	Bond Valence Sum			
-	Mn ^{II}	III Mn	IV Mn	
Mn1	4.28	3.94	<u>3.87</u>	
Mn2	3.35	<u>3.09</u>	3.03	
Mn3	3.43	<u>3.16</u>	3.10	
Mn4	3.41	<u>3.14</u>	3.09	
Mn5	3.34	<u>3.08</u>	3.02	
Mn6	<u>1.90</u>	1.75	1.72	
Mn7	<u>1.99</u>	1.84	1.80	
Mn8	<u>1.80</u>	1.66	1.63	
Mn9	3.24	<u>2.98</u>	2.93	
Mn10	<u>2.02</u>	1.86	1.82	

 Table S1 Bond valence sum analysis of Mn ions for 1.

Table S2 Bond valence sum analysis of inorganic O atoms for 1.

Asgmt.	BVS	_
O ²⁻	1.95	01
O ²⁻	2.05	O2
O ²⁻	2.00	O4
O ²⁻	2.01	O5
O ²⁻	1.98	O3
OH.	1.35	O6
OH.	1.24	07

				Bond Valence Sum			
	$\mathbf{Mn}^{\mathrm{II}}$	Mn ^{III}	Mn ^{IV}		$\mathbf{Mn}^{\mathrm{II}}$	Mn ^{III}	Mn ^{IV}
Mn1	3.30	<u>3.04</u>	2.99	Mn7A	3.20	<u>2.95</u>	2.89
Mn2A	3.45	<u>3.18</u>	3.12	Mn7B	3.31	<u>3.05</u>	2.99
Mn2B	3.38	<u>3.11</u>	3.06	Mn8A	3.36	<u>3.09</u>	3.04
Mn3A	3.32	<u>3.06</u>	3.00	Mn8B	3.42	<u>3.15</u>	3.09
Mn3B	3.41	<u>3.15</u>	3.09	Mn9A	<u>1.91</u>	1.76	1.73
Mn4A	3.24	<u>2.98</u>	2.93	Mn9B	<u>1.91</u>	1.76	1.73
Mn4B	3.28	<u>3.03</u>	2.97	Mn10	3.24	<u>2.99</u>	2.94
Mn5A	3.40	<u>3.14</u>	3.08	Mn11	3.40	<u>3.14</u>	3.08
Mn5B	3.42	<u>3.15</u>	3.09	Mn12	2.22	2.04	2.00
Mn6A	<u>1.97</u>	1.82	1.79	Mn13	<u>2.15</u>	1.98	1.95
Mn6B	<u>1.93</u>	1.78	1.75				

 Table S3 Bond valence sum analysis of Mn ions for 2.

Table S4 Bond valence sum analysis of inorganic O atoms for 1.

	BVS	Asgmt		BVS	Asgmt
01	2.20	O ² ·	09	1.89	O ²⁻
O2	1.91	O ²⁻	O10	1.77	O ²⁻
O3	2.06	O ²⁻	O11	1.98	O ²⁻
O4	1.90	O ²⁻	O12	2.06	O ²⁻
O5	1.89	O ²⁻	O13	1.12	OH.
O6	1.96	O ²⁻	O14	1.13	OH.
07	2.16	O ²⁻	O15	1.15	OH.
08	2.14	O ²⁻	O16	1.19	OH.

 $\label{eq:Figure S1} Figure \ S1 \ \ Packing \ diagrams \ of \ 1\cdot 4H_2O \ viewed \ along \ the \ a-(left) \ and \ b-axis \ (right). \ All \ solvent \ molecules \ are \ omitted$

for clearly.

Figure S2 Packing diagrams of $2 \cdot 7H_2O$ viewed along the a-(left) and b-axis (right). All solvent molecules are omitted for clearly.

Figure S3 *M vs. H* plots for $1.4H_2O(\bullet)$ and $2.7H_2O(\circ)$ measured at 1.8 K.

Figure S4 Temperature dependence of the in-phase (χ ', filled circle) and out-of-phase (χ ", open circle) ac magnetic susceptibilities of 1·4H₂O measured at 1 (green), 10 (blue), 100 (purple) and 1000 Hz (orange) under zero dc field.

Figure S5 Temperature dependence of the in-phase (χ ', filled circle) and out-of-phase (χ ", open circle) ac magnetic susceptibilities of **2**·7H₂O measured at 1 (green), 10 (blue), 100 (purple) and 1000 Hz (orange) under zero dc field.