ROYAL SOCIETY OF CHEMISTRY

Journal Name

ARTICLE

Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol-water mixtures Supplementary Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Olivier Bertranda, Alexandru Vladb, Richard Hoogenboomc, Jean-François Gohya*

www.rsc.org/

Result and discussion

Polymer synthesis

 Table S1: Conditions and results for the polymerisation of TMPM by zero-valent metal mediated RDRP.

exp ^a	BnBiB/ TMPM (eq.)	t (h)	conv ^b (%)	<i>M</i> n⁵ (g/mol)	Т
P1	1/51	17	>99.9	16,820	1.12
P2	1/100	22	>99.9	31,550	1.12
Р3	1/150	22	99.5	48,720	1.12

a reaction conditions: BnBiB/CuBr₂/PMDETA = 1/0.05/0.12; Cu(0) wire = 5cm; IPA = 60wt%; T = 40°C.

c determined by SEC with PMMA standards

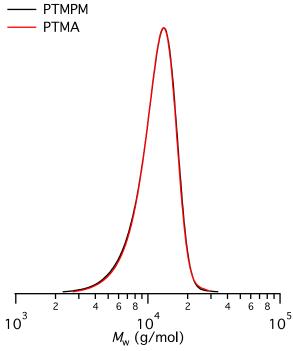


Figure S1: Overlay of the SEC chromatograms of PTMPM₆₉ (black curve) and PTMA₆₉ (red curve)

 $^{^{\}mbox{\scriptsize b}}$ determined by $^{\mbox{\scriptsize l}} H$ NMR spectroscopy in CDCl3 of the PTMPM

ARTICLE Journal Name

Thermo-responsive properties of PTMA in alcohol/water mixtures

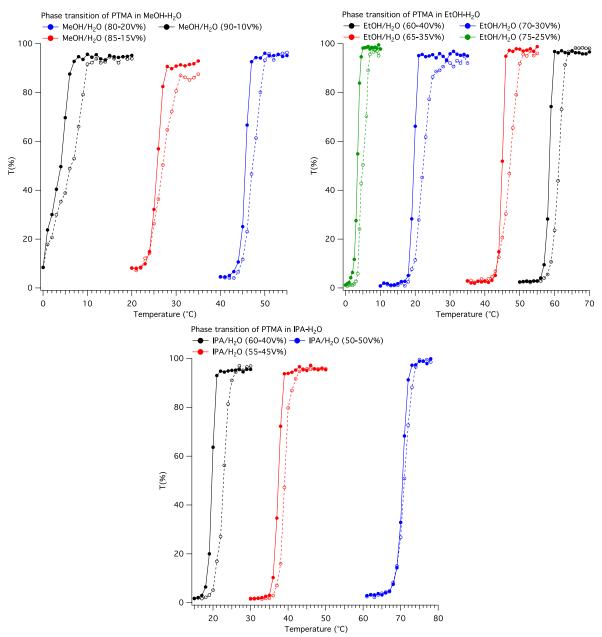


Figure S2: Effect of the alcohol nature and water content on the phase transition of PTMA: (a) methanol, (b) ethanol and (c) isopropanol.

Journal Name ARTICLE

Table S2: Effect of the alcohol nature on the Tcp and Tcph of PTMA in alcohol water mixture ($C_{P1} = 5g/L$).

Solvent	water	Tcph	Тср
	(vol%)	(°C)	(°C)
MeOH	10	7	4
MeOH	15	27	25.4
MeOH	20	47.1	45.6
EtOH	25	4.4	2.8
EtOH	30	21	19
EtOH	35	47.2	45
EtOH	40	61.2	58.1
IPA	40	22.6	19.6
IPA	45	39	36.5
IPA	50	71	70.5

Table S3: Effect of the concentration on the Tcp and Tcph of PTMA in ethanol-water mixture (P1 in 70-30 vol.-%).

C_{P_1}	Tcph	Тср
(g/L)	(°C)	(°C)
1	7.4	2.6
2.5	13.8	11.8
5	21.3	19
7.5	26.4	24.2
10	27	25.4
15	31.8	27.6
20	35.9	32.7
25	38.8	33.6
50	42.6	40.5
75	60.6	58.6

Table S4: Effect of the PTMA chain length on the Tcp and Tcph of PTMA in ethanol-water mixture (C = 5g/L in 70-30 vol.-%).

Sample	DP	Tcph	Ten
Sample	Dr	(°C)	Tcp (°C)
P1	69	22.4	19.5
P2	139	55.9	51.6
Р3	215	65.4	64.2

ARTICLE Journal Name

Equation 1 presents the evolution of the critical temperature (Tcp) as a function of the polymer chain length (DP), ϑ is the theta temperature, and ψ accounts for the sign of the temperature dependence of the Flory-Huggins parameter χ :

$$\frac{1}{T_{cp}} = \frac{1}{\theta} + \frac{1}{\theta \psi} \left(\frac{1}{2DP} + \frac{1}{\sqrt{DP}} \right)$$
 (equ1)

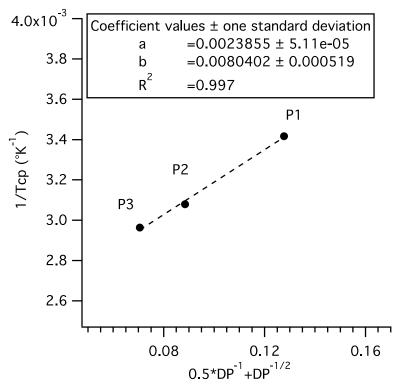


Figure S3: Plot of inverse cloud points according to Flory-Huggins theory (eq 1) using the number-average degree of polymerization DP.

Journal Name ARTICLE

Redox tuning of the UCST

Table S5: Effect of the chemical oxid:	ation of the PTMA in ethanol-water mixtu	re $(C_{P1} = 5g/L; 60-40 \text{ vol}\%; T = 70^{\circ}C)$.

TEMPO/NaCIO	t	Tcph	Тср
(eq.)	(d)	(°C)	(°C)
1/0	0	61.2	58.1
1/2	0	60.6	59.7
1/2	1	56	53.1
1/2	2	45.7	44.2
1/2	7	44.2	41.7

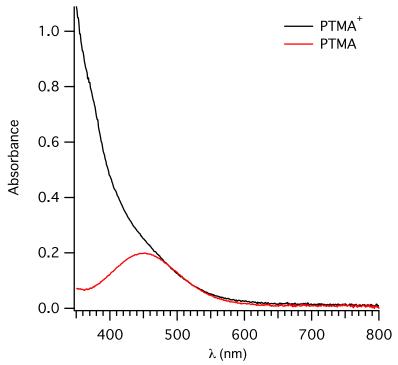


Figure S4: overlay of the UV-Vis spectra of a solution of PTMA (red curve) and oxidised PTMA (black curve) in ethanol-water mixture at 70°C (CPTMA = 5g/L; in 60-40 vol.-%).

ARTICLE Journal Name

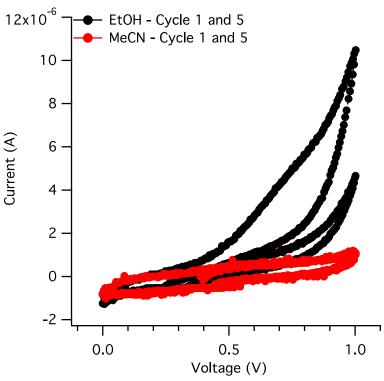


Figure S5: Cyclic voltammetry of a solution of LiClO₄ in acetonitrile (red curve) and ethanol (black curve) at 50 mV s⁻¹ (cycles 1 and 5; 0.1M LiClO₄).

Table S6: Effect of the electrochemical oxidation of the PTMA in ethanol-water mixture (C_{P1} = 5g/L; 0.01M of LiClO₄ in 60-40 vol.-%).

Nature of the PTMA	Cycle	Applied voltage	t	Tcph	Тср
		(V)	(h)	(°C)	(°C)
PTMA		0	0	58.5	55.4
PTMA ⁺	Oxidation C1	0.8	5	27.4	25.2
PTMA	Reduction C1	0.1	5	45.3	44.1
PTMA+	Oxidation C2	0.8	4	29.1	27
PTMA	Reduction C2	0.1	5	45.1	43.3