Supporting Information to

SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH₄.

Mikhail Gavrilov¹, Timothy J. Zerk², Paul V. Bernhardt², Virgil Percec³ and Michael J.

 $Monteiro^{l,*}$

^{1.} Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia.

². School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia.

³. Roy ans Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 190104-6323.

* To whom correspondence should be addressed. m.monteiro@uq.edu.au

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

Figure S2. ¹³C NMR of **11** at 298K (500 MHz), recorded in CDCl₃.

Figure S3. Aqueous SET-LRP of NIPAM catalyzed by the *in situ* generation of Cu(0) from NaBH₄ by varying [NIPAM]₀/[I]₀ from (a) 20/1 •, (b) 30/1 •, (c) 40/1 •, (d) 50/1 •. (A) M_n determined from SEC using RI and polystyrene standards (dashed lines represent theoretical M_n values). (B) M_n calculated using the Mark-Houwink equation from correlation between SEC and MALDI M_n's, and (C) M_w/M_n values after re-calculation using the Mark-Houwink equation . Reaction conditions: [I]₀/[Me₆TREN]₀/[Cu(II)Br₂]₀/[NaBH₄]₀ = 1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Figure S4. Aqueous SET-LRP of NIPAM catalyzed by the *in situ* generation of Cu(0) from NaBH₄ at [NIPAM]₀/[I]₀ = 30 and varying [CuBr₂]₀/[NaBH₄]₀ from (a) 0.8/0.2 •, (b) 0.8/0.4 •, (c) 0.8/0.6 •, (d) 0.8/0.8 •. (A) M_n determined from SEC using RI and polystyrene standards (dashed lines represent theoretical M_n values), (B) M_n calculated using the Mark-Houwink equation and (C) M_w/M_n values from SEC using the Mark-Houwink equation. Reaction conditions: [NIPAM]₀/[I]₀/[Me₆TREN]₀/[Cu(II)Br₂]₀ = 30/1/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

 $[NIPAM]_{o}/[I]_{o}/[Me_{6}TREN]_{o}/[Cu(II)Br_{2}]_{o}/[NaBH_{4}]_{o} = 20/1/0.8/0.8/0.2$

Figure S5. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 20/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

[NIPAM]_o/[I]_o/[Me₆TREN]_o/[Cu(II)Br₂]_o/[NaBH₄]_o = 30/1/0.8/0.8/0.2

Figure S6. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_{o}/[I]_{o}/[Me_{6}TREN]_{o}/[Cu(II)Br_{2}]_{o}/[NaBH_{4}]_{o} = 30/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

 $[NIPAM]_{o}/[I]_{o}/[Me_{6}TREN]_{o}/[Cu(II)Br_{2}]_{o}/[NaBH_{4}]_{o} = 40/1/0.8/0.8/0.2$

Figure S7. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_{o}/[I]_{o}/[Me_{6}TREN]_{o}/[Cu(II)Br_{2}]_{o}/[NaBH_{4}]_{o} = 40/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

Figure S8. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_{o}/[I]_{o}/[Me_{6}TREN]_{o}/[Cu(II)Br_{2}]_{o}/[NaBH_{4}]_{o} = 50/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

Figure S9. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_0/[I]_0/[Me_6TREN]_0/[Cu(II)Br_2]_0/[NaBH_4]_0 = 30/1/0.8/0.8/0.4$. [I]=0.0267 M in 3.48 mL of water.

Figure S10. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.6$. [I]=0.0267 M in 3.48 mL of water.

Figure S11. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.8$. [I]=0.0267 M in 3.48 mL of water.

Figure S12. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 20/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

Figure S13. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

Figure S14. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 40/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

Figure S15. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 50/1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.

[NIPAM]_o/[I]_o/[Me₆TREN]_o/[Cu(II)Br₂]_o/[NaBH₄]_o = 30/1/0.8/0.8/0.4

Figure S16. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.4$. [I]=0.0267 M in 3.48 mL of water.

[NIPAM]_o/[I]_o/[Me₆TREN]_o/[Cu(II)Br₂]_o/[NaBH₄]_o = 30/1/0.8/0.8/0.6

Figure S17. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.6$. [I]=0.0267 M in 3.48 mL of water.

[NIPAM]_o/[I]_o/[Me₆TREN]_o/[Cu(II)Br₂]_o/[NaBH₄]_o = 30/1/0.8/0.8/0.8

Figure S18. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: $[NIPAM]_o/[I]_o/[Me_6TREN]_o/[Cu(II)Br_2]_o/[NaBH_4]_o = 30/1/0.8/0.8/0.8$. [I]=0.0267 M in 3.48 mL of water.

Figure S19. Aqueous SET-LRP of NIPAM catalyzed by the *in situ* generation of Cu(0) from NaBH₄ at [NIPAM]_o/[I]_o = 30 in the absence and presence of inhibitor MEHQ added to the polymerization mixture after sampling, and varying $[CuBr_2]_o/[NaBH_4]_o$ from (a) 0.8/0.6 • without MEHQ, (b) 0.8/0.6 • with MEHQ, (c) 0.8/0.4 • without MEHQ, (d) 0.8/0.4 *. Reaction conditions: [NIPAM]_o/[I]_o/[Me₆TREN]_o/[Cu(II)Br₂]_o = 30/1/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

Figure S20. SEC chromatograms from aqueous SET-LRP of NIPAM catalyzed by the *in situ* generation of Cu(0) from NaBH₄ by varying [NIPAM]₀/[I]₀ from (A) 20/1 , (B) 30/1 , and (C) 40/1. Reaction conditions: [I]₀/[Me₆TREN]₀/[Cu(II)Br₂]₀/[NaBH₄]₀ = 1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water. These SEC chromatograms are based on a polystyrene calibration curve and have not been adjusted using the Mark-Houwink parameters.

Figure S21. UV-vis spectra (measured in the 500-900 nm range) at the end of the aqueous SET-LRP of NIPAM polymerization before and after opening and bubbling with air for 1 min. (A) $[M]_0/[I]_0/[Me_6TREN]_0/[Cu(II)Br_2]_0/[NaBH_4]_0 = 30/1/0.8/0.8/0.4$, and (B) $[M]_0/[I]_0/[Me_6TREN]_0/[Cu(II)Br_2]_0/[NaBH_4]_0 = 30/1/0.8/0.8/0.8$. Reaction conditions: $[I]_0/[Me_6TREN]_0/[Cu(II)Br_2]_0/[NaBH_4]_0 = 1/0.8/0.8/0.2$. [I]=0.0267 M in 3.48 mL of water.