# Supporting Information of

# Control of pore distribution of porous carbons derived from Mg<sup>2+</sup> porous coordination polymers

Yu-ichi Fujiwara, Satoshi Horike, Kanokwan Kongpatpanich, Takashi Sugiyama,

Norio Tobori, Hirotomo Nishihara, Susumu Kitagawa

## **Experimental section**

## Preparation of PCPs

 $[Mg_4(1,3-bdc)_3(HCOO)_2(DMF)_2]_n$  (Mg-C2'),  $[Mg_3(1,4-bdc)_3(EtOH)_2]_n$  (Mg-C2),  $[Mg_3(btc)_2(DMF)_4]_n$  (Mg-C3), and  $\{[Mg_2(btec)(H_2O)_4] \cdot 2H_2O\}_n$  (Mg-C4) were synthesized according to reported procedure.<sup>1</sup> Mg-C2', Mg-C2, and Mg-C4 were degassed at 150 °C, 200 °C, and 150 °C, respectively, for overnight in vaccum oven. Mg-C3 was soaked in methanol for 3 day, during which time the solvent was decanted and freshly replenished three times, and then degassed at 150 °C for overnight in vaccum oven.

#### Syntheses of porous carbons

Raw carbons were synthesized by carbonization of degassed PCPs under a flow of nitrogen (200 mL min<sup>-1</sup>) at 800 °C for 5 h. Typically, degassed sample (300 mg) was homogenously placed on a ceramic boat ( $16 \times 12 \times 80$  mm) and heated up to the targeted temperature with heating rate of 5 °C min<sup>-1</sup>. Purified carbons were obtained by stirred in 3 M HCl solution for overnight and washed repeatedly with distillation water.

#### **Characterizations**

Powder X-ray diffraction (PXRD) data were collected on a Rigaku RINT 2200 Ultima diffractrometer with Cu  $K\alpha$  radiation. Thermogravimetric analyses combined with mass spectrometry (TG-MS) were performed on a Rigaku Thermo plus EVO II equipped with ThermoMass Photo/S by using electron impact ionization (EI) method. All samples were measured from 40 °C to 800 °C with heating rate of 5 °C min<sup>-1</sup> under Helium flow

atmosphere. Nitrogen adsorption isotherms were measured at -196 °C (77 K) by BELSORP-mini with a liquid nitrogen dewar. All samples were activated by heating at 180 °C under reduced pressure (<  $10^{-2}$  Pa) for 12 h prior to the measurement. Raman spectra were collected at room temperature by using a LabRAM HR800 (Horiba Jobin Yvon) with a semiconductor laser at 488 nm. Transmission electron microscopic (TEM) observations were performed by using JEOL JEM1400D. TEM specimen was prepared by dropping methanol solution containing the sample on a Cu grid.

#### Capacitance measurements

The capacitor performance for the carbon samples was performed with two-electrode cell (Hosen Corp.) in 1 M Et<sub>4</sub>NBF<sub>4</sub>/PC. The working electrode were prepared by mixing the carbon samples with poly(tetrafluoroethylene) (PTFE; M-139, Daikin industries, Ltd.) and carbon black (Denka black, Denki Kagaku Kogyo Kabushiki Kaisha). The weight ratio of carbon sample: PTFE: carbon black = 80: 10: 10. The mixture was dried at 150 °C for 3 h in vaccum and then electrode disk was molded diameter of 10 mm by using a tablet machine under a pressure of 30 M Pa for 5 min. The two electrode cell was fabricated with Al current collector (100 mesh), the electrode disk, a grass paper as separator (ADVANTEC GA-100), and 1 M Et<sub>4</sub>NBF<sub>4</sub>/ PC under inner atmosphere. The CV curves were recorded by VersaSTAT-4 electrochemical system (Toyo Corp. Ltd.) between 0 and 2.0 V at 2–50 mV s<sup>-1</sup>. The gravimetric capacitance ( $C_g$ ) calculated from the CV curve is based on the following equation:

$$C_{\rm g} = 2 \times \Delta Q / (\Delta V \times m)$$

Where  $\Delta Q$  is the charge integrated from the whole voltage range,  $\Delta V$  is the whole voltage difference, and *m* is the mass of carbon on electrode. The volumetric capacitance ( $C_v$ ) were calculated by the equation,  $C_v = C_g \rho$ , where  $\rho$  is the particle density of carbon.<sup>2</sup>



**Figure S1** Simulated (gray line), as-synthesized (solid line) and degassed (dotted line) PXRD patterns of Mg-R, R = (a) C2' (b) C2 (c) C3 (d) C4, respectively.



**Figure S2** N<sub>2</sub> adsorption isotherms of C-Mg-R, R = C2' (red circles), C2 (black circles), C3 (blue circles), and C4 (green circles).



Figure S3 PXRD patterns of PC-Mg-R, R = C2' (red), C2 (black), C3 (blue), and C4 (green).



Figure S4 Raman spectra of PC-Mg-R, R = C2' (red), C2 (black), C3 (blue), and C4 (green).

| Table ST fore studence properties of $10$ -Mg-K, $K = 02$ , $02$ , $03$ and $04$ , and $MS0-50$ . |                                  |                                |                                 |
|---------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------|
| Samples                                                                                           | Surface area <sup><i>a</i></sup> | Total pore volume <sup>b</sup> | peak pore diameter <sup>c</sup> |
|                                                                                                   | $(m^2g^{-1})$                    | $(cm^{3}g^{-1})$               | (nm)                            |
| PC-Mg-C2'                                                                                         | 968                              | 0.95                           | 16.4                            |
| PC-Mg-C2                                                                                          | 1013                             | 1.66                           | 10.9                            |
| PC-Mg-C3                                                                                          | 1108                             | 0.97                           | 5.0                             |
| PC-Mg-C4                                                                                          | 1996                             | 1.84                           | 3.5                             |
| MSC-30                                                                                            | 3170                             | 1.68                           | < 2.5                           |

**Table S1** Pore structure properties of PC-Mg-R, R = C2', C2, C3 and C4, and MSC-30.

<sup>a</sup> The specific surface area was calculated using Brunauer-Emmett-Teller (BET) method.

<sup>*d*</sup> Total pore volume was calculated using the BET method ( $P/P_0 = 0.99$ ).

<sup>c</sup> Peak pore diameter was obtained from Barrett-Joyner-Halenda (BJH) method.



**Figure S5** Pore distributions with BJH method between MSC-30 (black dotted) and PC-Mg-R, R = C2' (red), C2 (black), C3 (blue), and C4 (green).

#### References

- (1) (a) Calderone, P. J.; Banerjee, D.; Nizami, Q.; LaDuca, R. L.; Parise, J. B. *Polyhedron* 2012, *37*, 42(b) Davies, R. P.; Less, R. J.; Lickiss, P. D.; White, A. J. P. *Dalton Trans.* 2007, 2528(c) Calderone, P. J.; Banerjee, D.; Plonka, A. M.; Kim, S. J.; Parise, J. B. *Inorg. Chim. Acta* 2013, *394*, 452(d) Liu, H.-K.; Tsao, T.-H.; Zhang, Y.-T.; Lin, C.-H. *CrystEngComm* 2009, *11*, 1462.
- (2) Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T. J. Am. Chem. Soc. 2011, 133, 1165.