Supporting Information for

One-pot preparation of BAB triblock copolymer nano-objects through bifunctional

macromolecular RAFT agent mediated dispersion polymerization

Yaqing Qu,^a Shuang Wang,^a Habib Khan,^a Chengqiang Gao,^a Heng Zhou^a and Wangqing Zhang^{*a,b}

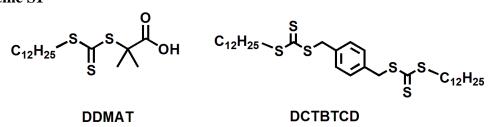
^aKey Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

*To whom correspondence should be addressed. E-mail: wqzhang@nankai.edu.cn, Tel: 86-22-23509794, Fax: 86-22-23503510.

1. TEM sampling of the stained PS₂₇₃-*b*-P4VP₄₈-*b*-PS₂₇₃ triblock copolymer nano-objects

Preparation of the CH₃I-stained PS₂₇₃-b-P4VP₄₈-b-PS₂₇₃ nano-objects. Into a flask, the methanol dispersion of PS₂₇₃-b-P4VP₄₈-b-PS₂₇₃ triblock copolymer nano-objects (1.00 g, 0.2 wt%) and the methanol solution of CH₃I (1.43 g, 0.03 wt%) were added, in which the molar ratio of the pyridine ligand in PS₂₇₃-b-P4VP₄₈-b-PS₂₇₃ to CH₃I was set at 1:2. This mixture was kept at room temperature with stirring for 3 days, and then the stained PS₂₇₃-b-P4VP₄₈-b-PS₂₇₃ triblock copolymer nano-objects were checked by TEM.

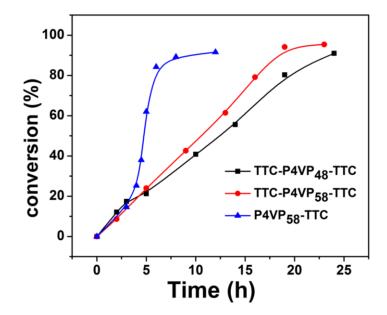

Preparation of the HCl-acidified PS₂₇₃-*b*-P4VP₄₈-*b*-PS₂₇₃ **nano-objects.** Into HCl aqueous solution (1.00 g, pH = 1), the methanol dispersion of PS_{273} -*b*-P4VP₄₈-*b*-PS₂₇₃ triblock copolymer nano-objects (0.02 mL, 5.30 wt%) was added. This mixture was kept at room temperature with stirring for 3 days, and then the acidified PS_{273} -*b*-P4VP₄₈-*b*-PS₂₇₃ triblock copolymer nano-objects were checked by TEM.

2. Table S1

polymer	<i>M</i> _n (kg/mol)			\mathbf{D}^{d}	D e
	$M_{ m n,th}{}^a$	$M_{n,GPC1}^{b}$	$M_{n,GPC2}^{c}$	${{ar D}_{I}}^{d}$	${\mathcal D_2}^e$
TTC-P4VP ₄₈ -TTC	5.7	7.1	18.5	1.31	1.29
PS ₅₂ - <i>b</i> -P4VP ₄₈ - <i>b</i> -PS ₅₂	16.6	9.0	24.8	1.34	1.31
PS ₂₇₃ - <i>b</i> -P4VP ₄₈ - <i>b</i> -PS ₂₇₃	62.6	52.8	67.8	1.36	1.35

^{*a*} The theoretical molecular weight determined by monomer conversion according to eqn 1. ^{*b*} The molecular weight determined by GPC analysis using PMMA as calibration standard. ^{*c*} The molecular weight determined by GPC analysis using PS as calibration standard. ^{*d*} The \mathcal{D} (M_w/M_n) values determined by GPC analysis using PMMA as calibration standard. ^{*e*} The \mathcal{D} (M_w/M_n) values determined by GPC analysis using PMMA as calibration standard.

3. Scheme S1



Scheme S1. The chemical structures of the monofunctional RAFT agent of DDMAT and the bifunctional RAFT agent of DCTBTCD.

4 Equation

$$M_{n,NMR} = \frac{(I_{7.22 \sim 6.26} - I_{8.30}) \times 2}{I_{8.30} \times 5} \times DP_{4VP} \times M_{n,St} + M_{n,TTC-P4VP-TTC}$$
(S1)

5. Figures

Fig S1. The monomer conversion-time plot for the dispersion RAFT polymerization of styrene in the presence of TTC-P4VP₄₈-TTC, TTC-P4VP₅₈-TTC and P4VP₅₈-TTC respectively. Polymerization conditions for the P4VP₅₈-TTC macro-RAFT agent mediated dispersion polymerization: $[St]_0:[P4VP_{58}-TTC]_0:[AIBN]_0 = 600:1:/1/6, 70$ °C, the fed St monomer concentration being at 28 wt%. The polymerization conditions for the TTC-P4VP₄₈-TTC or TTC-P4VP₅₈-TTC bifunctional macro-RAFT agent mediated dispersion polymerization can be found in Figure 3.

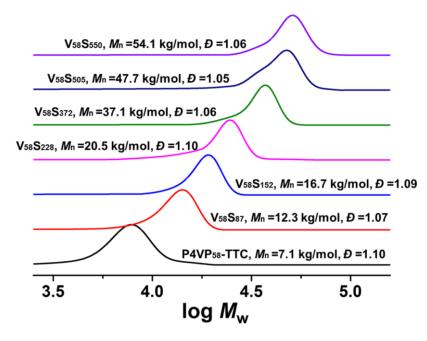
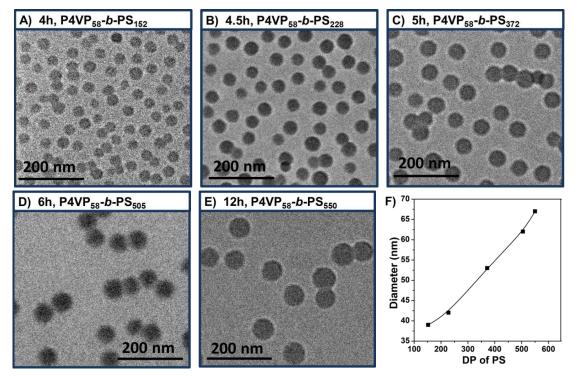
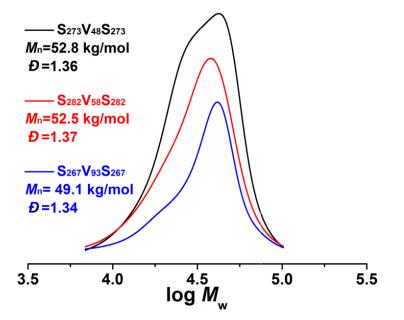




Fig S2. The GPC traces of the P4VP-*b*-PS diblock copolymers prepared through the monofunctional P4VP₅₈-TTC macro-RAFT agent mediated dispersion polymerization

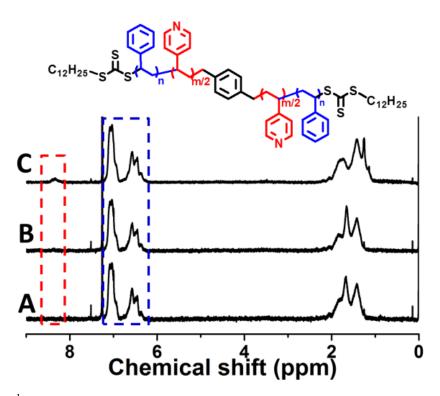

(P4VP-*b*-PS is briefly called VS, in which S represents the PS block and V represents the P4VP block).

Fig S3. TEM images and the average size of the P4VP-*b*-PS diblock copolymers prepared through the monofunctional P4VP₅₈-TTC macro-RAFT agent mediated dispersion polymerization.

Fig S4. The GPC traces of the PS-*b*-P4VP-*b*-PS triblock copolymers of $S_{273}V_{48}S_{273}$, $S_{282}V_{58}S_{282}$, $S_{267}V_{93}S_{267}$ (PS-*b*-P4VP-*b*-PS is briefly called SVS, in which S represents the PS block and V represents the P4VP block).

Fig S5. The ¹H NMR spectra of the triblock copolymers of PS_{273} -*b*-P4VP₄₈-*b*-PS₂₇₃ (A), PS_{282} -*b*-P4VP₅₈-*b*-PS₂₈₂ (B), PS_{267} -*b*-P4VP₉₃-*b*-PS₂₆₇ (C).

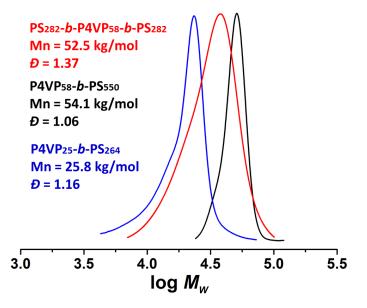


Fig S6. The GPC traces of PS₂₈₂-*b*-P4VP₅₈-*b*-PS₂₈₂, P4VP₅₈-*b*-PS₅₅₀ and P4VP₂₅-*b*-PS₂₆₄.

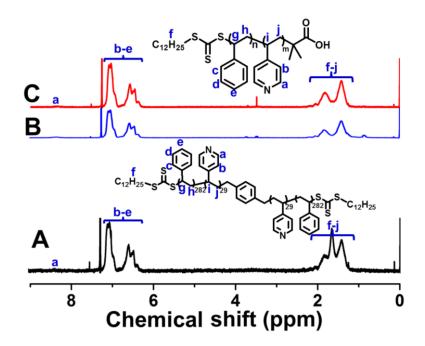


Fig S7. The ¹H NMR spectra of PS_{282} -*b*-P4VP₅₈-*b*-PS₂₈₂ (A), P4VP₂₅-*b*-PS₂₆₄ (B) and P4VP₅₈-*b*-PS₅₅₀ (C).