Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

## Supporting Information

for

## Fluorescence sensing of glucose using glucose oxidase incorporated into a fluorophorecontaining PNIPAM hydrogel

Yongkyun Kim,<sup>1,2</sup> Daigeun Kim,<sup>1</sup> Geunseok Jang,<sup>1</sup> Jongho Kim,<sup>1</sup> Taek Seung Lee<sup>1,\*</sup>

<sup>1</sup>Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, Korea

<sup>2</sup>Samyang Corporation, 730 Daedeok-daero, Yuseong-gu, Daejeon 305-717, Korea

\*Corresponding author: TSL (E-mail: tslee@cnu.ac.kr)



Scheme S1. Synthesis of fluorescent copolymer.



**Scheme S2**. Structure transformation of fluorescein and rhodamine moieties in the polymer under varied pHs.



Scheme S3. Degradation reaction of D-glucose to form acidic protons by glucose oxidase.



**(b)** 

Figure S1. Size distributions of the hydrogel at (a) 25 °C and (b) 40 °C. (determined by DLS).







**Figure S2**. (a) Absorption and (b) fluorescence spectra of the hydrogel (16.4 mg) at various pHs and temperatures in deionized water (10 mL). Arrow direction (at 514 nm): pH 6.3, 7.2, 7.8, 8.4, 9.1, 10.3, and 11.6; (at 586 nm): pH 2.7, 3.4, 3.9, 4.6, and 5.3. Absorption spectra were obtained at 25 °C ( $\Box$ : pH 3.2, •: pH 12.4). Emission spectra were obtained using excitation wavelength at 490 nm (for green emission) and 560 nm (for red emission), respectively.



**Figure S3**. Photographic Images of the hydrogel solutions (16.4 mg/10 mL) at various pHs (from left to right: 3.3; 4.4; 5.8; 7.4; 9.5; 11.8; 12.8) under UV irradiation (365 nm).



**Figure S4.** Emission spectra of the hydrogel (16.4 mg) at various pHs and temperatures in deionized water (10 mL). Arrow direction (green emission): pH 6.3, 7.2, 7.8, 8.4, 9.1, 10.3, and 11.6; (red emission): pH 2.7, 3.4, 3.9, 4.6, and 5.3. Emission spectra were obtained using excitation wavelengths at 490 nm (for green emission) and 560 nm (for red emission).