Supporting information

Controllable Supramolecular Polymerization through Self-

Sorting of Aliphatic and Aromatic Motifs

Linghui Chen, Zehuan Huang, Jiang-Fei Xu, Zhiqiang Wang and Xi Zhang^{*} Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua. Email: xi@mail.tsinghua.edu.cn

1. Characterization of molecular weight of supramolecular polymers by AUC

Fig. S1 Fitting curve of the concentration-dependent density data of supramolecular polymers.

As shown in Fig. S1, the partial specific volume was calculated to be 0.605 mg⁻¹mL, and the equation was y = 1.10618 x + 0.00033118 studied by an Anton Paar DMA 5000 densimeter.

2. Characterization of the difference of absorbance after adding CB[7] to Np-C₆-Np-CB[8] by UV-vis spectra.

3. ITC studies of self-sorting system.

(1) Host-guest interaction between Np and cucurbiturils

Fig. S3 Fitting the ITC data for titration experiments of a) NpTA (1.0 mM) into CB[7] (0.1 mM) with a one-sites binding model and b) NpTA (1.0 mM) into CB[8] (0.05 mM) with a sequential binding model.

As shown in Fig. S3, the binding constant of Np and CB[7] was $7.80 \times 10^5 \text{ M}^{-1}$, and the two step binding constant of Np and CB[8] was $K_{a1} = 5.53 \times 10^5 \text{ M}^{-1}$ and $K_{a2} = 2.90 \times 10^5 \text{ M}^{-1}$.

(2) Host-guest interaction between C_4 and CB[7]

Fig. S4 Fitting the ITC data for titration experiments of a) C_4DA (1.0 mM) into CB[7] (0.1 mM) with a one-sites binding model.

As shown in Fig. S4, the binding constant of C_4 and CB[7] was 7.71×10^5 M⁻¹, and the binding of C_4 and CB[8] could not be detected.

(3) Host-guest interaction between C₆ and cucurbiturils

Fig. S5 Fitting the ITC data for titration experiments of a) C_6DA (1.0 mM) into CB[8] (0.1 mM) with a one-sites binding model and b) CB[7] (3.0 mM) into C_6DA -CB[8] (0.3 mM) with a competitive binding model.

As shown in Fig. S5, the binding constant of C₆ and CB[7] was 1.19×10^9 M⁻¹, and the binding constant of C₆ and CB[8] was 7.10×10^6 M⁻¹.

(4) Host-guest interaction between C₈ and cucurbiturils

Fig. S6 Fitting the ITC data for titration experiments of a) C_8DA (1.0 mM) into CB[8] (0.1 mM) with a one-sites binding model and b) CB[7] (3.0 mM) into C_8DA -CB[8] (0.3 mM) with a competitive binding model.

As shown in Fig. S6, the binding constant of C_8 and CB[7] was 2.16×10^9 M⁻¹, and the binding constant of C_8 and CB[8] was 7.79×10^6 M⁻¹.

(5) Host-guest interaction between C_{10} and cucurbiturils

Fig. S7 Fitting the ITC data for titration experiments of a) $C_{10}DA$ (1.0 mM) into CB[8] (0.1 mM) with a one-sites binding model and b) CB[7] (3.0 mM) into $C_{10}DA$ -CB[8] (0.3 mM) with a competitive binding model.

As shown in Fig. S7, the binding constant of C_{10} and CB[7] was 2.27×10^8 M⁻¹, and the binding constant of C_{10} and CB[8] was 9.34×10^6 M⁻¹.