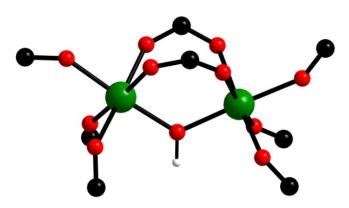
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2015

### **ELECTRONIC SUPPLEMENTARY INFORMATION**

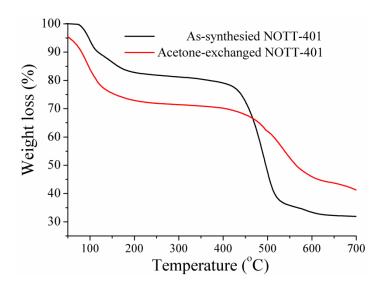

# Removal of CO<sub>2</sub> from CH<sub>4</sub> and CO<sub>2</sub> capture in the presence of H<sub>2</sub>O vapour in NOTT-401

Hugo A. Lara-García, Maximiliano R. Gonzalez, Juan H. González-Estefan, Pedro Sánchez-Camacho, Enrique Lima and Ilich A. Ibarra\*

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, México D. F., Mexico.

E-mail: argel@unam.mx

#### 1. Scheme of the binuclear $[M_2(\mu_2-OH)]$ building block




**Scheme S1**: Binuclear building block of two metal ions oxygen octahedra bridged by a  $\mu_2$ -hydroxo group. Green, red, black and white spheres represent M (metal ion such as In(III) or Sc(III)), O, C and H atoms, respectively.

#### 2. Materials and Measurements

All reagents and solvents were used as received from commercial suppliers without further purification. Powder X-ray diffraction (PXRD) data were collected under ambient conditions on a Bruker AXD D8 Advance diffractometer operated at 160 W (40 kV, 40 mA) for Cu K $\alpha_1$  ( $\lambda$ = 1.5406 Å). Thermal gravimetric analysis (TGA) was performed under N<sub>2</sub> at a scan rate of 2 °C/min using a TA Instruments Q500HR analyser. N<sub>2</sub> adsorption was carried out in a conventional volumetric technique by a Micromeritics ASAP 2020 sorptometer. The surface area was calculated using the BET method based on adsorption data in the partial pressure ( $p/p_0$ ) range 0.01 to 0.04. Dynamic and isothermal experiments were performed using a humidity-controlled thermobalance (TA Instruments, model Q5000SA) at 30 °C and a relative humidity (RH) of 40%. A catalytic reactor system (BEL-REA, BEL Japan) coupled to a Bruker TENSER 27 FTIR was employed to measure the gas selectivity.

### 3. TGA plots



**Fig. S1**: TGA analyses of as-synthesised NOTT-401 (black line) and acetone-exchanged NOTT-401 (red line).

### 4. Powder X-ray Diffraction Patterns

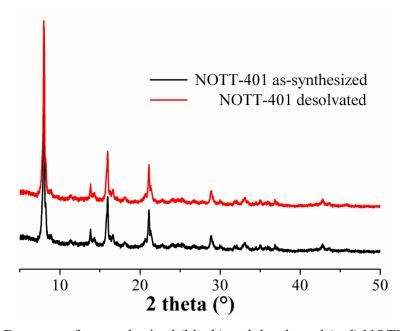



Fig. S2: PXRD patters of as-synthesised (black) and desolvated (red) NOTT-401.

## 5. Catalytic Reactor System (BEL-REA) for the Gas CO<sub>2</sub> and CH<sub>4</sub> Selectivity Experiments

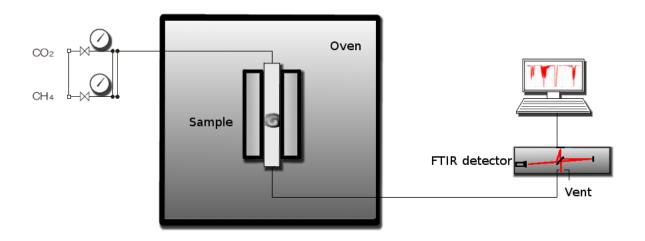
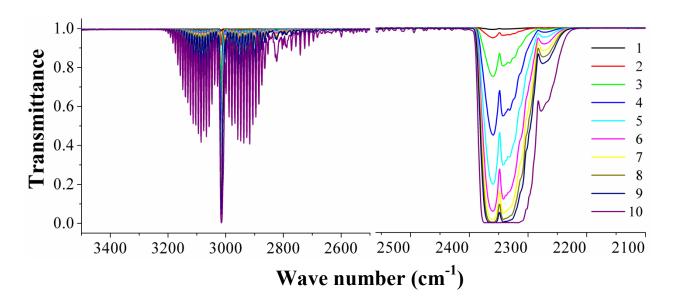
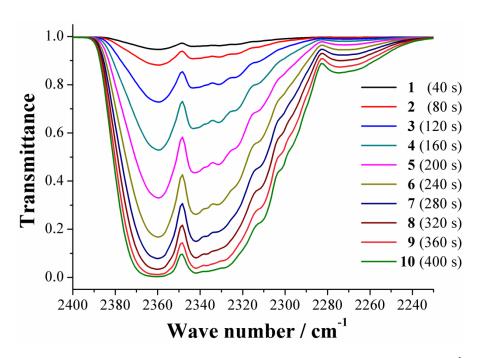
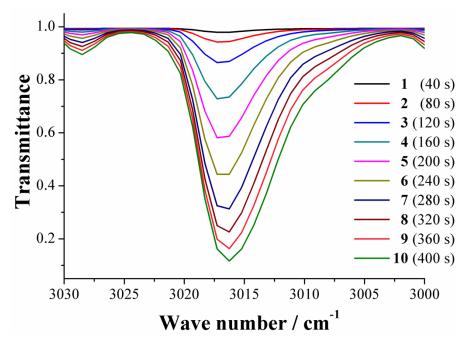





Fig. S3: Catalytic reactor system (BEL-REA) system.


### 6. FTIR Spectra



**Fig S4**: FTIR spectra of the resulting binary equimolar (0.13 mmol min<sup>-1</sup>) gas-mixture flow (that passed through the activated NOTT-401 sample).

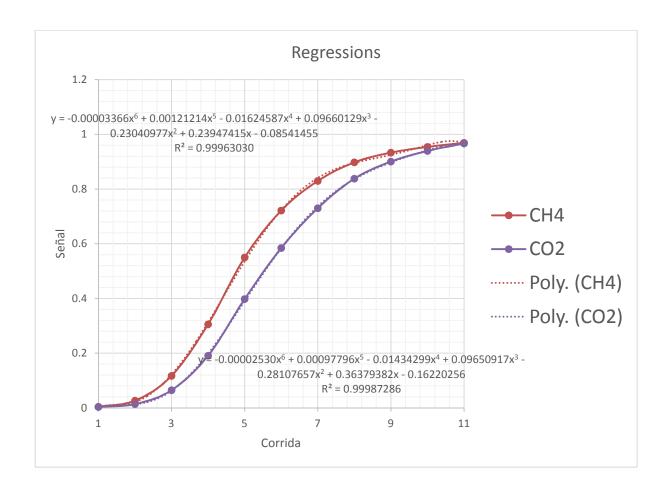


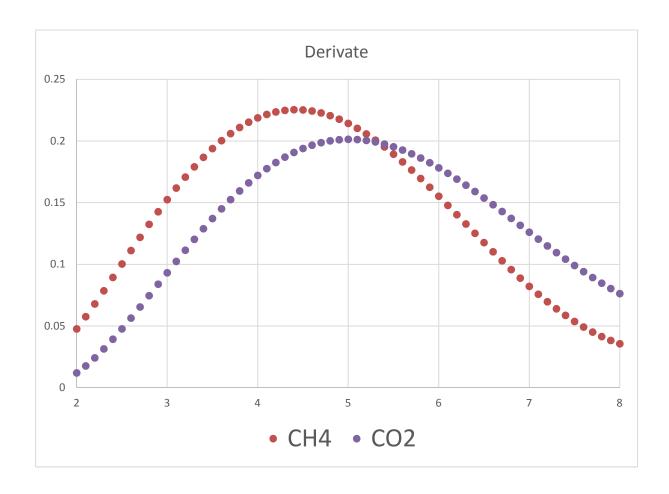
**Fig S5**: FTIR spectra of the resulting flow of only CO<sub>2</sub> gas (0.13 mmol min<sup>-1</sup>) that passed through the activated NOTT-401 sample.



**Fig S6**: FTIR spectra of the resulting flow of only CH<sub>4</sub> gas (0.13 mmol min<sup>-1</sup>) that passed through the activated NOTT-401 sample.

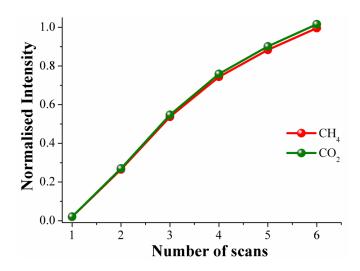
### 7. Polynomial Regressions





Fig S7: Polynomial regressions of the normalised intensities on Fig. 2 left.

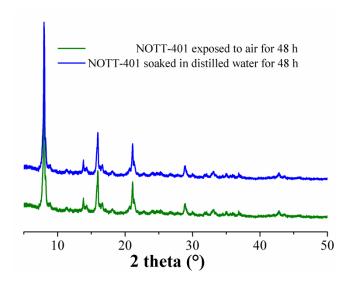
```
By taking the derivative of both functions:
```

 $f(x) = -0.00003366x^6 + 0.00121214x^5 - 0.01624587x^4 + 0.09660129x^3 - 0.23040977x^2 + 0.23947415x - 0.08541455$ 

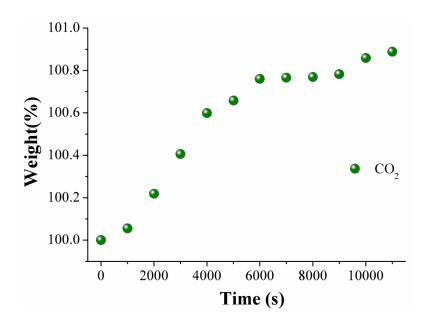

 $g(x) = -0.00002530x^6 + 0.00097796x^5 - 0.01434299x^4 + 0.09650917x^3 - 0.28107657x^2 + 0.36379382x - 0.16220256$ 

it is possible to plot both derivative functions (df(x)/dx) and dg(x)/dx and find the maximum of both derivates. The difference of these derivates is equal to 0.59 scan which corresponds to  $\sim 23.53$  s.




**Fig. S8**: Derivate functions (df(x)/dx) and dg(x)/dx coming from polynomial regressions of the normalised intensities on Fig. 2 left. Methane in red and carbon dioxide in blue.

## 8. Normalised characteristic FTIR intensities of CO<sub>2</sub> and CH<sub>4</sub> as a function of the number of scans




**Fig. S9**: Normalised characteristic FTIR intensities of CO<sub>2</sub> and CH<sub>4</sub> as a function of the number of scans from a resulting exit exhaust of the binary equimolar (0.13 mmol min<sup>-1</sup>) gasmixture of CO<sub>2</sub> and CH<sub>4</sub> in PCM-14.

#### 9. PXRD and Kinetic Isotherms



**Fig. S10**: Powder X-ray diffractions patterns of NOTT-401 after being exposed to air (green) and soaked in distilled water (blue) for 48 h.



**Fig. S11**: Kinetic isotherms carried out at 30  $^{\circ}$ C and 40% RH with a CO<sub>2</sub> flow of 60 mL/min in PCM-14.