Supporting Information
 Synthesis and LCST-Type Phase Behavior of Water-Soluble Polypeptide with Y-Shaped and Charged Side-Chains

Yanzhi Xu, Mengxiang Zhu, Minjie Li, Ying Ling, and Haoyu Tang*
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China

[^0]

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{PMBLG}-\mathrm{OEG}_{7} / \mathrm{C}_{12}-\mathrm{X}\left(\mathrm{X}=\mathrm{Br}\right.$ or $\left.\mathrm{BF}_{4}\right)$ in CDCl_{3}.

Table S1. Elemental analysis results of $\mathrm{PMBLG}-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}$ samples.

Samples	$\mathrm{C}(\%)$		$\mathrm{H}(\%)$		$\mathrm{N}(\%)$		$\mathrm{O}(\%)$	
	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found
PMBLG-OEG $_{7} / \mathrm{C}_{4}-\mathrm{BF}_{4}$	52.77	52.53	7.21	7.25	7.03	7.07	22.09	22.33
$\mathrm{PMBLG-}^{-\mathrm{OEG}_{7} / \mathrm{C}_{6}-\mathrm{BF}_{4}}$	53.89	53.69	7.46	7.49	6.79	6.83	21.34	21.75
$\mathrm{PMBLG-}^{-\mathrm{OEG}_{7} / \mathrm{C}_{12}-\mathrm{BF}_{4}}$	56.82	57.60	8.10	8.14	6.16	6.18	19.36	19.67

Table $S 2$. Solubility characteristics of $\mathrm{PMBLG}^{-\mathrm{OEG}_{7}}$ and $\mathrm{PMBLG}^{-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{X}}$ samples in various solvents.

Solvents	PMBLG	PMBLG-OEG $_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{Br}$		$\mathrm{PMBLG}^{2}-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}$			
	OEG $_{7}$	$\mathrm{~m}=4$	$\mathrm{~m}=6$	$\mathrm{~m}=12$	$\mathrm{~m}=4$	$\mathrm{~m}=6$	$\mathrm{~m}=12$
DMSO	S	S	S	S	S	S	S
DMF	S	S	S	S	S	S	S
$\mathrm{H}_{2} \mathrm{O}$	L	S	S	S	L	L	L
MeOH	S	S	S	S	S	S	S
EtOH	S	S	S	S	S	S	S
THF	S	I	I	I	I	I	I
EAc	I	I	I	I	I	I	I
DEE	I	I	I	I	I	I	I
TCM	S	S	S	S	S	S	S
DCM	S	S	S	S	S	S	S
Hexane	I	I	I	I	I	I	I

DMSO = dimethyl sulphoxide; DMF = N,N-dimethylformamide; $\mathrm{MeOH}=$ methanol;
$\mathrm{EtOH}=$ ethanol; THF $=$ tetrahydrofuran; $\mathrm{EAc}=$ ethyl acetate; $\mathrm{DEE}=$ diethyl ether; TCM = trichloromethane; $\mathrm{DCM}=$ dichloromethane; $\mathrm{S}=$ soluble; $\mathrm{I}=$ insoluble; $\mathrm{L}=$ LCST-type phase transition (concentration $=10 \mathrm{mg}^{\cdot} \cdot \mathrm{mL}^{-1}$).

Table S3. Mean residual ellipticity ($[\theta]_{222}$) and fractional helictiy (f_{H}) of PMBLGOEG_{7} and $\mathrm{PMBLG}-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{X}$ samples in DI- $\mathrm{H}_{2} \mathrm{O}\left(0.05 \mathrm{mg} \cdot \mathrm{mL}^{-1}\right)$.

Name	$[\theta]_{222}$	$f_{\mathrm{H}}(\%)$
PMBLG-OEG 7	-32,411	91
PMBLG-OEG $/ 7 \mathrm{C}_{4}-\mathrm{Br}$	-20,800	61
PMBLG-OEG $/ 7 \mathrm{C}_{6}-\mathrm{Br}$	-16,981	51
PMBLG-OEG $/ 7 / \mathrm{C}_{12}-\mathrm{Br}$	-14,018	44
PMBLG-OEG $7 / \mathrm{C}_{4}-\mathrm{BF}_{4}$	-23,177	67
PMBLG-OEG $7 / \mathrm{C}_{6}-\mathrm{BF}_{4}$	-18,005	54
PMBLG-OEG $/ 7 \mathrm{C}_{12}-\mathrm{BF}_{4}$	-14,987	46

Figure S3. The plots of transmittance at $\lambda=500 \mathrm{~nm}$ versus temperature for the aqueous solutions of (a) PMBLG-OEG ${ }_{7}$ and (b-d) PMBLG-OEG $/{ }_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}(\mathrm{~m}=4,6$, and 12) in DI- $\mathrm{H}_{2} \mathrm{O}\left(\right.$ polymer concentration $\left.=10 \mathrm{mg} \cdot \mathrm{mL}^{-1}\right)$.

Figure S4. DLS size distribution plots of PMBLG-OEG $_{7}$ and $\operatorname{PMBLG}-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}$ $\left(\mathrm{m}=4,6\right.$, and 12) at the temperatures above respective T_{cp}. (polymer concentration $=$ $1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$)

Table S4. DLS results of resulting polypeptides in DI- $\mathrm{H}_{2} \mathrm{O}$ above respective T_{cp} (polymer concentration $=1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$).

Name	Diameter (nm)	$\mathrm{PDI}^{\mathrm{a}}$
PMBLG-OEG $_{7}$	331.7	0.183
PMBLG-OEG $_{7} / \mathrm{C}_{4}-\mathrm{BF}_{4}$	290.3	0.378
PMBLG-OEG $_{7} / \mathrm{C}_{6}-\mathrm{BF}_{4}$	221.3	0.109
PMBLG-OEG $_{7} / \mathrm{C}_{12}-\mathrm{BF}_{4}$	349.6	0.201

${ }^{\text {a }}$ Distribution of polymer aggregates in the solvents.

Figure S5. The plots of transmittance at $\lambda=500 \mathrm{~nm}$ versus temperature for the NaBF_{4} aqueous solutions (salt concentration $=5 \mathrm{mg} \cdot \mathrm{mL}^{-1}$) of (a) PMBLG-OEG ${ }_{7}$ and (b-d) PMBLG- $\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}\left(\mathrm{~m}=4,6\right.$, and 12) $\left(\right.$ polymer concentration $\left.=5 \mathrm{mg} \cdot \mathrm{mL}^{-1}\right)$.

Figure S6. The plots of transmittance at $\lambda=500 \mathrm{~nm}$ versus temperature for the NaCl aqueous solutions of (a) PMBLG- OEG_{7} and (b-d) $\mathrm{PMBLG} \mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}(\mathrm{~m}=4,6$, and 12) (salt concentration $=1,3,6 \mathrm{mg} \cdot \mathrm{mL}^{-1}$). (e) The plots of T_{cp} versus concentrations in NaBF_{4} aqueous solution (polymer concentration $=5 \mathrm{mg} \cdot \mathrm{mL}^{-1}$).

Figure S7. (a) UV-vis spectra of polymer/SWCNT/NaCl aqueous solutions (polymers: PMBLG-OEG ${ }_{7}$ and PMBLG- $\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}$, salt concentration $=6 \mathrm{mg} \cdot \mathrm{mL}^{-1}$, the solutions were diluted 10 times before UV-vis measurement). (b) Optical images of PMBLG-OEG ${ }_{7} / \mathrm{C}_{12}-\mathrm{BF}_{4} / \mathrm{SWCNT} / \mathrm{NaCl}$ aqueous solution at room temperature (left) and temperature above the T_{cp} (right).

Table S5. SWCNT dispersibility in NaCl aqueous solution (salt concentration $=6$ $\mathrm{mgm} \cdot \mathrm{L}^{-1}$) in the presence of PMBLG-OEG ${ }_{7}$ and $\mathrm{PMBLG}-\mathrm{OEG}_{7} / \mathrm{C}_{\mathrm{m}}-\mathrm{BF}_{4}(\mathrm{~m}=4,6$, and 12).

Samples	$\mathrm{PMBLG}^{-\mathrm{OEG}_{7}}$		PMBLG-OEG $/ \mathrm{C}_{4}-\mathrm{BF}_{4}$		PMBLG-OEG $/ \mathrm{C}_{6}-\mathrm{BF}_{4}$		PMBLG-OEG $7 / \mathrm{C}_{2}-\mathrm{BF}_{4}$	
	DI- $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{NaCl}_{\text {aq }}$	DI- $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{NaCl}_{\text {aq }}$	DI-H2O	$\mathrm{NaCl}_{\text {aq }}$	DI-H2O	$\mathrm{NaCl}_{\text {aq }}$
$[\mathrm{A}]_{500}{ }^{\text {a }}$	0.045	0.204	0.003	0.205	0.003	0.121	0.003	0.480
$\begin{aligned} & \text { Dispersibility } \\ & \left(\mathrm{mg} \cdot \mathrm{~L}^{-1}\right) \end{aligned}$	32.6	147.8	2.2	148.6	2.2	87.7	2.2	347.8

${ }^{\text {a }}$ The absorbance at 500 nm which was determined by UV-vis spectroscopy. Polymer aqueous solutions were diluted 10 times before UV-vis measurement.
${ }^{\mathrm{b}}$ Dispersibility $=10 \times[\mathrm{A}]_{500} / 0.0138 .{ }^{1}$

[^1]
[^0]: Correspondence to: Haoyu Tang (Email: htang@xtu.edu.cn)

[^1]: 1. Q. Hu, Y. Deng, Q. Yuan, Y. Ling and H. Tang, J. Polym. Sci. Part A: Polym. Chem., 2014, 52, 149-
