Supporting Information

Synthesis, Morphology, and Electrical Memory Application of Oligosaccharide-based Block Copolymers with π-Conjugated Pyrene Moiety and Their Supramolecules

Han-Sheng Sun,¹ Yougen Chen,² Wen-Ya Lee,³ Yu-Cheng Chiu,¹ Takuya Isono,²

Toshifumi Satoh,^{2,*} Toyoji Kakuchi,^{2,*} and Wen-Chang Chen^{1,*}

¹Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, 10617

²Division of Biotechnology and Macromolecular Chemistry, Faculty of Engineering Hokkaido University, Sapporo, 060-8628, Japan

³Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, 10608

*To whom all correspondence should be addressed: Tel:+886-2-23628398. E-mail: <u>chenwc@ntu.edu.tw</u> (W.C.C.); Tel & Fax:+81-11-706-6602. E-mail: <u>kakuchi@poly-bm.eng.hokudai.jp</u> (T.K.), <u>satoh@poly-bm.eng.hokudai.ac.jp</u> (T.S.)

Scheme S1. The synthetic route for 4Py-Acceptor-4Py.

Fig. S1 ¹H NMR spectrum of 6,6'-di(4-pyridyl)-*N*,*N*'-bis(2-octyldodecyl)-isoindigo in CD₂Cl₂.

in CD_2Cl_2 .

Fig. S3 ¹H NMR spectra of (a) PPyMA₂₀-OSi^{*i*}Pr₃ in CDCl₃, (b) PPyMA₂₀-OH in CDCl₃, (c) PPyMA₂₀-N₃ in CDCl₃, and (d) MH-*b*-PPyMA₂₀ diblock copolymer in DMF- d_7 .

Fig. S4 ¹H NMR spectra of (a) PPyMA₄₀-OSi^{*i*}Pr₃ in CDCl₃, (b) PPyMA₄₀-OH in CDCl₃, (c) PPyMA₄₀-N₃ in CDCl₃, and (d) MH-*b*-PPyMA₄₀ diblock copolymer in DMF- d_7 .

Fig. S5 GPC traces of the triisopropylsilyloxy-terminated PPyMA_n (PPyMA_n-OSiⁱPr₃, n = 10, 20 and 40) homopolymers.

Fig. S6 FTIR spectra of (a) the hydroxyl- and azido-terminated $PPyMA_{20}$ homopolymers and MH-*b*-PPyMA₂₀ diblock copolymer, and (b) the hydroxyl- and azido-terminated PPyMA₄₀ homopolymers and MH-*b*-PPyMA₄₀ diblock copolymer.

Fig. S7 TGA diagrams of (a) the ethynyl end-functionalized MH, azido-terminated PPyMA₂₀ homopolymer, and MH-*b*-PPyMA₂₀ block copolymer, and (b) the ethynyl end-functionalzed MH, azido-terminated PPyMA₄₀ homopolymer, and MH-*b*-PPyMA₄₀ block copolymer.

Fig. S8 DSC curves of (a) ethynyl end-functionalzed MH, azido-terminated $PPyMA_{20}$ homopolymer, and MH-*b*-PPyMA₂₀ block copolymer, and (b) the ethynyl end-functionalzed MH, azido-terminated PPyMA₄₀ homopolymer, and MH-*b*-PPyMA₄₀ block copolymer.

Fig. S9 AFM images of the surfaces of the MH-*b*-PPyMA_n thin films: (a) as-cast MH*b*-PPyMA₁₀ thin film, (b) as-cast MH-*b*-PPyMA₂₀ thin film, (c) as-cast MH-*b*-PPyMA₄₀ thin film, (d) thermo-annealed MH-*b*-PPyMA₁₀ thin film, (e) MH-*b*-PPyMA₂₀ thin film, and (f) MH-*b*-PPyMA₄₀ thin film.

Fig. S10 2-D GISAXS patterns of the MH-*b*-PPyMA_n thin films: (a) as-cast MH-*b*-PPyMA₁₀ thin film, (b) as-cast MH-*b*-PPyMA₂₀ thin film, (c) as-cast MH-*b*-PPyMA₄₀ thin film, (d) thermo-annealed MH-*b*-PPyMA₁₀ thin film, (e) MH-*b*-PPyMA₂₀ thin film, and (f) MH-*b*-PPyMA₄₀ thin film.

Fig. S11 1-D GISAXS q_y scanning plots of as-cast and thermo-annealed MH-*b*-PPyMA_n thin films: (a) MH-*b*-PPyMA₁₀, (b) MH-*b*-PPyMA₂₀ and (c) MH-*b*-PPyMA₄₀.

Fig. S12 FTIR spectra of MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n supramolecular thin films: (a) and (b), MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA_n; (c) and (d), MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA_n; (e) and (f), MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA_n.

Fig. S13 AFM images of the surfaces of the thermo-annealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films (electret layers): (a) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₄₀, (d) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (e) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (f) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S14 2-D GISAXS patterns of the thermo-annealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films: (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₁₀, (e) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₂₀, (f) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₄₀, (g) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (h) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (i) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S15 1-D GISAXS q_y scanning plots of MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films: (a) MH(4Py-Acceptor-4Py)_x-*b*-PPyMA₁₀, (b) MH(4Py-Acceptor-4Py)_x-*b*-PPyMA₂₀, and (c) MH(4Py-Acceptor-4Py)_x-*b*-PPyMA₄₀.

Fig. S16 AFM images of the surfaces of the pentacene layers grown from thermoannealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films (electret layers): (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₁₀, (e) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₂₀, (f) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₄₀, (g) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (h) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (i) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S17 2-D GIWAXS patterns of the pentacene layers grown from thermo-annealed $MH(4Py-Acceptor-4Py)_x$ -*b*-PPyMA_n thin films (electret layers) : (a) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₁₀, (b) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₂₀, (c) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₄₀, (d) $MH(4Py-BT-4Py)_{1.5}$ -*b*-PPyMA₁₀, (e) $MH(4Py-BT-4Py)_{1.5}$ -*b*-PPyMA₂₀, (f) $MH(4Py-BT-4Py)_{1.5}$ -*b*-PPyMA₄₀, (g) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₁₀, (h) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₂₀, (h) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₄₀.

Fig. S18 (a) UV-Vis spectra of PPyMA_n-N₃ homopolymers in the region of 220 ~ 450 nm, (b) cyclic voltammograms of PPyMA_n-N₃ homopolymers, (c) UV-Vis spectra of PPyMA_n-N₃ homopolymers in the region of $350 \sim 500$ nm, (d) UV-Vis spectra of MH-*b*-PPyMA_n block copolymers in the region of $350 \sim 500$ nm, and (e) energy levels of 4Py-Acceptor-4Py, PPyMA_n-N₃ homopolymers, MH-*b*-PPyMA_n block copolymers, and pentacene.

Fig. S19 The electric output curves of the devices using thermo-annealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films as electret layers: (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₁₀, (e) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₂₀, (f) MH(4Py-BT-4Py)_{1.5}-*b*-PPyMA₄₀, (g) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (h) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S20 The transfer curves of the devices using thermo-annealed $PPyMA_n-N_3$ and MH-*b*-PPyMA_n thin films as electret layers: (a) $PPyMA_{10}-N_3$, (b) $PPyMA_{20}-N_3$, (c) $PPyMA_{40}-N_3$, (d) MH-*b*-PPyMA_{10}, (e) MH-*b*-PPyMA_{20}, and (f) MH-*b*-PPyMA_{40}.

Fig. S21 The transfer curves of the devices using thermo-annealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films as electret layers: (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (e) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (f) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S22 The retention time curves of the devices using thermo-annealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films as electret layers: (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (e) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (f) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S23 The WRER (write-read-erase-read) cycles of the devices using thermoannealed MH(4Py-Acceptor-4Py)_x-*b*-PPyMA_n thin films as electret layers: (a) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₁₀, (b) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₂₀, (c) MH(4Py-BT-4Py)_{1.0}-*b*-PPyMA₄₀, (d) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₁₀, (e) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₂₀, and (f) MH(4Py-IID-4Py)_{1.0}-*b*-PPyMA₄₀.

Fig. S24 The operation cycles (endurance) of the devices using thermo-annealed $MH(4Py-Acceptor-4Py)_x$ -*b*-PPyMA_n thin films as electret layers: (a) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₁₀, (b) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₂₀, (c) $MH(4Py-BT-4Py)_{1.0}$ -*b*-PPyMA₄₀, (d) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₁₀, (e) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₂₀, and (f) $MH(4Py-IID-4Py)_{1.0}$ -*b*-PPyMA₄₀.