

ARTICLE

Supporting information

Well-defined block copolymer synthesis via living cationic

polymerization and nitroxide-mediated polymerization using

carboxylic acid-based alkoxyamines

Dao Le, Trang N. T. Phan^{*}, Laurent Autissier, Laurence Charles, Didier Gigmes

Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire UMR7273, 13397, Marseille, France

Structure	Elemental composition, $[A2+H]^+$	$m/z_{ m th}$	$m/z_{\rm exp}$	Error (ppm)
К-О К-О А2	C ₁₈ H ₂₈ NO ₃ +	306.2064	306.2068 306.2068 306.2069	+ 1.3 + 1.3 + 1.6

Figure S1. ¹H NMR spectrum in CDCl₃ of alkoxyamine A2.

Figure S2. ^{13C} NMR spectrum in CDCl₃ of alkoxyamine A2.

Structure	Elemental composition, [A3+H] ⁺	$m/z_{ m th}$	m/z_{exp}	Error (ppm)
	$C_{13}H_{26}NO_{3}^{+}$	244.1907	244.1907 244.1908 244.1908	0 + 0.4 + 0.4

Table	e S2.	Accurate	mass	measure	ments	of [A3+	-H]+.

Figure S3. ¹H NMR spectrum in CDCl₃ of alkoxyamine A3.

Figure S4. ¹³C NMR spectrum in CDCl₃ of alkoxyamine A3.

Figure S5. ESI-MS/MS spectrum of the PIBVE₄-TEMPO macroalkoxyamine at m/z 650.6, showing that the precursor ion eliminates the TEMPO radical (156.1 Da) prior to lose a 2-methyl-propanoic acid radical (87.0 Da), hence allowing the structure of the precursor ω end-group to be unambiguously characterized.

ARTICLE

Figure S6. a) ESI-MS/MS spectrum of the m/z 793.7 precursor ion, allowing this species to be assigned to a non-covalent complex between PIBVE₂-TEMPO and PIBVE₁-TEMPO macroalkoxyamines. Lowest abundance fragments in this spectrum also suggested the presence of a second non-covalent complex with the same mass, which would be composed of PIBVE₃-TEMPO and A3, as detailed in the dissociation scheme shown in b).

Figure S7. ESI-MS/MS spectrum of the m/z 539.5 precursor ion, proposed to be a PIBVE 5-mer holding OCH₃ as the ω end-group, as evidenced by the loss a 32 Da neutral from the precursor ion. As the m/z 539.5 is a lithiated molecule, mass calculation indicates that the α end-group should be H. Additional fragments in the MS/MS spectrum could be explained by successive dissociation reactions occurring in the pendant groups (as described by the dissociation scheme in the inset) and consisting of the elimination of i) a 74 Da neutral, assigned to (CH₃)₂CH-CH₂-OH, ii) a 72 Da neutral, assigned to (CH₃)₂CHCH=O, and iii) a 56 Da neutral, assigned to CH₂=CH-CH₃.

Figure S8. ESI-MS/MS spectrum of the m/z 581.5 precursor ion, proposed to be a PIBVE 5-mer holding OCH₂–C(CH₃)₂ as the ω end-group. This MS/MS spectrum does not show any specific reactions but the successive releases, from the pendant groups, of i) (CH₃)₂CH-CH₂-OH (74 Da), ii) (CH₃)₂CHCH=O (72 Da), and iii) CH₂=CH-CH₃ (56 Da) previously described in Figure S7.

Journal Name

Figure S9. Side reactions with formation of iso-butanol producing by the presence of water during the polymerization of IBVE and the formation of PIBVE with ω -end –OiBu specie.

Figure S10. Evolution of SEC traces of PIBVE with time for the CLP of IBVE using A3 as dual initiator.