Supporting information

Enhancing photovoltaic properties of low bandgap terpolymers based on benzodithiophene and phenanthrophenazine by introducing different second acceptor units

Qunping Fan ^a, Xiaopeng Xu ^b, Yu Liu ^{a,*}, Wenyan Su ^a, Xunming He ^a,

Youming Zhang ^a, Hua Tan ^a, Yafei Wang ^a, Qiang Peng ^{b,*}, Weiguo Zhu ^{a,*}

^a College of Chemistry, Xiangtan University, Key Lab of Environment-Friendly

Chemistry and Application in Ministry of Education, Xiangtan 411105, China

^b Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

Corresponding author: Prof. Yu Liu; Qiang Peng; Weiguo Zhu

Tel: +86-731-58293377 Fax: +86-731-58292251

zhuwg18@126.com

1. Photovoltaic properties of terpolymer based PSCs at different conditions

Fig. S1a *J-V* curves of the PBDTT-PPzIID/PC₇₁BM-based PSCs at different blend ratios (w/w) under illumination of AM 1.5G, 100 mW/cm².

Table S1a Photovoltaic properties of the PBDTT-PPzIID/PC_{71}BM-based PSCs at

D/A Ratio	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} /%
1/1	2.67	0.76	26.3	0.54
1/2	4.05	0.75	39.4	1.19
1/3	4.19	0.76	45.5	1.45
1/4	3.91	0.76	43.9	1.31

different blend ratios (w/w) under illumination of AM 1.5G, 100 mW/cm².

Fig. S1b *J-V* curves of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at different blend ratios (*w/w*) under illumination of AM 1.5G, 100 mW/cm².

Table S1b Photovoltaic properties of the PBDTT-PPzDPP/PC71BM-based PSCs at

D/A Ratio	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} /%
1/1	3.49	0.69	35.8	0.86
1/2	4.34	0.72	48.7	1.51
1/3	3.96	0.69	49.3	1.34

different blend ratios (w/w) under illumination of AM 1.5G, 100 mW/cm².

Fig. S2a *J-V* curves of the PBDTT-PPzIID/PC₇₁BM-based PSCs at different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

Table S2a Photovoltaic properties of the PBDTT-PPzIID/PC₇₁BM-based PSCs at different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

DIO additive concentrations	$J_{\rm sc}/~{ m mA~cm^{-2}}$	V _{oc} / V	FF/ %	PCE _{max} /%
1%	4.75	0.76	51.1	1.85
2%	6.27	0.76	52.2	2.49
3%	7.14	0.76	48.9	2.66

Fig. S2b *J-V* curves of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

Table S2b Photovoltaic properties of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at different DIO additive concentrations under illumination of AM 1.5G, 100 mW/cm².

DIO additive concentrations	$J_{\rm sc}/~{\rm mA~cm^{-2}}$	$V_{ m oc}/~{ m V}$	FF/ %	PCE _{max} /%
1%	4.55	0.70	51.1	1.76
2%	5.58	0.70	59.4	2.32
3%	6.93	0.70	58.7	2.85

Fig. S3a *J-V* curves of the PBDTT-PPzIID/PC₇₁BM-based PSCs at different spin-

coating rates under illumination of AM 1.5G, 100 mW/cm².

Table S3a Photovoltaic properties of the PBDTT-PPzIID/PC71BM-based PSCs at

spin-coating rates/ rpm	film thickness/ nm	$J_{\rm sc}/~{ m mA~cm^{-2}}$	$V_{\rm oc}/{ m V}$	FF/ %	PCE _{max} /%
1750	103	7.79	0.75	51.8	3.01
2000	96	7.55	0.76	53.7	3.09
2250	90	7.45	0.76	55.0	3.12
2500	85	7.41	0.76	54.9	3.10

different spin-coating rates under illumination of AM 1.5G, 100 mW/cm².

Fig. S3b *J-V* curves of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at different spincoating rates under illumination of AM 1.5G, 100 mW/cm².

Table S3b Photovoltaic properties of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at

spin-coating rates/ rpm	film thickness/ nm	$J_{\rm sc}/~{\rm mA~cm^{-2}}$	$V_{ m oc}/~{ m V}$	FF/ %	PCE _{max} /%
1750	107	9.52	0.69	58.5	3.82
2000	98	9.67	0.69	61.3	4.06
2250	93	10.0	0.69	60.9	4.18
2500	89	9.64	0.69	60.2	3.98

different spin-coating rates under illumination of AM 1.5G, 100 mW/cm².

Fig. S4 *J-V* curves of the terpolymers/PC₇₁BM-based PSCs at different CB/CHCl₃ ratios under illumination of AM 1.5G, 100 mW/cm².

Table S4 Photovoltaic properties of the terpolymers/PC₇₁BM-based PSCs at different

Terpolymers	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} /%
PBDTT-PPzIID ^a	8.20	0.73	51.3	3.08
PBDTT-PPzIID ^b	7.49	0.73	50.6	2.77
PBDTT-PPzDPP a	11.2	0.67	60.2	4.51
PBDTT-PPzDPP ^b	8.77	0.69	62.6	3.79

CB/CHCl₃ ratios under illumination of AM 1.5G, 100 mW/cm².

^a CB/CHCl₃ ratio is 9/1; ^b CB/CHCl₃ ratio is 8/2.

Fig. S5a *J-V* curves of the PBDTT-PPzIID/PC₇₁BM-based PSCs at different temperature under illumination of AM 1.5G, 100 mW/cm².

Table S5a Photovoltaic properties of the PBDTT-PPzIID/PC $_{71}$ BM-based PSCs at

Temperature/ °C	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} /%
80	8.43	0.75	51.5	3.24
90	7.73	0.76	52.0	3.06
100	5.30	0.78	53.3	2.19

different temperature under illumination of AM 1.5G, 100 mW/cm².

Fig. S5b *J-V* curves of the PBDTT-PPzDPP/PC₇₁BM-based PSCs at different temperature under illumination of AM 1.5G, 100 mW/cm².

Table S5b Photovoltaic properties of the PBDTT-PPzDPP/PC71BM-based PSCs at

Temperature/ °C	$J_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}/~{ m V}$	FF/ %	PCE _{max} /%
80	9.94	0.69	60.5	4.12
90	8.49	0.70	60.6	3.61
100	4.75	0.72	58.8	2.00

different temperature under illumination of AM 1.5G, 100 mW/cm².