3 \text{ g}^{-1}$) was obtained from Aladdin Chemical Reagent Factory. Other organic solvents for reactions were distilled over appropriate drying reagents under nitrogen. Deuterated solvents for NMR measurement were obtained from Aldrich.

¹H spectra were recorded on a Bruker Advance III 600M NMR spectrometer. The elemental analysis was carried out using Elementar vario MACRO cube Elemental Analyzer. An infrared (IR) spectrum was carried out using KBr pellets on a Variann 640 FT-IR spectrometer. The thermogravimetric analysis (TGA) was performed using a METTLER-TOLEDO thermal analyzer system at the heating rate of 10°C/min in N₂ atmosphere. Solid-state NMR experiment was carried on a Varian Infinityplus-400 wide-bore (89 mm) NMR spectrometer at a proton frequency of 399.7 MHz using a 5 mm double-resonance HX CP/MAS NMR probe. ¹³C chemical shifts were referenced externally to tetramethylsilane using adamantane as a secondary reference. The N_2 isotherm measurements were carried out at 77 K in a liquid nitrogen bath and 273 K in an ice water mixture bath. The H₂ sorption isotherms were collected at 77 K in a liquid nitrogen bath and 87 K in a liquid argon bath. The CO_2 sorption isotherms were collected at 273 K in an ice water mixture bath and 298 K in an electric heating jacket. The dry samples were loaded into sample tubes and activated under high vacuum (less than 10-5 Torr) at 150 °C. The apparent surface areas were calculated from nitrogen adsorption data by multipoint BET analysis. The apparent micropore distributions were calculated from nitrogen adsorption data by the NLDFT method. The X-ray diffraction (XRD) measurements were performed on a BrukerD8 Advance X-ray diffractometer using CuK α 1 irradiation (λ = 0.154 nm). SEM micrographs were performing on JEOL-JSM-6300 under an accelerating voltage of 20-30 kV. UV/Vis spectra have been carried out on a Perkin Elmer Lambda 950 spectrophotometer within the wavelength range 200–700 nm, using the same solvent in the analyzed solution as a blank. X-ray photoelectron spectroscopy (XPS) data were acquired with an ESCA-Lab220i-XL electron spectrometer (VG Scientific Ltd., UK) using 300W Al K α radiation.

Section 2. General Synthetic Routes

Synthesis of Trinitrotriptycene (TNTP)

Trinitrotriptycenes was synthesized according to published methods^{S1}. To triptycene (2.5 g, 10 mmol) was added concentrated HNO₃ (100 mL) and the mixture was heated at 75 °C for 24 h. The brown solution was cooled to room temperature, then poured into H₂O (1000 mL) and stirred. The precipitate was collected, washed with cooled water, and then dried in air. The crude products were separated by column chromatography on silica gel with dichloromethane/petroleum ether (1:1) as eluent to afford the white solids TNTP. Yield, 64%; ¹H NMR (600 MHz, CDCl₃): δ 5.82 (s, 1H), 5.84 (s,1H), 7.63-7.66 (m, 3H), 8.04-8.07 (m, 3H), 8.32-8.34 (m, 3H).

Scheme S1. Reaction for the synthesis of trinitrotriptycenes.

Section 3. IR and NMR spectra

Fig. S1. IR spectra of Azo-Trip and related starting materials TNTP (a) 2000-400 cm⁻¹. (b) 2000-400 cm⁻¹.

Fig. S2. ¹³C CP/MAS NMR spectroscopy of the Azo-Trip.

Section 4. Powder X-Ray Diffraction, SEM image and TGA profiles

Fig. S3. PXRD curve of Azo-Trip.

Fig. S4. TGA plot of Azo-Trip under N_2 condition

Fig. S5. SEM image of Azo-Trip.

Section 5. Additional gas adsorption data for Azo-Trip

The Langmuir-Freundlich equation is used to fit CO_2 and H_2 adsorption isotherm and predict the adsorption capacity of the framework at saturation, and Clausius- Clapeyron equation is applied to the calculation of the enthalpies of CO_2 and H_2 adsorption.

Fig. S6. CO₂ isotherm at 273 K (symbols) and Langmuir-Freundlich equation fits (line) for Azo-Trip.

Fig. S7. CO₂ isotherm at 298 K (symbols) and Langmuir-Freundlich equation fits (line) for Azo-Trip.

Henry's law selectivities (S_H) were calculated by the ratio of Henry's law constants of CO₂ (H_C) and N₂ (H_N).

$$S_H = \frac{H_C}{H_N}$$

The Henry's law constants for CO_2 and N_2 were obtained by the slope of linear fitting of the initial data (pressure less than 0.1 bar) of the gas adsorption isotherms.

Fig. S8. CO₂ and N₂ adsorption isotherm for Azo-Trip at 273K.

Fig. S9. The ideal selectivity of CO_2 over N_2 was calculated by the Henry's Law.

Fig. S10. H₂ isotherm at 77 K (symbols) and Langmuir-Freundlich equation fits (line) for Azo-Trip.

Fig. S11. H₂ isotherm at 87 K (symbols) and Langmuir-Freundlich equation fits (line) for Azo-Trip.

Fig. S12. (a) Calibration plots of standard iodine by UV/vis spectra in cyclohexane solution and (b) ethanol solution, respectively. Inset: the fitting of Abs value vs concentration of I₂ with the relatively good linearity satisfies Lambert-Beer Law.

Section 7. Recycable Uptake for Iodine

Fig. S13. Reusability of Azo-Trip for iodine adsorption by vapor sublimation.

Fig. S14. IR spectra of Azo-Trip and after recycled five times for Azo-Trip.

Fig. S15. XPS spectra of (a) Azo-Trip@I₂ and (b) recycled five times for Azo-Trip after washed by ethanol.

Section 8. Sorption Kinetics

The Pseduo-second-order model

The linear form of pseudo second order kinetic model is expressed by the following equation:

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$$

Where Qt and Qe are the mass percent of iodine absorbed at time t and equilibrium, k_2 is the pseudo-second-order rate constant of adsorption process.

Fig. S16. Iodine sorption kinetics analyzed by Lagergren pseudo-second-order kinetic models.

Section 9. Photography of color change

0	30	90	120	300	420	546	600	840	1440	4320
							-			

Fig. S17. The color change of the ethanol solution (10 ml) of Azo-Trip@I₂ (1mg) with time (min).

Section 10. Release of Iodine

Fig. S18. Temporal evolution of the I_2 -release amount for Azo-Trip@ I_2 .

REFERENCES

(S1) C. Zhang and C. Chen, J. Org. Chem., 2006, 71, 6626-6629.