Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Atom Transfer Radical Polymerization by Solvent-stabilized (Me₃TACN)FeX₂: A Practical Access to Reusable Iron(II) Catalysts

So-ichiro Nakanishi,^b Mitsunobu Kawamura,^{a,} Yusuke Sunada,^a and Hideo Nagashima*^{a,b}

^aInstitute for Materials Chemistry and Engineering, ^bGraduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.

Contents:

1.	Characterization of "(Me ₃ TACN)FeX ₂ " complexes, 4 ', 6 , and 7 .	Page 2
2.	Reaction profiles and the conversion vs M_n plots	page 3
3.	Actual charts of the spectral data	page 10
4.	Details of crystallographic data	page 17

1. Characterization of "(Me₃TACN)FeX₂" complexes, **4**', **6**, and **7**.

Procedures for preparation of new compounds, 4', 6, and 7, are described in the experimental section. These complexes were characterized by X ray crystallography, ESI-MS, and elemental analysis.

ESI-MS measurement. Cationic and anionic modes of ESI-MS spectra of **4'** under the standard conditions were collected with cone voltage = 20V and the sample concentration = 0.1 mM. Under the standard conditions (cone voltage = 20V), the parent peak was clearly visible (**Fig. S-17** and **S-18**). Although no signal was observed in the ESI-MS spectra of **6** and **7** under the standard conditions, cationic mode measurement under the forced conditions (cone voltage = 90 V) gave fragment signals including the one due to "(Me₃TACN)FeBr+" (**Fig. S-19** and **S-20**). Actual charts are shown in Actual charts of ESI-MS are shown in **Fig. S17~S20**.

NMR spectra. NMR analysis of these paramagnetic compounds did not give well-resolved spectra. Among them, the trinuclear complex **4'**, which was obtained by recrystallization from acetone and pentane, provided six broad ¹H resonances in a range of $0\sim200$ ppm in acetone-d₆ (**Fig. S15**). The spectral pattern is similar to that of the trinuclear chloride homologue **1**, of which assignment was reported by Rauchfuss (ref. 11 in the manucript). When **4'** was dissolved in CD₃OD, only three ¹H singals were observed (**Fig. S16**); this is in coincidence with the ¹H NMR spectrum of the dinuclear complex **4**, of which crystals were obtained by recrystallization from CH₂Cl₂ and hexane. Attempted measurement of ¹H NMR spectra of the mononuclear complexes, **6** and **7**, in several solvents only gave broad bumps, which were unable to be assigned.

X-ray data collection and reduction. X-ray crystallography was performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation ($\lambda = 0.71070$ A). The data were collected at 123(2) K using ω scan in the θ range of 2.14 $\leq \theta \leq 30.90 \deg(4)$, 2.95 $\leq \theta \leq 30.54 \deg(6)$, $2.36 \le \theta \le 30.85 \text{ deg}$ (7). The data obtained were processed using Crystal-Clear (Rigaku) on a Pentium computer, and were corrected for Lorentz and polarization effects. The structures were solved by direct methods,¹ and expanded using Fourier techniques.² Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F2 was based on 9,597 observed reflections and 406 variable parameters for 4', 2,810 observed reflections and 163 variable parameters for 6, 4,511 observed reflections and 202 variable parameters for 7. Neutral atom scattering factors were taken from Cromer and Waber.³ All calculations were performed using the Crystal Structure⁴ crystallographic software package except for refinement, which was performed using SHELXL-97.⁵ Details of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid. The ORTEP drawings of the "(TACN)FeBr₂" complexes are shown in Fig. S25 ~ S27, and detailed data are summarized in Table S2~S4.

CCDC-1434140 (6), 1434139 (7) and 1434141 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References:

1) SIR2008: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Crystallogr.* 2007, **40**, 609-613.

2) DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system; *Technical Report of the Crystallography Laboratory*;

University of Nijmegen, Nijmegen, The Netherlands, 1999.

3) D. T. Cromer, J. T. Waber, *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., 1974, *Vol. 4*.

4) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

5) SHELX97: G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

2. Reaction profiles and the conversion vs M_n plots

(1) Bulk polymerization of styrene using "(Me₃TACN)FeCl₂", **1** and **5** (in situ) [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = 1-chloro-1-phenylethane; 120°C].

Fig.S1. The time vs conversion (%) plots (left) and time vs $ln([M]_o/[M])$ plots (right) [1 (- \blacksquare -) and 5 (*in situ*)] (- \bigcirc -)]

Fig.S2. The conversion vs M_n plots [1 (- -) and 5 (in situ) (- -)] and conversion of M_w/M_n plots [1 (- -) and 5 (in situ) (- -)].

(2) Bulk polymerization of styrene using "(Me₃TACN)FeBr₂", 4, 6 (*in situ*) and 6 (isolated). [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = 1-bromo-1-phenylethane; 120°C]

Fig.S3. The time vs conversion plots (left) and time vs $ln([M]_o/[M])$ plots (right) [4 (- \blacksquare -), 6 (*in situ*) (- \bullet -) and 6 (isolate) (- \bullet -)].

Fig.S4. The conversion vs M_n plots [4 (- \blacksquare -), 6 (*in situ*) (- \bigcirc -) and 6 (isolate) (- \diamondsuit -)] and M_w/M_n plots [4 (- \square -), 6 (*in situ*) (- \bigcirc -) and 6 (isolate) (- \diamondsuit -)].

(3) ATRP of styrene: Comparison of bulk polymerizations and solution polymerizations catalysed by 6 (*in situ*). [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = 1^{-bromo-1}-phenylethane; 120°C;]

Fig.S5. The time vs conversion plot (right) and time vs $ln([M]_o/[M])$ plot (left) [in a toluene solution (toluene / styrene = 1 / 1) (- \blacksquare -), an anisole solution (anisole / styrene = 1 / 1) (- \blacklozenge -), and bulk (- \blacktriangle -).

Fig.S6. The conversion vs M_n plots [in a toluene solution (toluene / styrene = 1 / 1) (- \blacksquare -), in a anisole solution (anisole / styrene = 1 / 1) (- \blacklozenge -), and bulk (- \blacktriangle -)] and the conversion vs M_w/M_n plots [in a toluene solution (toluene / styrene = 1 / 1) (- \square -), in a anisole solution (anisole / styrene = 1 / 1) (- \bigcirc -), and bulk (- \triangle -)]

(4) Bulk polymerization of MMA using "(Me₃TACN)FeCl₂", **1** and **5** (in situ) [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = methyl trichloroacetate; 90°C].

Fig.S7. The time vs Conversion plots (right) and time vs $ln([M]_0/[M])$ plots (left) [1 (- \blacksquare -) and 5 (*in situ*) (- \diamond -)].

Fig.S8. The conversion vs M_n plots [1 (- -) and 5 (in situ) (- -)] and the conversion vs M_w/M_n plots [1 (- -) and 5 (in situ) (- -)]

(5) Bulk polymerization of MMA using "(Me₃TACN)FeBr₂" **4** and **6** (*in situ*). [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = methyl 2-bromoisobutylate; 90°C].

Fig.S9. The time vs conversion plots and time vs *ln([M]₀/[M])* plots [4 (-■-) and 6 (*in situ*) (-●-)]

Fig. S10. The conversion vs M_n plots [4 (- -) and 6 (*in situ*) (--)] and the conversion vs M_w/M_n plots [4 (--) and 6 (*in situ*) (-)].

(6) Solution polymerizations of MMA using (Me₃TACN)FeCl₂(κ-NCMe) [5 (in situ)] and (Me₃TACN)FeBr₂(κ-NCMe) [6 (*in situ*).] in MeCN (monomer / MMA = 1 / 0.2). [catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator for 5 (*in situ*) = methyl trichloroacetate and that for 6 (*in situ*) = methyl 2-bromoisobutylate; 90°C].

Fig.S11. The time vs Conversion plots (right) and time vs $ln([M]_0/[M])$ plots (left) [5 (*in situ*) (- \diamond -) and 6 (*in situ*) (- \diamond -)]

Fig. S12. The conv. vs M_n plots [5 (*in situ*) (- \diamond -) and 6 (*in situ*) (- \diamond -)] and the conversion vs M_w/M_n plots [5 (*in situ*) (- \diamond -) and 6 (*in situ*) (- \circ -)]

(7) Solution polymerizations of BA using 6 (*in situ*). in MeCN (monomer / BA = 1 / 0.3).
[catalyst / initiator / monomer ratio = 1 / 1 / 250; initiator = 2-bromoisobutylate; 90°C].

Fig.S13. The time vs conversion plot (left) and time vs $ln([M]_o/[M])$ plot (right).

Fig. S14. The conversion vs M_n plot (- \bigcirc -)and the conversion vs M_w/M_n plot (- \bigcirc -).

3. Actual charts of spectral data and details of crystallographic data

Fig. S16. ¹H-NMR spectrum of 4' in CD₃OD.

Fig. S17. ESI⁺ spectrum of 4' (under the standard conditions)

Fig. S18. ESI- spectrum of 4' (under the standard conditions)

Fig. S19. ESI $^+$ spectrum of 6 (under the forced conditions)

Fig. S20. ESI⁺ spectrum of 7 (under the forced conditions)

The catalyst recycling experiments: evidence for the recovered species to be 4.

ATRP of styrene was performed by treatment of styrene 1.09 ml (9.49 mmol), 1-bromo-1-phenylethane 5.2 μ l (0.038 mmol) in the presence of **6** in situ prepared from **4** 14.7 mg (0.019 mmol) at 120°C for 8 h. After the reaction was over, the polymer was dissolved in THF (5 ml), and the solution was slowly added dropwise into MeOH (60 ml) with stirring. The polymer was collected by filtration and the filtrate was concentrated. As shown in Fig. **S-21**, The ESI-MS spectrum of a CH₂Cl₂ solution of the residue recovered from the filtrate indicated the iron species to be [(Me₃TACN)Fe(μ -Br)₂Fe(Me₃TACN)]+Br⁻ (**4**). This was supported by polymerizations by the recovered iron species. Entry 1 of **Table S-2** shows ATRP of styrene by **6** (in situ) described above. When the recovered iron species was used for another run of ATRP, the reaction was significantly slower (entry 1). The rate was similar to the polymerization using **4** (entry 3). In contrast, the rate of the polymerization was similar to that shown in the initial ATRP described above (entry 4), when the recovered iron species was reactivated by treatment with MeCN at room temperature (entry 2).

Fig. S21. ESI-MS spectra of recovered iron residue (CH₂Cl₂, standard condition)

Table S1. Comparison of polymerization behavior catalyzed by recovered iron species with ATRPs of	\mathbf{f}
6 (in situ) and 4.	

Entry	Monomer	catalyst	Time (h)	Conv. (%)	M _n (exp.)	M _n (calc.)	M _w ∕M _n
1	styrene	Non activated by	8	48	13,658	12,000	1.28
		MeCN before reuse	20	92	26,584	23,000	1.26
2	styrene	4	28	93	23,900	23,300	1.25
3	styrene	Activated by MeCN before reuse	8	>95	27,062	25,000	1.25
4	styrene	6 (in situ)	8	>95	24,000	25,000	1.20

Reaction condition: catalyst : 1-bromo-1phenylethane : styrene = 1 : 1 : 250. Polymerization was performed at 120 °C. In entry 1, recovered iron residue was used for catalyst without activation by MeCN.(entry 1) Recovered iron residue was activated in MeCN (1 ml) at room temperature for 1 h and dried in vacuo, then used as a catalyst for next polymerization (entry 3).

Fig. S22 ¹H-NMR of pSt₁₀₀-*b*-pMMA₅₀₀ by 6 (*in situ*)

Fig. S23 ¹³C-NMR of pSt₁₀₀-*b*-pMMA₅₀₀ by 6 (*in situ*)

Fig. S24 FT-IR spectra of pSt_{100} -*b*-pMMA₅₀₀ by 6 (*in situ*)

4. Details of Crystallographic data

Fig. S25.ORTEP drawing of 4'

Table S2-1. Crystal data and structure refinement for 4'

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$ Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle C₂₇H₆₃Br₆Fe₃N₉ 1160.82 colorless, prism 0.200 X 0.200 X 0.200 mm orthorhombic Primitive a = 22.0243(16) Åb = 16.0659(11) Åc = 23.6931(17) Å $V = 8383.6(10) Å^3$ Pbca (#61) 8 1.839 g/cm^3 4608.00 67.911 cm⁻¹ Saturn724 MoK α ($\lambda = 0.71075$ Å) multi-layer mirror monochromated 50kV, 40mA -159.8°C $72.8 \ge 72.8 \text{ mm}$ 720 exposures -105.0 - 75.00 10.0 sec./^{0} -14.80°

Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

 $\begin{array}{l} 2\theta_{max} \ cutoff\\ Anomalous \ Dispersion\\ No. \ Observations (All reflections)\\ No. \ Variables\\ Reflection/Parameter \ Ratio\\ Residuals: \ R1 \ (I>2.00\sigma(I))\\ Residuals: \ R \ (All \ reflections)\\ Residuals: \ wR2 \ (All \ reflections)\\ Goodness \ of \ Fit \ Indicator\\ Max \ Shift/Error \ in \ Final \ Cycle\\ Maximum \ peak \ in \ Final \ Diff. \ Map\\ Minimum \ peak \ in \ Final \ Diff. \ Map\\ \end{array}$

40.16 mm0.070 mm 55.0° Total: 76991 Unique: 9597 (R_{int} = 0.0597) Lorentz-polarization Absorption (trans. factors: 0.154 - 0.257) Direct Methods (SIR2008) Full-matrix least-squares on F² $\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$ $\text{w} = 1/[\sigma^2(\text{Fo}^2) + (0.0464 \cdot \text{P})^2$ + $37.1650 \cdot P$] where P = (Max(Fo²,0) + 2Fc²)/3 55.0^{0} All non-hydrogen atoms 9597 406 23.640.0623 0.0661 0.1391 1.300 0.001 1.52 e /Å 3 -1.11 e⁻/Å³

Table S2-2. Atomic coordinates and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$

atom	х	У	Z	Bea
Br1	0.09356(3)	0.25897(4)	0.44709(2)	2.189(11)
Br2	-0.03442(3)	0.36274(4)	0.51525(2)	2.158(11)
Br3	0.25007(3)	-0.00141(4)	0.17681(3)	2.541(12)
Br4	-0.01335(3)	0.13580(4)	0.53168(3)	2.655(12)
Br5	0.15038(3)	0.13925(5)	0.27874(3)	2.963(13)
Br6	0.31925(3)	0.18147(4)	0.25873(3)	3.036(13)
Fe1	0.25139(4)	0.05498(5)	0.28235(3)	1.703(13)
Fe45	-0.02602(4)	0.23440(5)	0.44472(3)	1.818(14)
Fe46	0.05571(4)	0.26869(5)	0.55203(3)	1.667(13)
N8	0.3332(3)	-0.0273(3)	0.3060(2)	2.85(10)
N12	-0.0406(2)	0.3088(3)	0.3677(2)	2.19(8)
N14	-0.0287(2)	0.1321(3)	0.3822(2)	2.42(9)
N41	-0.1261(2)	0.2203(4)	0.4369(2)	2.64(9)
N47	0.2605(2)	0.0747(3)	0.3796(2)	2.02(8)
N48	0.2059(3)	-0.0597(3)	0.3186(2)	2.89(10)
N49	0.1291(2)	0.1953(3)	0.5916(2)	2.37(9)
N50	0.0270(2)	0.2806(3)	0.6406(2)	1.96(8)
N51	0.1168(2)	0.3712(3)	0.5763(2)	2.18(8)
C6	0.0379(3)	0.3703(4)	0.6523(3)	2.24(10)
C9	0.0672(3)	0.2264(4)	0.6763(3)	2.45(10)
C10	-0.0376(3)	0.2609(5)	0.6514(3)	2.80(11)
C11	0.1527(3)	0.1268(4)	0.5554(3)	3.25(13)
C13	-0.0097(4)	0.2569(5)	0.3237(3)	3.29(13)
C15	0.2514(4)	-0.1279(4)	0.3270(4)	4.54(19)
C16	0.0990(3)	0.1592(4)	0.6418(3)	2.70(11)
C17	-0.0104(3)	0.3909(4)	0.3684(3)	2.61(11)
C18	-0.1434(3)	0.2992(5)	0.4087(3)	3.58(14)
C19	0.2436(3)	0.1595(4)	0.3972(3)	2.51(10)
C20	0.1780(3)	0.3322(4)	0.5749(3)	2.66(11)
C21	0.3263(3)	0.0641(5)	0.3899(3)	3.03(12)
C22	0.1793(3)	0.2524(5)	0.6081(3)	3.04(12)
C23	0.0222(3)	0.0722(4)	0.3879(3)	3.03(12)
C24	0.1009(3)	0.3984(4)	0.6350(3)	2.30(10)
C25	0.1164(3)	0.4432(4)	0.5375(3)	2.84(11)
C26	0.3850(3)	-0.0130(5)	0.2673(3)	3.77(15)
C27	0.2241(4)	0.0123(5)	0.4101(3)	3.42(13)
C28	-0.1060(3)	0.3176(5)	0.3576(3)	3.27(13)
C29	0.3522(4)	-0.0131(5)	0.3654(3)	3.82(15)
C30	-0.1579(3)	0.2157(5)	0.4916(3)	3.52(14)
C31	-0.1393(3)	0.1474(5)	0.4007(3)	3.74(15)
C32	0.3099(4)	-0.1130(4)	0.2975(4)	4.24(17)
C33	-0.0292(4)	0.1683(5)	0.3250(3)	3.25(13)
C34	-0.0866(4)	0.0887(5)	0.3963(3)	3.75(14)
C35	0.1790(4)	-0.0308(5)	0.3736(3)	3.91(15)
C40	0.1557(4)	-0.0873(5)	0.2821(3)	3.96(16)

 Table S2-3. Anisotropic displacement parameters

atom	U11	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br1	$0.0\overline{233}(3)$	$0.0\overline{3}\overline{7}7(3)$	0.0222(3)	0.0016(2)	0.0015(2)	-0.0028(2)
Br2	0.0268(3)	0.0323(3)	0.0229(3)	0.0068(2)	-0.0038(2)	-0.0014(2)
Br3	0.0410(3)	0.0330(3)	0.0226(3)	0.0066(3)	-0.0033(2)	-0.0025(2)
Br4	0.0448(4)	0.0305(3)	0.0256(3)	-0.0075(3)	-0.0062(3)	0.0042(2)
Br5	0.0341(3)	0.0547(4)	0.0238(3)	0.0172(3)	-0.0028(2)	0.0026(3)
Br6	0.0478(4)	0.0309(3)	0.0366(4)	-0.0109(3)	0.0177(3)	-0.0048(3)
Fe1	0.0253(4)	0.0197(4)	0.0197(4)	0.0016(3)	-0.0004(3)	0.0018(3)
Fe45	0.0221(4)	0.0287(4)	0.0184(4)	-0.0024(3)	-0.0010(3)	0.0007(3)
Fe46	0.0207(4)	0.0249(4)	0.0177(4)	0.0021(3)	-0.0012(3)	0.0004(3)
N8	0.040(3)	0.036(3)	0.033(3)	0.015(2)	-0.010(2)	-0.008(2)
N12	0.028(2)	0.033(3)	0.022(2)	-0.005(2)	-0.0027(19)	0.004(2)
N14	0.031(3)	0.032(3)	0.029(3)	-0.001(2)	-0.007(2)	-0.002(2)
N41	0.021(2)	0.049(3)	0.030(3)	-0.008(2)	-0.001(2)	-0.002(2)
N47	0.029(2)	0.026(2)	0.022(2)	0.001(2)	-0.0013(19)	-0.0011(19)
N48	0.050(3)	0.034(3)	0.026(3)	-0.013(3)	-0.008(2)	0.007(2)
N49	0.030(3)	0.035(3)	0.025(2)	0.011(2)	-0.002(2)	0.003(2)
N50	0.025(2)	0.030(2)	0.019(2)	0.0001(19)	-0.0009(19)	-0.0023(19)
N51	0.025(2)	0.034(3)	0.024(2)	-0.003(2)	-0.003(2)	0.000(2)
C6	0.031(3)	0.033(3)	0.021(3)	0.001(2)	0.004(2)	-0.005(2)
C9	0.036(3)	0.038(3)	0.018(3)	0.002(3)	-0.000(2)	0.006(2)
C10	0.027(3)	0.052(4)	0.028(3)	-0.002(3)	0.005(3)	0.002(3)
C11	0.046(4)	0.041(4)	0.037(4)	0.023(3)	0.005(3)	0.005(3)
C13	0.052(4)	0.051(4)	0.022(3)	-0.004(3)	0.009(3)	0.000(3)
C15	0.092(7)	0.024(3)	0.057(5)	-0.010(4)	-0.029(5)	0.006(3)
C16	0.041(3)	0.036(3)	0.025(3)	0.008(3)	-0.007(3)	0.010(3)
C17	0.037(3)	0.034(3)	0.029(3)	-0.006(3)	-0.004(3)	0.009(3)
C18	0.026(3)	0.064(5)	0.045(4)	0.009(3)	-0.003(3)	0.000(4)
C19	0.040(3)	0.031(3)	0.024(3)	0.007(3)	0.004(3)	-0.005(2)
C20	0.021(3)	0.051(4)	0.028(3)	-0.005(3)	0.001(2)	-0.005(3)
C21	0.035(3)	0.048(4)	0.032(3)	0.008(3)	-0.012(3)	-0.012(3)
C22	0.019(3)	0.054(4)	0.042(4)	0.007(3)	-0.008(3)	0.000(3)
C23	0.045(4)	0.033(3)	0.037(4)	0.006(3)	-0.002(3)	-0.004(3)
C24	0.029(3)	0.031(3)	0.027(3)	-0.003(2)	-0.002(2)	-0.007(2)
C25	0.044(4)	0.034(3)	0.029(3)	-0.010(3)	0.001(3)	0.000(3)
C26	0.042(4)	0.062(5)	0.040(4)	0.024(4)	-0.004(3)	-0.015(3)
C27	0.059(5)	0.044(4)	0.027(3)	-0.015(3)	0.005(3)	0.002(3)
C28	0.039(4)	0.045(4)	0.040(4)	0.001(3)	-0.011(3)	0.006(3)
C29	0.048(4)	0.064(5)	0.033(4)	0.025(4)	-0.017(3)	-0.011(3)
C30	0.026(3)	0.070(5)	0.038(4)	-0.015(3)	0.009(3)	0.000(4)
C31	0.035(4)	0.063(5)	0.045(4)	-0.019(3)	-0.001(3)	-0.009(4)
C32	0.089(6)	0.025(3)	0.048(4)	0.017(4)	-0.004(4)	0.005(3)
C33	0.055(4)	0.041(4)	0.027(3)	0.000(3)	-0.000(3)	0.000(3)
C34	0.051(4)	0.042(4)	0.049(4)	-0.022(3)	0.001(3)	-0.008(3)
C35	0.059(5)	0.059(5)	0.031(4)	-0.024(4)	0.007(3)	0.007(3)
C40	0.056(5)	0.049(4)	0.046(4)	-0.030(4)	-0.012(4)	0.007(3)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S2-4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Br1	Fe45	2.6637(11)	$\operatorname{Br1}$	Fe46	2.6270(9)
Br2	Fe45	2.6605(10)	$\operatorname{Br2}$	Fe46	2.6425(11)
Br3	Fe1	2.6598(10)	Br4	Fe45	2.6139(10)
Br4	Fe46	2.6654(11)	Br5	Fe1	2.6057(11)

Br6	Fe1	2.5839(11)	Fe1	N8	2.303(6)
Fe1	N47	2.334(5)	Fe1	N48	2.266(6)
Fe45	N12	2.205(5)	Fe45	N14	2.214(5)
Fe45	N41	2.223(5)	Fe46	N49	2.210(5)
Fe46	N50	2.199(5)	Fe46	N51	2.203(5)
N8	C26	1.481(9)	N8	C29	1.485(9)
N8	C32	1.484(9)	N12	C13	1.499(9)
N12	C17	1.477(8)	N12	C28	1.466(8)
N14	C23	1.482(9)	N14	C33	1.475(9)
N14	C34	1.492(9)	N41	C18	1.483(10)
N41	C30	1.475(9)	N41	C31	1.480(10)
N47	C19	1.472(8)	N47	C21	1.480(8)
N47	C27	1.474(9)	N48	C15	1.497(10)
N48	C35	1.505(9)	N48	C40	1.472(10)
N49	C11	1.490(9)	N49	C16	1.481(8)
N49	C22	1.488(8)	N50	C6	1.488(8)
N50	C9	1.503(8)	N50	C10	1.479(8)
N51	C20	1.487(8)	N51	C24	1.500(8)
N51	C25	1.476(8)	C6	C24	1.515(8)
C9	C16	1.524(9)	C13	C33	1.488(10)
C15	C32	1.485(13)	C18	C28	1.493(10)
C20	C22	1.504(10)	C21	C29	1.484(11)
C27	C35	1.488(11)	C31	C34	1.498(11)
Table S2	2-5 . Bond ang	les(0)			

atom	atom	atom	angla	atom	atom	atom	angla
Fe45	Br1	Fe46	73 44(3)	Fe45	Br2	Fe46	73.25(3)
Fe45	Br4	Fe46	73.62(3)	Br3	Fe1	Br5	97.86(3)
Br3	Fe1	Br6	94.05(3)	Br3	Fe1	N8	92.39(14)
Br3	Fe1	N47	167 19(12)	Br3	Fe1	N48	94.26(14)
Br5	Fe1	Br6	$94\ 48(3)$	Br5	Fe1	N40 N8	$166\ 87(14)$
Br5	Fe1	N47	92.02(12)	Br5	Fe1	N/8	93 29(15)
Br6	Fe1	N8	92.02(12) 92.95(14)	Br6	Fel Fel	N40 N47	93.29(10) 93.28(12)
Br6	Fe1	N/8	167.75(15)	N8	Fe1	N47	7674(18)
N8	Fo1	N48	77.7(9)	N0 N47	Fo1	N47 N48	76.98(18)
Rr1	Fo ₄₅	Br 2	86 60(3)	Br1	Fo ₄₅	R40 Br4	88 15(3)
Br1	Fe45 Fo45	N12	94.65(13)	Br1	Fe45 Fo45	N14	98.64(14)
Br1	Fe45 Fo45	N12 N41	175 54(14)	Br9	Fe45 Fo45	Br4	88 97(3)
Br9	Fe45 Fo45	N19	9513(13)	Br2	Fe45 Fo45	N14	17374(14)
Br2	Fe45 Fo45	N12 N41	93.59(15)	Br4	Fe45 Fo45	N14 N19	175.74(14) 175.17(14)
Br4	Fe45 Fo45	N41 N14	94.61(14)	Br4	Fe45 Fo45	N12 N41	96 32(14)
N19	Fe45 Fo45	N14 N14	81 00(10)	N19	Fe45 Fo45	N41 N41	80.89(19)
N14	Fe45 Fo45	N14 N41	80.9(2)	Rr1	Fe45 Fo46	Rr9	87.72(3)
$R_{\nu 1}$	Fe45 Fe46	N41 Br4	87.84(3)	Br1	Fe40 Fe46	D12 N40	07.12(3) 07.01(13)
$B_{\nu 1}$	Fe40 Fe46	N50	177.65(13)	Br1	Fe40 Fe46	N45 N51	97.91(13) 95.58(13)
Dr1 Dr9	Fe40 Fe46	N50 Bm4	177.00(10)	Dr1 Bn9	Fe40 Fe46	N31 N40	95.56(15) 174.05(12)
Dr_{Δ} D_{n0}	Fe40 Fe46	Dr4 N50	00.20(3)	Dr2 Bu9	Fe40 Fe46	N49 N51	174.00(13) 06 79(19)
$Dr \Delta = Dr \Delta$	Fe40 Fe46	N40	92.00(13)	Dr2 Bn4	Fe40 Fe46	N51 N50	90.72(13) 04.47(12)
Dr4 Dr4	Fe46 Fe46	N49 N51	95.00(14) 174.05(12)	Dr4 N40	ге46 Бо46	N50	94.47(13)
Dr4 N40	Fe40 Fe46	N51	174.00(13) 80.87(10)	N49 N50	Fe40 Fe46	N51	81.00(10)
IN49 Eo1	re40 No	C9C	111 2(4)	N50 Eal	re40 No	Cao	02.00(10)
геі Бо1	INO NO	C20	111.0(4) 102.9(5)		INO NO	C29	111.3(4) 110.1(c)
rei Coc	INO NO	034	103.2(3) 100.1(c)	C20	INO NO	C29	110.1(6) 111.c(c)
C20 Es 45	INO N19	C52	109.1(6) 109.0(4)	C29 Es 45	INO N19	C52	111.0(0) 114.0(4)
ге4э Ба 45	N12 N19	C13	102.0(4) 100.2(4)	ге4э С19	N12 N19	C17	114.2(4) 107.4(5)
re45 C19	N12 N19	C28	109.3(4)	013	N12 N19		107.4(5)
	N1Z	C28	112.7(5)		N1Z	C28	111.0(5)
Fe45	N14 N14	C23	113.6(4)	Fe45 Coo	IN 14	U33 (199	108.8(4)
re45 Coo	N14	U34	102.6(4)	C23	N14	C33	110.3(5)
C23	N14	C34	108.8(5)	C33	N14	C34	112.6(5)

Fe45	N41	C18	101.9(4)	Fe45	N41	C30	113.7(4)
Fe45	N41	C31	108.9(4)	C18	N41	C30	108.4(5)
C18	N41	C31	111.4(5)	C30	N41	C31	112.1(6)
Fe1	N47	C19	112.5(4)	Fe1	N47	C21	103.4(4)
Fe1	N47	C27	110.2(4)	C19	N47	C21	107.9(5)
C19	N47	C27	110.7(5)	C21	N47	C27	111.9(5)
Fe1	N48	C15	110.5(5)	Fe1	N48	C35	104.5(4)
Fe1	N48	C40	110.8(4)	C15	N48	C35	111.9(6)
C15	N48	C40	111.1(6)	C35	N48	C40	107.7(6)
Fe46	N49	C11	113.9(4)	Fe46	N49	C16	102.8(4)
Fe46	N49	C22	109.0(4)	C11	N49	C16	109.2(5)
C11	N49	C22	110.4(5)	C16	N49	C22	111.3(5)
Fe46	N50	C6	102.5(3)	Fe46	N50	C9	108.5(3)
Fe46	N50	C10	115.1(4)	C6	N50	C9	111.1(4)
C6	N50	C10	109.3(5)	C9	N50	C10	110.2(5)
Fe46	N51	C20	103.5(4)	Fe46	N51	C24	108.4(3)
Fe46	N51	C25	114.8(4)	C20	N51	C24	110.7(5)
C20	N51	C25	108.9(5)	C24	N51	C25	110.4(5)
N50	C6	C24	112.6(5)	N50	C9	C16	112.3(5)
N12	C13	C33	112.8(6)	N48	C15	C32	113.6(6)
N49	C16	C9	111.0(5)	N41	C18	C28	113.1(6)
N51	C20	C22	111.5(5)	N47	C21	C29	114.1(6)
N49	C22	C20	112.0(5)	N51	C24	C6	112.3(5)
N47	C27	C35	113.2(6)	N12	C28	C18	113.0(6)
N8	C29	C21	113.0(6)	N41	C31	C34	112.7(6)
N8	C32	C15	112.7(6)	N14	C33	C13	113.2(6)
N14	C34	C31	112.6(6)	N48	C35	C27	112.6(6)

 Table S2-6. Torsion Angles(0)

 (Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Fe45	Br1	Fe46	Br2	-45.08(3)	Fe45	Br1	Fe46	Br4	43.26(3)
Fe45	Br1	Fe46	N49	136.86(3)	Fe45	Br1	Fe46	N51	-141.62(3)
Fe46	Br1	Fe45	Br2	44.75(2)	Fe46	Br1	Fe45	Br4	-44.33(2)
Fe46	Br1	Fe45	N12	139.62(3)	Fe46	Br1	Fe45	N14	-138.71(3)
Fe45	Br2	Fe46	Br1	45.21(2)	Fe45	Br2	Fe46	Br4	-42.69(2)
Fe45	Br2	Fe46	N50	-137.08(3)	Fe45	Br2	Fe46	N51	140.57(3)
Fe46	Br2	Fe45	Br1	-44.48(2)	Fe46	Br2	Fe45	Br4	43.73(3)
Fe46	Br2	Fe45	N12	-138.85(4)	Fe46	Br2	Fe45	N41	139.99(3)
Fe45	Br4	Fe46	Br1	-44.25(3)	Fe45	Br4	Fe46	Br2	43.54(3)
Fe45	Br4	Fe46	N49	-142.03(3)	Fe45	Br4	Fe46	N50	136.21(4)
Fe46	Br4	Fe45	Br1	43.48(3)	Fe46	Br4	Fe45	Br2	-43.15(3)
Fe46	Br4	Fe45	N14	142.00(4)	Fe46	Br4	Fe45	N41	-136.65(3)
Br3	Fe1	N8	C26	54.9(3)	Br3	Fe1	N8	C29	178.2(3)
Br3	Fe1	N8	C32	-62.0(3)	Br3	Fe1	N48	C15	81.2(3)
Br3	Fe1	N48	C35	-158.2(3)	Br3	Fe1	N48	C40	-42.4(3)
Br5	Fe1	N47	C19	-40.6(3)	Br5	Fe1	N47	C21	-156.8(2)
Br5	Fe1	N47	C27	83.5(2)	Br5	Fe1	N48	C15	179.4(3)
Br5	Fe1	N48	C35	-60.0(3)	Br5	Fe1	N48	C40	55.8(3)
Br6	Fe1	N8	C26	-39.3(3)	Br6	Fe1	N8	C29	84.0(3)
Br6	Fe1	N8	C32	-156.2(2)	Br6	Fe1	N47	C19	54.0(3)
Br6	Fe1	N47	C21	-62.2(2)	Br6	Fe1	N47	C27	178.1(2)
N8	Fe1	N47	C19	146.3(3)	N8	Fe1	N47	C21	30.1(2)
N8	Fe1	N47	C27	-89.7(3)	N47	Fe1	N8	C26	-132.0(3)
N47	Fe1	N8	C29	-8.7(3)	N47	Fe1	N8	C32	111.2(3)
N8	Fe1	N48	C15	-10.3(3)	N8	Fe1	N48	C35	110.3(3)
N8	Fe1	N48	C40	-133.9(3)	N48	Fe1	N8	C26	148.7(3)
N48	Fe1	N8	C29	-88.0(3)	N48	Fe1	N8	C32	31.9(3)
N47	Fe1	N48	C15	-89.3(3)	N47	Fe1	N48	C35	31.3(3)

N47	Fe1	N48	C40	147.1(3)	N48	Fe1	N47	C19	-133.5(3)
N48	Fe1	N47	C21	110.3(3)	N48	Fe1	N47	C27	-9.5(3)
Br1	Fe45	N12	C13	67.8(2)	Br1	Fe45	N12	C17	-47.8(3)
Br1	Fe45	N12	C28	-172.7(2)	Br1	Fe45	N14	C23	38.1(3)
Br1	Fe45	N14	C33	-85.1(3)	Br1	Fe45	N14	C34	155.4(2)
Br2	Fe45	N12	C13	154.8(2)	Br2	Fe45	N12	C17	39.2(3)
Br2	Fe45	N12	C28	-85 8(3)	Br2	Fe45	N41	C18	65.2(2)
Br2	Fe45	N41	C30	-51 3(3)	Br2	Fe45	N41	C31	-1770(3)
Br4	$F_0 45$	N14	C23	-50.7(3)	Br4	$F_0 45$	N14	C33	-173.9(2)
Br4	Fo45	N14	C20	66 6(2)	Br4	Fo45	N/1	C18	1545(2)
D14 Dn4	Fe40 Fe45	N14 N41	C20	28.1(2)	DI4 Bn4	Fe45 Fe45	N41	C21	104.0(2)
Dr4 N10	ге40 Ба 45	IN41 N14	000	191 F(9)	Dr4 N19	ге45 Ба45	IN41 N114	031	01.1(0)
N12 N10	ге40 Б. 45	IN 14 N 14	025	131.0(3)	IN 12 N14	ге40 Б. 45	N14 N10	C33 C19	0.3(3)
N1Z	ге4э Б. 45	N14 N10	034	-111.2(3)	N14	ге4э Б. 45	N1Z	C13 C00	-30.3(2)
N14	re45	N1Z	C17	-145.8(3)	N14	Fe45	N12	C28	89.2(3)
N12	Fe45	N41	C18	-29.5(3)	N12	Fe45	N41	C30	-145.9(4)
N12	Fe45	N41	C31	88.3(3)	N41	Fe45	N12	C13	-112.4(3)
N41	Fe45	N12	C17	132.0(3)	N41	Fe45	N12	C28	7.1(3)
N14	Fe45	N41	C18	-111.8(3)	N14	Fe45	N41	C30	131.8(4)
N14	Fe45	N41	C31	6.0(3)	N41	Fe45	N14	C23	-146.4(3)
N41	Fe45	N14	C33	90.4(3)	N41	Fe45	N14	C34	-29.1(3)
Br1	Fe46	N49	C11	-33.5(3)	$\operatorname{Br1}$	Fe46	N49	C16	-151.5(2)
Br1	Fe46	N49	C22	90.3(3)	Br1	Fe46	N51	C20	-68.5(2)
Br1	Fe46	N51	C24	173.9(2)	Br1	Fe46	N51	C25	50.0(3)
Br2	Fe46	N50	C6	-67.0(2)	Br2	Fe46	N50	C9	175.4(2)
Br2	Fe46	N50	C10	51.5(3)	Br2	Fe46	N51	C20	-156.8(2)
Br2	Fe46	N51	C24	85.6(2)	Br2	Fe46	N51	C25	-38.3(3)
Br4	Fe46	N49	C11	54.8(3)	Br4	Fe46	N49	C16	-63.1(2)
Br4	Fe46	N49	C22	178.7(2)	Br4	Fe46	N50	C6	-155.5(2)
Br4	Fe46	N50	C9	87.0(2)	Br4	Fe46	N50	C10	-36.9(3)
N49	Fe46	N50	C6	111 3(3)	N49	Fe46	N50	C9	-6 3(3)
N49	Fe46	N50	C10	-1302(3)	N50	Fe46	N49	C11	148 8(3)
N50	Fe46	N49	C16	30 8(3)	N50	Fe46	N49	C22	-87.4(3)
N/9	Fo/6	N51	C20	28.7(2)	N/9	Fo/6	N51	C24	-88 9(3)
N40	Fo46	N51	C25	147.2(3)	N51	Fo46	N/0	C11	-127.9(3)
N51	Fe40 Fo46	N40	C16	147.2(0) 114.1(2)	N51	Fe40 Fo46	N40	C22	-4.1(2)
N50		N51	C20	114.1(0) 111.9(9)	N50		N51	C24	-6.2(2)
NEO	ге46 Ба4С	NE1	020	-120.9(9)	NOU NE1	ге46 Ба4С	NEO	024	-0.3(3)
NOU NE1	ге46 Б. 40	NEO	C25 C0	-130.2(3)	NOI NE1	ге46 Б. 40	NOU	010	29.4(2)
N01 E 1	re46	N90 Ceo	C9 C91	-88.2(3)	N01 E 1	re46	N90 Caa	010	147.9(3)
rei	N8 No	C29	C21 C21	-15.4(7)	rei	IN8 No	C32	015	-51.4(6)
C26	N8	C29	C21	108.5(6)	C26	N8	C32	C15	-169.8(5)
C29	N8	C32	C15	68.2(8)	C32	N8	C29	C21	-130.2(6)
Fe45	N12	C13	C33	50.5(5)	Fe45	N12	C28	C18	18.0(6)
C17	N12	C13	C33	170.8(5)	C13	N12	C28	C18	130.7(5)
C28	N12	C13	C33	-66.6(7)	C17	N12	C28	C18	-108.8(6)
Fe45	N14	C33	C13	17.1(6)	Fe45	N14	C34	C31	50.2(6)
C23	N14	C33	C13	-108.1(6)	C23	N14	C34	C31	170.8(5)
C33	N14	C34	C31	-66.6(7)	C34	N14	C33	C13	130.1(6)
Fe45	N41	C18	C28	49.9(5)	Fe45	N41	C31	C34	19.6(6)
C30	N41	C18	C28	170.1(5)	C18	N41	C31	C34	131.1(5)
C31	N41	C18	C28	-66.1(6)	C30	N41	C31	C34	-107.1(6)
Fe1	N47	C21	C29	-50.8(5)	Fe1	N47	C27	C35	-15.6(6)
C19	N47	C21	C29	-170.2(4)	C19	N47	C27	C35	109.4(6)
C21	N47	C27	C35	-130.1(5)	C27	N47	C21	C29	67.8(6)
Fe1	N48	C15	C32	-14.2(7)	Fe1	N48	C35	C27	-52.1(6)
C15	N48	C35	C27	67.5(7)	C35	N48	C15	C32	-130.3(6)
C40	N48	C15	C32	109.2(7)	C40	N48	C35	C27	-170.0(5)
Fe46	N49	C16	C9	-51.6(5)	Fe46	N49	C22	C20	-22.1(6)
C11	N49	C16	C9	-172.8(5)	C11	N49	C22	C20	1037(5)
C16	N49	C22	C20	-134.9(5)	C22	N49	C16	C9	65 0(6)
Fe46	N50	C6	C24	-50 0(4)	E016	N50	C9	C16	-20.0(5)
1010	1100	00		00.0(1)	1010	1,00	00	010	-0.0(0)

C6	N50	C9	C16	-131.9(5)	C9	N50	C6	C24	65.7(5)
C10	N50	C6	C24	-172.5(4)	C10	N50	C9	C16	106.9(5)
Fe46	N51	C20	C22	-50.6(5)	Fe46	N51	C24	C6	-18.9(5)
C20	N51	C24	C6	-131.7(5)	C24	N51	C20	C22	65.4(6)
C25	N51	C20	C22	-173.1(4)	C25	N51	C24	C6	107.7(5)
N50	C6	C24	N51	48.7(6)	N50	C9	C16	N49	50.4(6)
N12	C13	C33	N14	-47.9(8)	N48	C15	C32	N8	46.3(9)
N41	C18	C28	N12	-48.5(8)	N51	C20	C22	N49	50.9(7)
N47	C21	C29	N8	46.9(8)	N47	C27	C35	N48	46.8(8)
N41	C31	C34	N14	-49.3(8)					

Figure S26. ORTEP drawing of 6 (50% probability of the thermal ellipsoids)

Table S3-1. Crystal data and structure refinement for 6

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

 $\begin{array}{l} {\rm Space\ Group}\\ {\rm Z\ value}\\ {\rm D}_{calc}\\ {\rm F}_{000}\\ \mu({\rm MoK}\alpha)\\ {\rm Diffractometer}\\ {\rm Radiation} \end{array}$

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Flack Parameter (Friedel pairs = 894) Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

 $C_{11}H_{24}Br_2FeN_4$ 427.99pink-red, block 0.200 X 0.200 X 0.100 mm orthorhombic Primitive a = 16.354(2) Å b = 12.5257(13) Åc = 7.6117(8) Å $V = 1559.2(3) \text{ Å}^3$ Pna2₁ (#33) 4 1.823 g/cm^3 856.00 60.973 cm⁻¹ Saturn724 MoKα ($\lambda = 0.71075$ Å) multi-layer mirror monochromated 50kV, 40mA -159.8°C 70 x 70 mm 420 exposures $-60.0 - 15.0^{\circ}$ $10.0 \text{ sec.}/^{0}$ -14.83° 40.12 mm0.070 mm 55.0° Total: 8301 Unique: 2810 (R_{int} = 0.1235) Friedel pairs: 894 Lorentz-polarization Absorption (trans. factors: 0.372 - 0.543) **Direct Methods** Full-matrix least-squares on F^2 $\Sigma \omega (Fo^2 - Fc^2)^2$ $\omega = 1/[\sigma^2(Fo^2) + (0.1366 \cdot P)^2]$ + 9.6946 · P] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.0° All non-hydrogen atoms 2810 16317.240.0643 0.0664 0.1631 0.886 0.01(3)0.000 1.30 e⁻/Å³ -2.14 e⁻/Å³

ъ

Table S3-2. Atomic coordinates and Biso/Beq

atom	X	У	Z	веа
Br1	0.95004(5)	0.62272(6)	0.31676(12)	1.54(2)
Br2	0.89758(5)	0.91545(6)	0.33886(13)	1.62(2)
Fe1	0.86807(7)	0.74335(9)	0.5196(2)	1.12(3)

N1	0.7505(4)	0.7114(6)	0.3752(11)	1.75(13)
N2	0.9648(4)	0.7647(6)	0.7268(10)	1.24(11)
N3	0.7991(4)	0.8376(5)	0.7298(10)	1.24(11)
N4	0.8345(5)	0.6129(5)	0.7144(11)	1.33(12)
C1	0.6913(6)	0.6998(7)	0.2972(12)	1.7(2)
C2	0.6159(6)	0.6863(8)	0.197(2)	2.0(2)
C3	0.9375(5)	0.8379(7)	0.8692(12)	1.4(2)
C4	0.8653(5)	0.9051(6)	0.808(2)	1.5(2)
C5	0.7642(5)	0.7643(7)	0.8628(13)	1.7(2)
C6	0.7563(5)	0.6514(6)	0.7913(12)	1.5(2)
C7	0.8993(5)	0.6036(7)	0.8548(13)	1.26(13)
C8	0.9789(5)	0.6541(7)	0.7924(13)	1.6(2)
C9	1.0420(5)	0.8041(8)	0.6496(13)	1.6(2)
C10	0.7355(6)	0.9074(7)	0.653(2)	1.8(2)
C11	0.8209(6)	0.5092(7)	0.632(2)	2.0(2)

Beq = 8/3 π²(U₁₁(aa*)² + U₂₂(bb*)² + U₃₃(cc*)² + 2U₁₂(aa*bb*)cos γ + 2U₁₃(aa*cc*)cos β + 2U₂₃(bb*cc*)cos α)

 Table S3-3.
 Anisotropic displacement parameters

atom	U11	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br1	0.0251(4)	0.0157(4)	0.0178(5)	0.0032(3)	0.0021(4)	-0.0024(4)
Br2	0.0270(4)	0.0144(4)	0.0200(5)	0.0019(3)	0.0040(4)	0.0047(4)
Fe1	0.0177(5)	0.0127(5)	0.0122(6)	0.0003(4)	0.0004(5)	-0.0000(5)
N1	0.020(3)	0.017(3)	0.029(5)	0.000(3)	0.002(3)	-0.000(3)
N2	0.019(3)	0.012(3)	0.016(4)	0.000(3)	-0.002(3)	-0.002(3)
N3	0.018(3)	0.011(3)	0.018(4)	0.002(3)	0.003(3)	-0.001(3)
N4	0.020(3)	0.011(3)	0.020(4)	-0.002(3)	0.001(3)	0.003(3)
C1	0.027(4)	0.015(4)	0.023(6)	0.001(3)	0.006(4)	0.003(4)
C2	0.027(4)	0.019(4)	0.031(6)	0.006(4)	0.002(4)	-0.002(4)
C3	0.019(4)	0.015(4)	0.018(5)	-0.002(3)	0.002(4)	-0.001(4)
C4	0.028(4)	0.011(4)	0.019(5)	-0.001(3)	-0.001(4)	-0.007(4)
C5	0.020(4)	0.018(4)	0.025(5)	0.000(3)	0.009(4)	0.000(4)
C6	0.017(3)	0.010(3)	0.029(6)	-0.002(3)	0.007(4)	0.003(4)
C7	0.024(4)	0.014(4)	0.010(4)	0.001(3)	0.002(3)	0.008(4)
C8	0.022(4)	0.018(4)	0.021(5)	0.003(3)	-0.002(4)	0.011(4)
C9	0.019(4)	0.024(4)	0.019(5)	-0.003(3)	0.003(4)	-0.000(4)
C10	0.026(4)	0.020(4)	0.021(5)	0.011(4)	0.003(4)	-0.000(4)
C11	0.025(4)	0.010(4)	0.040(6)	0.001(4)	0.007(4)	-0.005(4)

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*c^*}U_{13}hl + 2b^{*c^*}U_{23}kl))$

Table S3-4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Br1	Fe1	2.5424(15)	$\operatorname{Br2}$	Fe1	2.6024(15)
Fe1	N1	2.251(8)	Fe1	N2	2.250(8)
Fe1	N3	2.287(7)	Fe1	N4	2.274(8)
N1	C1	1.145(12)	N2	C3	1.488(11)
N2	C8	1.491(11)	N2	C9	1.478(11)
N3	C4	1.498(11)	N3	C5	1.480(12)
N3	C10	1.480(12)	N4	C6	1.487(11)
N4	$\mathbf{C7}$	1.510(12)	N4	C11	1.461(11)
C1	C2	1.462(13)	C3	C4	1.522(12)
C5	C6	1.521(12)	C7	C8	1.522(12)

Table S3-5. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
Br1	Fe1	Br2	94.21(5)	Br1	Fe1	N1	92.8(2)
Br1	Fe1	N2	97.23(19)	Br1	Fe1	N3	172.80(18)
Br1	Fe1	N4	95.52(19)	Br2	Fe1	N1	92.7(2)
Br2	Fe1	N2	98.15(18)	Br2	Fe1	N3	91.93(17)
Br2	Fe1	N4	170.0(2)	N1	Fe1	N2	164.6(3)
N1	Fe1	N3	90.7(3)	N1	Fe1	N4	89.1(3)
N2	Fe1	N3	78.2(3)	N2	Fe1	N4	78.3(3)
N3	Fe1	N4	78.2(3)	Fe1	N1	C1	176.6(7)
Fe1	N2	C3	111.9(5)	Fe1	N2	C8	103.5(5)
Fe1	N2	C9	111.2(6)	C3	N2	C8	112.0(7)
C3	N2	C9	109.9(7)	C8	N2	C9	108.1(7)
Fe1	N3	C4	102.3(5)	Fe1	N3	C5	110.4(5)
Fe1	N3	C10	111.9(6)	C4	N3	C5	110.9(7)
C4	N3	C10	109.5(6)	C5	N3	C10	111.6(7)
Fe1	N4	C6	103.3(5)	Fe1	N4	$\mathbf{C7}$	110.3(5)
Fe1	N4	C11	113.2(7)	C6	N4	$\mathbf{C7}$	110.5(7)
C6	N4	C11	109.1(7)	$\mathbf{C7}$	N4	C11	110.1(7)
N1	C1	C2	179.3(9)	N2	C3	C4	110.6(7)
N3	C4	C3	111.7(6)	N3	C5	C6	111.4(8)
N4	C6	C5	111.7(7)	N4	$\mathbf{C7}$	C8	110.3(8)
N2	C8	$\mathbf{C7}$	111.0(7)				

Table S3-6. Torsion Angles(0)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Br1	Fe1	N2	C3	177.7(4)	Br1	Fe1	N2	C8	-61.5(4)
Br1	Fe1	N2	C9	54.3(4)	Br1	Fe1	N4	C6	-153.0(4)
Br1	Fe1	N4	C7	88.8(4)	Br1	Fe1	N4	C11	-35.1(4)
Br2	Fe1	N2	C3	82.3(4)	Br2	Fe1	N2	C8	-156.9(3)
Br2	Fe1	N2	C9	-41.0(4)	Br2	Fe1	N3	C4	-65.9(3)
Br2	Fe1	N3	C5	176.0(4)	Br2	Fe1	N3	C10	51.2(4)
N1	Fe1	N3	C4	-158.7(4)	N1	Fe1	N3	C5	83.3(4)
N1	Fe1	N3	C10	-41.6(4)	N1	Fe1	N4	C6	-60.3(4)
N1	Fe1	N4	C7	-178.5(4)	N1	Fe1	N4	C11	57.6(5)
N2	Fe1	N3	C4	32.0(4)	N2	Fe1	N3	C5	-86.0(4)
N2	Fe1	N3	C10	149.1(4)	N3	Fe1	N2	C3	-7.9(4)
N3	Fe1	N2	C8	112.9(4)	N3	Fe1	N2	C9	-131.3(4)
N2	Fe1	N4	C6	110.7(4)	N2	Fe1	N4	C7	-7.5(4)
N2	Fe1	N4	C11	-131.4(5)	N4	Fe1	N2	C3	-88.1(4)
N4	Fe1	N2	C8	32.6(4)	N4	Fe1	N2	C9	148.5(4)
N3	Fe1	N4	C6	30.6(4)	N3	Fe1	N4	$\mathbf{C7}$	-87.6(4)
N3	Fe1	N4	C11	148.4(5)	N4	Fe1	N3	C4	112.4(4)
N4	Fe1	N3	C5	-5.7(4)	N4	Fe1	N3	C10	-130.5(4)
Fe1	N2	C3	C4	-18.5(7)	Fe1	N2	C8	$\mathbf{C7}$	-55.5(7)
C3	N2	C8	C7	65.3(8)	C8	N2	C3	C4	-134.1(6)
C9	N2	C3	C4	105.6(7)	C9	N2	C8	$\mathbf{C7}$	-173.5(7)
Fe1	N3	C4	C3	-54.0(7)	Fe1	N3	C5	C6	-20.9(7)
C4	N3	C5	C6	-133.5(6)	C5	N3	C4	C3	63.7(9)
C10	N3	C4	C3	-172.8(7)	C10	N3	C5	C6	104.2(7)
Fe1	N4	C6	C5	-53.3(7)	Fe1	N4	$\mathbf{C7}$	C8	-19.5(7)
C6	N4	C7	C8	-133.2(6)	C7	N4	C6	C5	64.8(8)
C11	N4	C6	C5	-174.0(7)	C11	N4	C7	C8	106.2(7)
N2	C3	C4	N3	50.7(9)	N3	C5	C6	N4	51.9(9)
N4	C7	C8	N2	51.8(9)					

Figure S27. ORTEP drawing of 7 (50% probability of the thermal ellipsoids). The site occupancy factors for C8 \sim C20 were defined as 0.5.

Table S4-1. Crystal data and structure refinement for 7

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} μ (MoK α) Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

2θ_{max} cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00σ(I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map $C_{16}H_{26}Br_2FeN_4$ 490.06 colorless, block 0.120 X 0.100 X 0.100 mm monoclinic Primitive 7.7264(17) Å a = b = 17.285(3) Åc = 14.927(3) Å $\beta = 94.081(7)^{0}$ $V = 1988.4(7) Å^3$ P21/c (#14) 4 1.637 g/cm^3 984.00 47.928 cm⁻¹ Saturn724 MoKα ($\lambda = 0.71075$ Å) multi-layer mirror monochromated 50kV, 40mA -159.8°C 72.8 x 72.8 mm 510 exposures $-30.0 - 45.0^{\circ}$ 10.0 sec./^{0} -14.70° 40.12 mm 0.070 mm 55.0° Total: 12908 Unique: 4511 (Rint = 0.0452) Lorentz-polarization Absorption (trans. factors: 0.480 - 0.619) Direct Methods (SIR2008) Full-matrix least-squares on F^2 $\Sigma \le (Fo^2 - Fc^2)^2$ w = 1/ [$\sigma^2(Fo^2)$ + (0.0794 · P)² + 2.9899 · P] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.0^{0} All non-hydrogen atoms 451120222.330.05720.05930.1458 1.2450.002 $1.02 \text{ e}^{-}/\text{Å}^{3}$ -2.11 e⁻/Å³

Table S4-2. Atomic coordinates and Biso/Beq and occupancy

atom	Х	У	\mathbf{Z}	B _{eα}	occ
Br1	0.74170(6)	0.29817(3)	1.09346(3)	2.912(13)	1
Br2	0.81199(4)	0.11497(2)	0.96796(3)	1.821(11)	1

Fe1	0.57413(6)	0.21855(3)	0.97032(3)	1.375(12)	1
N1	0.6850(5)	0.2878(2)	0.8663(3)	2.55(6)	1
N2	0.3963(4)	0.15739(19)	1.0583(2)	1.59(5)	1
N3	0.3950(4)	0.1568(2)	0.8658(2)	2.32(6)	1
N4	0.3350(5)	0.2974(2)	0.9593(3)	3.15(8)	1
C1	0.7638(5)	0.3373(2)	0.8391(3)	2.01(6)	1
C2	0.8607(5)	0.4031(2)	0.8112(3)	1.62(5)	1
C3	0.9203(5)	0.4062(2)	0.7250(3)	1.66(5)	1
C4	1.0143(5)	0.4707(2)	0.7016(3)	2.12(6)	1
C5	1.0510(5)	0.5296(2)	0.7636(3)	2.46(7)	1
C6	0.9918(6)	0.5253(3)	0.8492(3)	2.60(7)	1
C7	0.8962(5)	0.4621(3)	0.8733(3)	2.24(6)	1
C8	0.2857(11)	0.1015(5)	1.0084(5)	1.37(11)	1/2
C9	0.3601(9)	0.0798(4)	0.9187(5)	1.36(10)	1/2
C10	0.3428(13)	0.0856(5)	1.0013(6)	2.15(14)	1/2
C11	0.2752(13)	0.1081(6)	0.9067(6)	2.68(15)	1/2
C12	0.2421(11)	0.1941(5)	0.8370(5)	2.00(12)	1/2
C13	0.2637(12)	0.2788(5)	0.8541(6)	2.24(13)	1/2
C14	0.2832(14)	0.2320(7)	0.8278(7)	3.31(17)	1/2
C15	0.2089(16)	0.2804(7)	0.8956(8)	3.69(19)	1/2
C16	0.2699(14)	0.2864(6)	1.0606(7)	2.98(16)	1/2
C17	0.2437(13)	0.2013(6)	1.0783(7)	2.41(15)	1/2
C18	0.2031(11)	0.2707(5)	1.0152(6)	2.28(13)	1/2
C19	0.2869(12)	0.2235(5)	1.0917(6)	1.89(13)	1/2
C20	0.4919(5)	0.1249(3)	1.1386(3)	2.54(7)	1
C21	0.4861(6)	0.1274(3)	0.7897(3)	3.13(9)	1
C22	0.3776(8)	0.3807(3)	0.9631(5)	4.35(13)	1

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Tab	le	S4-3	3 . A	Anisotropic	disp	lacement	parameters
-----	----	------	--------------	-------------	------	----------	------------

atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br1	0.0295(3)	0.0381(3)	0.0443(3)	-0.01494(17)	0.01106(19)	-0.02308(19)
Br2	0.0158(2)	0.0216(2)	0.0321(2)	0.00074(12)	0.00376(15)	-0.00343(13)
Fe1	0.0145(3)	0.0168(3)	0.0213(3)	-0.00242(17)	0.00335(19)	0.00167(18)
N1	0.0276(18)	0.0332(18)	0.037(2)	-0.0043(14)	0.0064(15)	0.0146(15)
N2	0.0167(14)	0.0266(15)	0.0171(13)	-0.0040(12)	0.0025(11)	0.0009(12)
N3	0.0202(15)	0.050(2)	0.0177(15)	-0.0073(15)	0.0023(12)	0.0000(15)
N4	0.0240(18)	0.0231(17)	0.073(3)	0.0054(14)	0.0101(18)	0.0151(18)
C1	0.0192(17)	0.0292(19)	0.0278(19)	-0.0007(15)	0.0014(14)	0.0091(16)
C2	0.0148(15)	0.0236(17)	0.0232(17)	-0.0001(13)	0.0013(13)	0.0086(14)
C3	0.0174(16)	0.0236(17)	0.0219(17)	0.0010(14)	0.0015(13)	0.0040(14)
C4	0.0217(18)	0.0301(19)	0.0297(19)	0.0017(15)	0.0080(14)	0.0102(16)
C5	0.0231(19)	0.0242(18)	0.046(2)	-0.0023(15)	0.0032(17)	0.0083(17)
C6	0.033(2)	0.028(2)	0.037(2)	-0.0043(17)	0.0004(17)	-0.0052(17)
C7	0.0277(19)	0.034(2)	0.0234(18)	-0.0032(17)	0.0019(14)	0.0018(16)
C20	0.0230(19)	0.053(3)	0.0204(18)	-0.0071(18)	0.0016(15)	0.0110(18)
C21	0.028(2)	0.067(3)	0.024(2)	-0.009(2)	0.0036(16)	-0.012(2)
C22	0.040(3)	0.022(2)	0.105(5)	0.0094(19)	0.014(3)	0.007(3)

The general temperature factor expression: $\exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*b^*}U_{12}hk + 2a^{*c^*}U_{13}hl + 2b^{*c^*}U_{23}kl))$

Table S4-4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Br1	Fe1	2.5710(7)	Br2	Fe1	2.5678(7)

Fe1	N1	2.183(4)	Fe1	N2	2.233(3)
Fe1	N3	2.277(3)	Fe1	N4	2.292(4)
N1	C1	1.142(6)	N2	$\mathbf{C8}$	1.459(8)
N2	C10	1.544(10)	N2	C17	1.452(11)
N2	C19	1.526(10)	N2	C20	1.473(5)
N3	C9	1.580(8)	N3	C11	1.421(10)
N3	C12	1.387(9)	N3	C14	1.640(12)
N3	C21	1.468(6)	N4	C13	1.659(10)
N4	C15	1.344(13)	N4	C16	1.638(12)
N4	C18	1.438(10)	N4	C22	1.478(6)
C1	C2	1.438(6)	C2	C3	1.398(5)
C2	C7	1.392(6)	C3	C4	1.388(5)
C4	C5	1.392(6)	C5	C6	1.389(7)
C6	C7	1.381(6)	C8	C9	1.540(10)
C8	C10	0.536(13)	$\mathbf{C8}$	C11	1.519(12)
C9	C10	1.253(11)	C9	C11	0.827(12)
C10	C11	1.521(13)	C11	C12	1.822(13)
C12	C13	1.493(12)	C12	C14	0.745(14)
C12	C15	1.757(14)	C13	C14	0.915(14)
C13	C15	0.776(16)	C14	C15	1.461(17)
C15	C18	1.797(15)	C16	C17	1.510(14)
C16	C18	0.866(13)	C16	C19	1.186(13)
C17	C18	1.543(13)	C17	C19	0.537(13)
C18	C19	1.512(12)			

Table S4-5. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
Br1	Fe1	Br2	93.36(2)	$\mathrm{Br1}$	Fe1	N1	90.66(10)
Br1	Fe1	N2	97.63(8)	$\mathrm{Br1}$	Fe1	N3	172.63(9)
Br1	Fe1	N4	95.48(11)	$\operatorname{Br2}$	Fe1	N1	93.16(10)
Br2	Fe1	N2	98.56(8)	$\operatorname{Br2}$	Fe1	N3	93.68(10)
Br2	Fe1	N4	170.93(10)	N1	Fe1	N2	165.18(13)
N1	Fe1	N3	91.14(13)	N1	Fe1	N4	88.76(15)
N2	Fe1	N3	79.14(12)	N2	Fe1	N4	78.28(14)
N3	Fe1	N4	77.41(14)	Fe1	N1	C1	155.6(4)
Fe1	N2	C8	112.1(4)	Fe1	N2	C10	102.0(4)
Fe1	N2	C17	114.6(4)	Fe1	N2	C19	102.5(4)
Fe1	N2	C20	111.4(2)	C8	N2	C10	20.3(5)
C8	N2	C17	89.8(5)	C8	N2	C19	110.2(5)
C8	N2	C20	113.8(4)	C10	N2	C17	110.1(6)
C10	N2	C19	130.5(5)	C10	N2	C20	103.9(4)
C17	N2	C19	20.6(5)	C17	N2	C20	113.6(5)
C19	N2	C20	106.0(4)	Fe1	N3	C9	99.7(3)
Fe1	N3	C11	111.5(4)	Fe1	N3	C12	117.1(4)
Fe1	N3	C14	98.3(4)	Fe1	N3	C21	113.0(3)
C9	N3	C11	31.4(5)	C9	N3	C12	112.0(5)
C9	N3	C14	137.4(5)	C9	N3	C21	101.8(4)
C11	N3	C12	80.9(5)	C11	N3	C14	105.9(6)
C11	N3	C21	119.4(5)	C12	N3	C14	26.9(5)
C12	N3	C21	111.5(4)	C14	N3	C21	106.1(5)
Fe1	N4	C13	99.5(4)	Fe1	N4	C15	117.5(6)
Fe1	N4	C16	99.4(4)	Fe1	N4	C18	111.7(4)
Fe1	N4	C22	113.6(3)	C13	N4	C15	27.5(6)
C13	N4	C16	138.5(5)	C13	N4	C18	106.7(5)
C13	N4	C22	106.4(5)	C15	N4	C16	111.9(7)
C15	N4	C18	80.4(7)	C15	N4	C22	112.8(6)
C16	N4	C18	31.8(5)	C16	N4	C22	99.2(5)
C18	N4	C22	117.1(5)	N1	C1	C2	175.4(4)
C1	C2	C3	120.6(3)	C1	C2	C7	117.9(4)

C3	C2	$\mathbf{C7}$	121.4(4)	C2	C3	C4	118.4(4)
C3	C4	C5	120.3(4)	C4	C5	C6	120.5(4)
C5	C6	$\mathbf{C7}$	120.0(4)	C2	$\mathbf{C7}$	C6	119.3(4)
N2	C8	C9	111.3(6)	N2	C8	C10	88.8(14)
N2	C8	C11	116.6(7)	C9	C8	C10	48.7(11)
C9	Č8	$\tilde{C}11$	31.4(5)	Č10	Č8	Č11	80.0(13)
N3	Č9	Č8	108.6(5)	N3	Č9	$\tilde{C}10$	1173(7)
N3	Č9	Č11	63 6(8)	C8	Č9	C10	18 8(6)
C8	Č9	Č11	729(9)	$\tilde{C}10$	Č9	C11	91.6(10)
N2	Č10	Č8	70.8(12)	N2	$\tilde{C}10$	Č9	$124\ 3(8)$
N2	$\tilde{C}10$	Č11	1115(7)	$\overline{C8}$	$\tilde{C}10$	Č9	1125(14)
C8	C10	C11	797(13)	$\widetilde{C9}$	C10	$\tilde{C}11$	32.9(5)
N3	C11		1190(7)	N3	C11	C9	85.0(9)
N3	C11	C10	110.0(7) 111 1(7)	N3	C11	C12	488(4)
C8	C11	C9	757(9)		C11	C12	20.3(5)
C8	C11	C12	128.8(7)	C9	C11	C10	55.4(8)
C9	C_{11}	C12	120.0(1) 133 1(11)	C10	C11	C10	139.8(7)
N3	C12	C12	50.3(4)	N3	C12	C12	105.0(7) 108 7(6)
N3	C12	C_{14}	05.3(4) 05.8(11)	N3	C12	C15	1131(6)
C11	C12	C14	133.0(11)	C11	C12	C10	1/1 1(19)
C_{11}	C12	C15	105.5(7) 115 $4(7)$	C_{12}	C12	C14	141.1(12) 90.0(10)
C_{12}	C12 C12	C15	110.4(7)	C13	C12	C14	54.0(10)
N ₄	C12 C13	C10	20.0(0) 119.1(6)	014 N4	C12	C13	1915(11)
IN4 N4	C_{12}	C12	521(10)	C19	C10	C14	121.0(10) 92.9(9)
N4 C19	C_{12}	C15	03.1(10) 06 $4(19)$	C12	C_{12}	C14 C15	20.2(0) 110.2(15)
014 N9	C_{14}	C_{19}	50.4(12) 57.2(10)	014 N9	C13	C10	119.0(10) 190.7(11)
NO NO	C14	C12	$\frac{07.0(10)}{1100(9)}$	N5 C19	C14	C13	130.7(11) 197.9(17)
N5 C19	C14	C15	110.0(0) 100.5(10)	C12	C14	C15	121.0(11) 97.0(9)
012 N4	C14	C_{10}	100.0(13) 114.9(9)	015 N4		C10	21.0(0)
IN4 N4		C12	114.3(8)	IN4 NI4		C13	99.4(15)
N4 O19		C14	108.3(9)	N4 C19		C18	$\frac{32.1(3)}{24.0(2)}$
C12		C13	$\frac{07.0(10)}{115.4(7)}$	C12		C14	24.0(0)
C12			110.4(1) 147.6(14)	C13		C14	33.1(9)
U13	C10	C18 C17	147.0(14)	014 N4		C18 C19	132.3(9)
N4 N4		C17 C10	109.1(7)	N4		C18 C19	61.2(9)
N4	C16	C19 C10	115.8(9)	C17		C18 C10	75.6(10)
UT7	C16	C19	18.4(6)	U18	C16 C17	C19 C10	93.6(11)
NZ	C17	C16	110.6(8)	NZ Olo	C17	C18	114.5(7)
NZ Q10	C17	C19	87.5(15)	C16	C17	C18	32.9(5)
C16	C17	C19	44.3(13)		C17	C19	76.6(14)
N4	C18	C15	47.5(5)	N4	C18	C16	86.9(10)
N4	C18	C17	118.8(7)	N4	C18	C19	109.2(7)
C15	C18	C16	133.9(11)	C15	C18	C17	131.3(8)
C15	C18	C19	139.6(8)	C16	C18	C17	(71.4(9))
U16	C18	C19	51.5(9)	C1'	C18	C19	20.2(5)
N2	C19	C16	127.4(9)	N2	C19	C17	71.9(14)
N2	C19	C18	112.0(6)	C16	C19	C17	117.3(16)
C16	C19	C18	34.9(6)	C17	C19	C18	83.2(14)

Table S4-6. Torsion Angles(0) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Br1	Fe1	N1	C1	$-6.0(\bar{7})$	Br1	Fe1	N2	C8	-176.34(15)
Br1	Fe1	N2	C10	-157.85(12)	Br1	Fe1	N2	C17	83.18(17)
Br1	Fe1	N2	C19	65.54(13)	Br1	Fe1	N2	C20	-47.48(18)
Br1	Fe1	N4	C13	153.83(15)	Br1	Fe1	N4	C15	175.9(3)
Br1	Fe1	N4	C16	-63.28(16)	Br1	Fe1	N4	C18	-93.9(2)
Br1	Fe1	N4	C22	41.2(3)	Br2	Fe1	N1	C1	-99.4(7)
Br2	Fe1	N2	C8	-81.75(17)	Br2	Fe1	N2	C10	-63.27(14)

Br2	Fe1	N2	C17	177.76(15)	Br2	Fe1	N2	C19	160.12(12)
Br2	Fe1	N2	C20	47.11(18)	Br2	Fe1	N3	C9	63.24(15)
Br2	Fe1	N3	C11	93.6(2)	Br2	Fe1	N3	C12	-175.8(2)
Br2	Fe1	N3	C14	-155.58(13)	Br2	Fe1	N3	C21	-44.1(2)
N1	Fe1	N3	C9	156.48(17)	N1	Fe1	N3	C11	-173.2(2)
N1	Fe1	N3	C12	-82.6(2)	N1	Fe1	N3	C14	-62.34(17)
N1	Fe1	N3	C21	49.2(2)	N3	Fe1	N1	C1	166.8(7)
N1	Fe1	N4	C13	63.29(19)	N1	Fe1	N4	C15	85.3(3)
N1	Fe1	N4	$\tilde{C}16$	-15383(19)	N1	Fe1	N4	$\tilde{C18}$	175.6(3)
N1	Fe1	N4	$\tilde{C}22$	-494(3)	N4	Fe1	N1	ČĪ	894(7)
N2	Fe1	N3	Č9	-3479(15)	N2	Fe1	N3	$\tilde{C}11$	-44(2)
N2	Fe1	N3	C12	86 2(2)	N2	Fe1	N3	C14	10639(16)
N2	Fe1	N3	C21	-142 1(2)	N3	Fe1	N2	C8	10.38(18)
N3	Fe1	N2	C10	28.87(15)	N3	Fe1	N2	C17	-90.11(19)
N3	Fe1	N2	C19	-10774(16)	N3	Fe1	N2	C20	1392(2)
N9		N/	C13	-109.19(10)	N2	Fo1	N/	C15	-875(3)
N2		N4 N4	C16	33 40(16)	N2		N4 N4	C10	28(2)
N9		N4 N4	C_{22}	1270(2)	N/		N9	C_{8}	2.0(2)
INZ NIA		1N4 N9	C_{10}	107.3(0) 109.10(19)	IN4 N4		1N2 N9	C17	-10.99(10)
IN4 NI4		INZ NO	C10	100.10(10)	IN4 N4		1N2 N9		10.00(19)
IN4 N9	геі Баі	INZ NI4	C19	-20.01(10)	IN4 N9	гег Ба1	INZ N4	C_{1}	-141.0(2)
NO NO	геі Б.1	IN4 NI4	O13	$^{-20.10(10)}$	Nð N9	rei F-1	IN4 NI4	C10	-0.1(3)
N3 N9	rei Fil	IN4		114.72(19)	IN3 N4	rei Fil	IN4 NO		84.1(2)
N3	Fel	N4	C22	-140.8(3)	N4	Fel	N3 No	C9	-115.05(19)
N4	Fel	N3		-84.7(2)	N4	Fel	N3	C12	5.9(2)
N4	Fel	N3	C14	26.13(16)	N4	Fel	N3	C21	137.6(2)
Fel	N2	C8	C9	19.0(6)	Fel	N2	C8	C10	63.3(9)
Fel	N2	C8	CII	-14.9(7)	Fel	N2	C10	C8	-122.2(9)
Fel	N2	C10	C9	-17.5(9)	Fel	N2	C10	CII	-52.1(6)
Fel	N2	C17	C16	-18.7(7)	Fel	N2	C17	C18	16.8(8)
Fel	N2	C17	C19	-57.2(11)	Fel	N2	C19	C16	17.5(9)
Fel	N2	C19	C17	128.4(8)	Fel	N2	C19	C18	53.9(6)
C8	N2	C10	C8	0.0(9)	<u>C8</u>	N2	C10	C9	104.7(15)
<u>C8</u>	N2	C10	C11	70.1(12)	C10	N2	<u>C8</u>	C9	-44.3(11)
C10	N2	C8	C10	0.0(9)	C10	N2	C8	C11	-78.2(13)
C8	N2	C17	C16	-133.0(6)	C8	N2	C17	C18	-97.5(7)
$\mathbf{C8}$	N2	C17	C19	-171.6(11)	C17	N2	C8	C9	135.6(6)
C17	N2	$\mathbf{C8}$	C10	179.9(9)	C17	N2	C8	C11	101.7(7)
$\mathbf{C8}$	N2	C19	C16	-101.9(9)	C8	N2	C19	C17	9.0(10)
$\mathbf{C8}$	N2	C19	C18	-65.5(7)	C19	N2	C8	C9	132.5(5)
C19	N2	$\mathbf{C8}$	C10	176.7(8)	C19	N2	C8	C11	98.5(6)
C20	N2	$\mathbf{C8}$	C9	-108.6(5)	C20	N2	C8	C10	-64.3(9)
C20	N2	$\mathbf{C8}$	C11	-142.5(5)	C10	N2	C17	C16	-133.0(6)
C10	N2	C17	C18	-97.5(7)	C10	N2	C17	C19	-171.5(10)
C17	N2	C10	$\mathbf{C8}$	-0.1(11)	C17	N2	C10	C9	104.6(9)
C17	N2	C10	C11	69.9(8)	C10	N2	C19	C16	-100.4(10)
C10	N2	C19	C17	10.5(12)	C10	N2	C19	C18	-64.0(9)
C19	N2	C10	C8	-4.0(13)	C19	N2	C10	C9	100.7(10)
C19	N2	C10	C11	66.0(9)	C20	N2	C10	C8	121.9(9)
C20	N2	C10	C9	-133.4(8)	C20	N2	C10	C11	-168.1(5)
C17	N2	C19	C16	-110.9(17)	C17	N2	C19	C17	-0.0(11)
C17	N2	C19	C18	-74.5(14)	C19	N2	C17	C16	38.6(12)
C19	N2	C17	C18	74.1(14)	C19	N2	C17	C19	0.0(9)
C20	N2	C17	C16	110.9(6)	C20	N2	C17	C18	146.4(5)
C20	N2	C17	C19	72.4(11)	C20	N2	C19	C16	134.5(7)
C20	N2	C19	C17	-114.6(9)	C20	N2	C19	C18	170.9(5)
Fe1	N3	C9	C8	56.4(4)	Fe1	N3	C9	C10	38.3(5)
Fe1	N3	C9	C11	115.6(4)	Fe1	N3	C11	C8	-2.2(8)
Fe1	N3	C11	C9	-72.8(7)	Fe1	N3	C11	C10	-22.9(7)
Fe1	N3	C11	C12	115.7(3)	Fe1	N3	C12	C11	-109.5(3)
Fe1	N3	C12	C13	22.6(7)	Fe1	N3	C12	C14	49.2(8)

Fe1	N3	C12	C15	-5.0(7)	Fe1	N3	C14	C12	-137.1(7)
Fe1	N3	C14	C13	-23.0(13)	Fe1	N3	C14	C15	-51.2(7)
C9	N3	CII	C8	70.6(9)	C9	N3	CII	C9	-0.0(5)
C9	N3	CII	C10	49.9(7)	C9	N3	CII	C12	-171.5(8)
CII	N3	C9	C8	-59.2(8)	CII	N3	C9	C10	-77.2(9)
CII	N3	C9	CII	0.0(7)	C9	N3	C12	CII	4.8(3)
C9	N3	C12	C13	136.9(5)	C9	N3	C12	C14	163.5(6)
C9	N3	C12	C15	109.3(5)	C12	N3	C9	C8	-68.2(6)
C12	N3	C9	C10	-86.3(6)	C12	N3	C9	CII	-9.1(6)
C9	N3	C14	C12	-22.9(12)	C9	N3	C14	C13	91.2(14)
C9	N3	C14	C15	63.0(11)	C14	N3	C9	C8	-57.3(8)
C14	N3 No	C9	CIU	-75.4(9)	C14 C01	N3 N9	C9	CII	1.9(9)
C21	N3 N9	C9 C0	C8	172.5(4)	C21	N3 N9	C9	C10	154.5(5)
C_{11}	N3 N9	C9 C19		$^{-120.3(0)}$		N3 N9	C12	C11	0.0(4) 150 7(0)
C_{11}	NO NO	C12	C15	152.1(6) 104.6(6)	C11	N9 N9	C12	C_{0}^{14}	100.7(0)
C_{19}	NO NO	C12		104.0(0) 171 5(0)	C12	N9 N9	C_{11}	C_{10}	-117.9(0)
C12	N9	C_{11}	C9	111.0(0)	C12	N9	C11	C10	130.0(7)
C12	N2	C11	C12	0.0(3) 09.9(14)	C_{11}	N2	C14	C12	21.9(9)
C14	N3	C14 C11		$\frac{92.2(14)}{-108.1(7)}$	C_{14}	N3	C14 C11		-1787(7)
C14	N3	C_{11}	C10	-1288(6)	C14	N3	C_{11}	C19	9.8(1)
C91	N3	C_{11}	C8	120.0(0) 132 $4(6)$	C_{21}	N3	C_{11}	C_{9}^{12}	61.8(8)
C21	N3	C11	C10	102.4(0) 111 7(6)	C21	N3	C11	C12	-1097(4)
C12	N3	C14	C10 C12	0.0(7)	C12	N3	C14	C12	1141(19)
C12	N3	C14	C12 C15	85.9(12)	C12	N3	C12	C10	-1587(10)
C14	N3	C12	C10	-266(9)	C14	N3	C12	C14	-0.0(8)
C14	N3	C12	C15	-541(10)	C21	N3	C12	C11	1181(4)
C21	N3	$\tilde{C}12$	$\tilde{C}13$	-109.8(5)	$\tilde{C}21$	N3	$\tilde{C}12$	C14	-83.2(8)
$\tilde{C}21$	N3	$\tilde{C}12$	C15	-137.4(5)	$\tilde{C}2\bar{1}$	N3	$\tilde{C}\bar{1}\bar{4}$	$\overline{C12}$	105.9(8)
$\tilde{C}21$	N3	$\tilde{C}14$	Č13	-139.9(12)	$\tilde{C}2\bar{1}$	N3	$\tilde{C}14$	$\tilde{C15}$	-168.2(6)
Fe1	N4	C13	C12	52.8(6)	Fe1	N4	C13	C14	28.9(9)
Fe1	N4	C13	C15	133.9(6)	Fe1	N4	C15	C12	5.3(10)
Fe1	N4	C15	C13	-53.3(11)	Fe1	N4	C15	C14	-20.4(10)
Fe1	N4	C15	C18	109.5(4)	Fe1	N4	C16	C17	-55.6(6)
Fe1	N4	C16	C18	-116.2(6)	Fe1	N4	C16	C19	-36.9(8)
Fe1	N4	C18	C15	-115.9(3)	Fe1	N4	C18	C16	72.2(6)
Fe1	N4	C18	C17	5.4(7)	Fe1	N4	C18	C19	24.9(6)
C13	N4	C15	C12	58.6(11)	C13	N4	C15	C13	-0.0(6)
C13	N4	C15	C14	32.9(8)	C13	N4	C15	C18	162.8(12)
C15	N4	C13	C12	-81.1(13)	C15	N4	C13	C14	-104.9(16)
C15	N4	C13	C15	-0.0(11)	C13	N4	C16	C17	60.5(10)
C13	N4	C16	C18	-0.2(11)	C13	N4	C16	C19	79.2(11)
C16	N4	C13	C12	-63.2(10)	C16	N4	C13	C14	-87.1(11)
C16	N4	C13	C15	17.8(11)	C13	N4	C18	C15	-8.2(4)
C13	N4	C18	C16	179.9(6)	C13	N4	C18	C17	113.1(6)
C13	N4	C18	C19	132.6(5)		N4	C13		-63.3(7)
C18 C99	N4 N4	C13	C14	-87.2(10)		N4 N4	C13	C15	17.7(7) 1.47.1(9)
C22	IN4 N4	013 019		1/1.0(0)		IN4 N4	C13	$C14 \\ C17$	14(.1(8))
C_{15}	IN4 N4	C13	C_{10}	-108.0(6)	C10	IN4 N4	C16	C10	69.3(8)
C10	IN4 N4	C10	C_{19}	0.0(9)	C10	IN4 N4	C10	C19	-167 4(0)
C10	IN4 N4	C15 C15	C12 C14	100.0(0) -134 5(7)	C10	IN4 N4	C15 C15	C_{18}	-167.4(9)
C15	N4 N4	C19	C14	104.0(7)	C15	1N4 N4	C10	C_{16}	4.0(0) -171 Q(Q)
C15	N/	C18	C17	121 3(8)	C15	N/	C18	C19	140.8(7)
C18	N/	C15	C19	-1042(8)	C18	N/	C15	C13	-162.8(11)
C18	N4	C15	C12	-129 9(8)	C18	N4	C15	C18	0.0(3)
C22	N4	C15	C12	140 3(6)	C22	N4	C15	C13	81,8(11)
Č22	N4	C15	$\tilde{C}14$	114.7(7)	C22	N4	C15	Č18	-115.5(5)
Č16	N4	Č18	$\tilde{C}15$	171.9(9)	č16	N4	$\tilde{C18}$	Č16	0.0(7)
C16	N4	$\tilde{C18}$	$\tilde{C17}$	-66.8(9)	Č16	N4	$\tilde{C18}$	C19	-47.3(8)

C18	N4	C16	C17	60.7(9)	C18	N4	C16	C18	0.0(7)
C18	N4	C16	C19	79.3(10)	C22	N4	C16	C17	-171.5(5)
C22	N4	C16	C18	127.8(6)	C22	N4	C16	C19	-152.9(7)
C22	N4	C18	C15	110.8(5)	C22	N4	C18	C16	-61.1(8)
C22	N4	C18	C17	-128.0(6)	C22	N4	C18	C19	-108.5(6)
C1	C2	C3	C4	-179.6(3)	C1	C2	$\mathbf{C7}$	C6	178.8(3)
C3	C2	C7	C6	0.2(5)	$\mathbf{C7}$	C2	C3	C4	-1.0(5)
C2	C3	C4	C5	1.4(5)	C3	C4	C5	C6	-1.0(6)
C4	C5	C6	C7	0.1(6)	C5	C6	C7	C2	0.2(6)
N2	C8	C9	N3	-52.9(7)	N2	C8	C9	C11	-106.5(6)
N2	C8	C10	N2	-0.00(12)	N2	C8	C10	C9	-120.1(10)
N2	C8	C10	C11	-117.3(4)	N2	C8	C11	N3	11.8(11)
N2	Č8	Č11	$\tilde{C9}$	87.7(8)	N2	Č8	Č11	C10	83.6(10)
N2	Č8	Č11	Č12	-46.7(11)	$\overline{C9}$	Č8	$\tilde{C}10$	N2	120.1(10)
<u>C9</u>	Č8	Č10	Č9	0.0(3)	Č9	Č8	Č10	C11	2 8(9)
Č10	Č8	C9	N3	-1211(17)	$\tilde{C}10$	Č8	C9	C11	-1747(18)
C9	C8	C11	N3	-759(9)	$\tilde{C9}$	Č8	C11	C9	0.0(5)
C9	C8	C11	C10	-40(10)	$\mathbf{C9}$	C8	C11	C12	-1344(13)
C11	C8	C9	N3	53 6(8)	C11	C8	C9	C12	-0.0(7)
C10	C8	C11	N3	-71.8(15)	C10	C8	C11	C9	4.0(14)
C10	C8	C_{11}	C10	0.0(10)	C10	C8	C_{11}	C12	-130 4(14)
C10	C8	C_{10}	N9	1173(6)	C10	C8	C10	C9	-2.8(10)
C_{11}		C10	C11	117.5(0)	N3		C10	N9	-155(10)
N2		C10	C_8	660(4)	N9	C_{0}	C10	C11	60.0(5)
N9	C9	C10	00 N2	-0.00(13)	N9	C9	C10		-1916(5)
N9	C9	C_{11}	C10	-1100(13)	N9	C9	C_{11}	C_{19}	121.0(0)
00	C9	C_{11}	N9	119.9(0) 191 $e(e)$		C9	C_{11}	C_{2}	0.0(0)
	C9	C_{11}	C10	121.0(0) 1 7(4)		C9	C_{11}	C0	0.0(3) 120 $4(19)$
C_{10}	C9	C_{11}	010 N9	1.7(4) 110.0(c)	C_{10}	C9	C_{11}	C^{12}	130.4(12)
C10	C9	C_{11}	N5 C10	119.9(0)	C10	C9 C0	C_{11}	C0	$^{-1}.7(0)$ 190 $7(11)$
C10	09		UIU No	0.0(4)	C10	09		C_{0}	120.7(11) E 1(1C)
	C9	C10	NZ O11	-76.4(12)		010	C10		5.1(16)
UII No	C9	C10		0.0(7)	INZ NO	C10		N3 CO	32.3(9)
INZ No	C10		000	-64.0(9)	NZ Co	C10		U9 N9	120.3(9)
NZ	C10 C10	CII	CIZ	2.2(15)		C10	CII	N3 Co	117.0(14)
	C10 C10	CII	0.00	0.0(9)		C10	CII	U9	-175.2(16)
	C10 C10	CII	CIZ	66.7(18)	C9	C10	CII	N3 Co	-67.7(9)
C9	CIU	CII	C8	175.2(15)	C9	C10	CII	C9	0.0(6)
C9	CIU	CII	CI2	-118.0(15)	N3	CII	CI2	N3	0.00(18)
N3	CII	CIZ	CI3	-77.4(8)	N3	CII	CIZ	C14	-35.2(13)
N3	CII	CI2	C15	-99.9(6)		CII	CI2	N3	97.0(9)
C8	CII	CI2	C13	19.6(14)		CII	CI2	C14	61.8(18)
C8	CII	CI2	C15	-2.9(12)	C9	CII	CI2	N3	-11.6(12)
C9	CII	CI2	C13	-89.0(16)	C9	CII	CI2	C14	-47(2)
C9	CII	C12	C15	-111.5(14)	C10	CII	C12	N3	72.8(12)
C10	CII	C12	CI3	-4.6(17)	C10	CII	C12	C14	38(2)
C10	CII	C12	C15	-2'/.1(14)	N3	C12	C13	N4	-51.9(8)
N3	C12	C13	C14	67.0(10)	N3	C12	C13	C15	-104.5(8)
N3	C12	C14	N3	-0.00(13)	N3	C12	C14	C13	-118.8(15)
N3	C12	C14	C15	-114.3(7)	N3	C12	C15	N4	-0.2(11)
N3	C12	C15	C13	85.5(10)	N3	C12	C15	C14	80.5(8)
N3	C12	C15	C18	-58.1(9)	C11	C12	C13	N4	0.6(12)
C11	C12	C13	C14	119.5(14)	C11	C12	C13	C15	-52.0(12)
C11	C12	C14	N3	26.5(14)	C11	C12	C14	C13	-92(2)
Cll	C12	C14	C15	-87.8(18)	C11	C12	C15	N4	55.3(11)
Cll	C12	C15	C13	141.1(9)	C11	C12	C15	C14	136.0(10)
Cll	C12	C15	C18	-2.6(10)	C13	C12	C14	N3	118.8(17)
C13	C12	C14	C13	0.0(7)	C13	C12	C14	C15	4.5(12)
C14	C12	C13	N4	-119(2)	C14	C12	C13	C14	-0.0(17)
C14	C12	C13	C15	-172(2)	C13	C12	C15	N4	-85.7(13)
C13	C12	C15	C13	0.0(8)	C13	C12	C15	C14	-5.0(10)

C13	C12	C15	C18	-143.6(15)	C15	C12	C13	N4	52.6(10)
C15	C12	C13	C14	171.5(17)	C15	C12	C13	C15	0.0(9)
C14	C12	C15	N4	-80.7(14)	C14	C12	C15	C13	5.0(12)
C14	C12	C15	C14	-0.0(10)	C14	C12	C15	C18	-138.6(14)
C15	C12	C14	N3	114.3(8)	C15	C12	C14	C13	-4.5(11)
C15	C12	C14	C15	-0.0(5)	N4	C13	C14	N3	-4(2)
N4	$\tilde{C}13$	Č14	$\tilde{C}12$	72(2)	N4	Č13	Č14	C15	$6\overline{2}4(10)$
N4	Č13	$\tilde{C15}$	N4	-0.00(17)	N4	$\tilde{C}13$	$\tilde{C}15$	$\tilde{C}12$	-1129(7)
N4	C13	C15	C14	-1091(12)	N4	C13	$\tilde{C}15$	C18	-25.8(17)
C12	C13	C14	N3	-764(19)	C12	C13	C14	C12	-0.0(8)
C12	C13	C14	C15	-10(3)	C12	C13	C15	N/	1129(8)
C12	C13	C15	C10	0.0(3)	C12	C13	C15	C14	38(8)
C12	C13	C15	C12	87(2)	C12	C13	C15	N4	100 1(14)
C14	C_{12}	C15	C10	-38(10)	C14	C13	C15	C14	-0.0(8)
C14	C_{12}	C15	C12	2.0(10)	C14	C_{12}	C10	014 N9	-67(9)
C14	C_{12}	C10	C_{10}	00(0) 10(9)	C15	C_{12}	C14	NO C15	-0.0(10)
U10 N9	C13	014	\mathbf{U}_{1}	10(3)	010 N9	C13	C14	C10	-0.0(10)
NO NO	C14		IN4 019	30.2(11) 190.9(14)	IND ND	C14		C12	-30.0(9)
N3 (11)	014		013 N4	129.2(14) 100.0(19)	N3 (19	014		010	-4.8(10)
C12	C14		N4 010	108.8(13)	C12	014		C12	0.0(6)
CIZ	C14	C15	C13	-172.2(18)	C12	C14	C15	C18	53.8(17)
C13	C14	C15	N4	-79.0(17)	C13	C14	C15	C12	$\Gamma(2(2))$
C13	C14	C15	C13	-0.0(12)	C13	C14	C15	C18	-134(2)
N4	C15	C18	N4	0.0(2)	N4	C15	C18	C16	11.2(11)
N4	C15	C18	C17	-93.7(9)	N4	C15	C18	C19	-67.1(10)
C12	C15	C18	N4	102.0(9)	C12	C15	C18	C16	113.3(12)
C12	C15	C18	C17	8.4(13)	C12	C15	C18	C19	34.9(14)
C13	C15	C18	N4	33(2)	C13	C15	C18	C16	44(3)
C13	C15	C18	C17	-61(3)	C13	C15	C18	C19	-34(3)
C14	C15	C18	N4	80.1(12)	C14	C15	C18	C16	91.4(16)
C14	C15	C18	C17	-13.5(17)	C14	C15	C18	C19	13.0(19)
N4	C16	C17	N2	51.4(9)	N4	C16	C17	C18	-52.1(6)
N4	C16	C17	C19	114.5(14)	N4	C16	C18	N4	0.00(15)
N4	C16	C18	C15	-8.3(9)	N4	C16	C18	C17	121.8(5)
N4	C16	C18	C19	117.5(7)	N4	C16	C19	N2	14.6(14)
N4	C16	C19	C17	-72.7(16)	N4	C16	C19	C18	-59.7(7)
C17	C16	C18	N4	-121.8(6)	C17	C16	C18	C15	-130.0(12)
C17	C16	C18	C17	0.0(4)	C17	C16	C18	C19	-4.2(6)
C18	C16	C17	N2	103.5(10)	C18	C16	C17	C18	-0.0(6)
C18	C16	C17	C19	166.6(18)	C18	C16	C19	N2	74.3(13)
C18	C16	C19	C17	-13.0(18)	C18	C16	C19	C18	0.0(6)
C19	C16	C18	N4	-117.5(8)	C19	C16	C18	C15	-125.8(12)
C19	C16	C18	C17	4.2(6)	C19	C16	C18	C19	0.0(4)
N2	C17	C18	N4	-15.0(11)	N2	C17	C18	C15	42.1(12)
N2	$\tilde{C}17$	Č18	C16	-90.5(8)	N2	$\tilde{C}17$	Č18	C19	-80.9(11)
N2	$\tilde{C17}$	Č19	N2	-0.00(12)	N2	$\tilde{C}17$	Č19	Č16	123.3(11)
N2	$\tilde{C}17$	C19	C18	1159(5)	C16	$\tilde{C}17$	C18	N4	75.6(10)
C16	C17	C18	C15	1327(13)	C16	C17	C18	C16	-0.0(7)
C16	C17	C18	C19	9 6(13)	C16	C17	C19	N2	-1233(13)
C16	C17	C19	C16	-0.0(10)	C16	C17	C19	$\overline{C18}$	-75(12)
C18	C17	C19	N2	-115.9(6)	C18	C17	C10	C16	7.5(11)
C18	C17	C19	C18	0.0(3)	C19	C17	C10	N4	66.0(16)
C19	C17	C10	C15	1231(15)	C19	C17	C18	C16	-9.6(14)
C19	C17	C18	C10	-0.0(10)	N/	C18	C19	N9	-548(8)
N/	C18	C10	C16	69 6(7)	N/	C18	C_{10}	C17	-199 1(10)
C15	C^{10}	C10	N9	-8 8(1/1)		C18	C_{10}	C_{16}	115 G(12)
C15	C18	C_{10}	C17	-761(15)	C16	C18	C_{10}	N9	-191 4(19)
C_{16}	C10	C_{10}	C16	0.0(0)	C_{1c}	C_{10}	C_{10}	C17	168 2(16)
C10	C_{10}	C10	N9	67.3(14)	C10	C_{10}	C10	C1c	-168 2(17)
C17	C_{19}	C_{10}	C17	-0.0(14)	017	010	019	010	100.0(17)
$\mathbf{O}\mathbf{I}\mathbf{I}$	$\mathbf{U}\mathbf{I}0$	$\cup 1 \Im$	$\cup 1$	0.0(11)					