Supporting Information for

Selective CO₂ adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites

Bo Liu,^a Ya-Hui Jiang,^a Zhi-Sen Li,^a Lei Hou^a and Yao-Yu Wang^{*a}

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of

Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069,

China. E-mail: wyaoyu@nwu.edu.cn

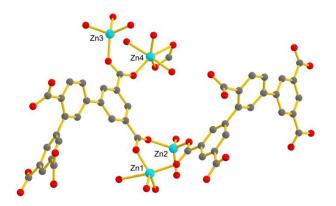
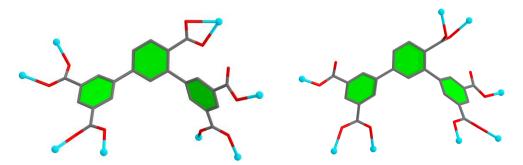
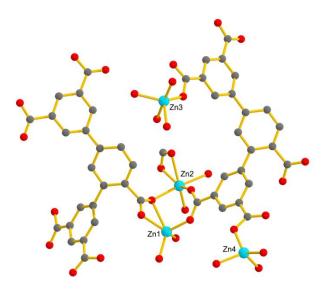




Fig. S1 The coordination environment of Zn^{2+} ions in 1·DMF, the hydrogen atoms and solvent molecules are omitted.

Fig. S2 The two coordination modes of the L⁵⁻ ligands in **1**·DMF, one exhibits μ^1 - η^1 , syn-syn- μ^1 - η^1 : η^1 , syn-syn- μ^2 - η^1 : η^1 , and syn-anti- μ^2 - η^1 : η^1 (left), the other adopts μ^1 - η^1 , and syn-anti- μ^2 - η^1 : η^1 (right).

Fig. S3 The coordination environment of Zn^{2+} ions in **1**·DMA.

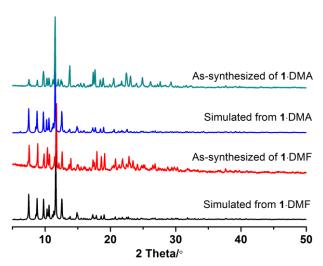
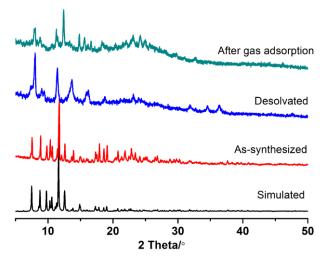



Fig. S4 PXRD patterns (from bottom to top) for 1 DMF (Simulated), 1 DMF (As-synthesized), 1 DMA (Simulated), and 1 DMA (As-synthesized).

Fig. S5 PXRD patterns of **1**·DMF simulated from the X-ray single-crystal structure, experimental samples, desolvated samples, and after gas adsorption samples.

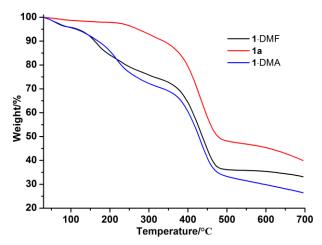


Fig. S6 TGA plots of complexes $1 \cdot DMF$ (black), $1 \cdot DMA$ (blue), and 1a (red).

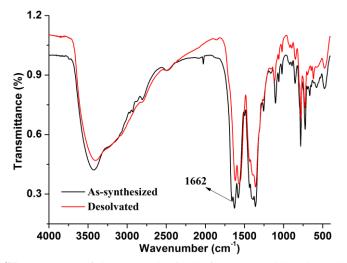
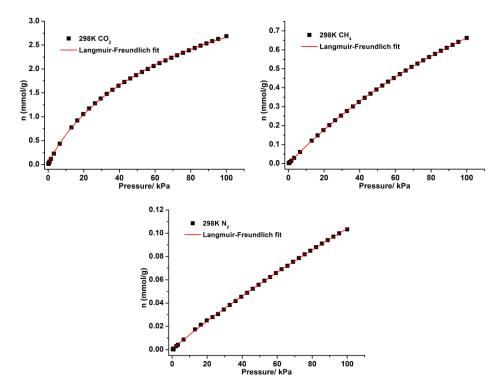


Fig. S7 IR spectra of the as-synthesized (1·DMF) and desolvated (1a).

IAST adsorption selectivity calculation:

The experimental isotherm data for pure CO_2 , CH_4 and N_2 (measured at 298) were fitted using a Langmuir-Freundlich (L-F) model:


$$q = \frac{a * b * P^c}{1 + b * P^c}$$

Where q and p are adsorbed amounts and pressures of component i, respectively.

The adsorption selectivities for binary mixtures of CO_2/CH_4 and CO_2/N_2 , defined by

$$S_{i/j} = \frac{x_i * y_j}{x_j * y_i}$$

were calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz. Where x_i is the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

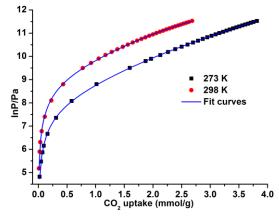
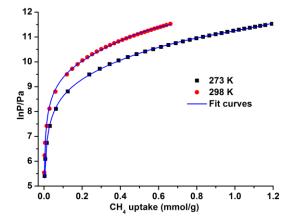


Fig. S8 CO₂ adsorption isotherms of **1a** with fitting by L-F model: a = 5.06407, b = 0.01767, c = 0.89890, Chi² = 1.41×10^{-4} , R² = 0.99982; CH₄ adsorption isotherms of **1a** with fitting by L-F model: a = 1.97982, b = 0.00471, c = 1.01417, Chi² = 4.69×10^{-7} , R² = 0.99999; N₂ adsorption isotherms of **1a** with fitting by L-F model: a = 0.57497, b = 0.00125, c = 94615, Chi² = 2.17×10^{-7} , R² = 0.99983.


Calculation of sorption heat for CO₂ uptake using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \qquad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above equation was applied to fit the combined CO_2 isotherm data for desolvated 1a at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S9 CO₂ adsorption isotherms for **1a** with fitting by Virial 2 model. Fitting results: a0 = -3616.97213, a1 = 207.96409, a2 = -107.43727, a3 = 34.35126, a4 = 2.99692, b0 = 21.79273, b1 = -0.85783, b2 = 0.79230, b3 = -0.23580, Chi² = 0.00006, R² = 0.99983.

Fig. S10 CH₄ adsorption isotherms for **1a** with fitting by Virial 2 model. Fitting results: a0 = -2635.48544, a1 = 2968.21695, a2 = -10730.33007, a3 = 9400.63156, a4 = 485.17455, b0 = 20.64613, b1 = -12.02875, b2 = 43.76530, b3 = -39.25892, Chi² = 0.00203, R² = 0.99921.

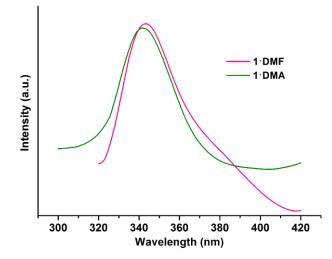


Fig. S11 Excitation spectra of 1.DMF and 1.DMA in the solid state at room temperature.