Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2015

> Electronic Supplementary Material (ESI) for *Inorganic Chemistry Frontiers* This journal is © The Royal Society of Chemistry 2015

Structural and Magnetic Tuning from Field-Induced Single-Ion Magnet to Single-Chain Magnet by Anions†

Dong Shao, Xin-hua Zhao, Shao-Liang Zhang, Dong-Qing Wu, Xiao-Qin Wei and Xin-Yi

Wang*

*State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. *Email: <u>wangxy66@nju.edu.cn</u>

Supporting Information

Content

Fig. S1 Experimental and calculated XRPD pattern for 1	3
Fig. S2 Experimental and calculated XRPD pattern for 2	3
Fig. S3 TG curve of compound 2 at a rate of 10 K/min under a N ₂ atmosphere	4
Fig. S4 The 2D supramolecular layer of 1 along the <i>ab</i> plane	4
Fig. S5 The side view of the packing structure of 2	5
Fig. S6 The abundant hydrogen bonds in 2	5
Table S1 Selected bond lengths (Å) and angles (°) for 1 and 2	6
Fig. S7 Variable-temperature ac magnetic susceptibility data for 1 measured under a 2 kOe de field.	с 6
Fig. S8 The χ_M^{-1} vs. <i>T</i> plot and the Curie-Weiss fit of 2	7
Table S2 Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2 according to the generalized Debye model	7

Fig. S1 Experimental and calculated XRPD pattern for 1.

Fig. S2 Experimental and calculated XRPD pattern for 2.

Fig. S3 TG curve of compound 2 at a rate of 10 K/min under a N₂ atmosphere.

Fig. S4 The 2D supramolecular layer of 1 along the *ab* plane.

Fig. S5 The side view of the packing structure of 2.

Fig. S6 The abundant hydrogen bonds in 2.

1							
Fe1-N1	2.136(4)	Fe1-O1	2.266(4)	Fe1-O3	2.143(4)		
Fe1-N2	2.170(4)	Fe1-O2	2.276(3)	Fe1-O4	2.126(4)		
Fe1-N3	2.215(4)						
O4-Fe1-O3	174.68(14)	O4-Fe1-N2	90.50(15)	O4-Fe1-N1	96.97(16)		
N1-Fe1-O3	88.32(16)	O3-Fe1-O1	93.14(14)	O3-Fe1-N3	91.90(16)		
2							
Fe1-N1	2.114(3)	Fe1-C28#1	2.137(2)	Fe1-O1	2.266(4)		
Fe1-N2	2.180(4)	Fe1-N4	2.149(3)	Fe1-O2	2.276(3)		
Fe1-N3	2.184(3)						
N1-Fe1-C28#1	99.41(10)	C28#1-Fe1-N4	168.24(11)	C28#1-Fe1-N2	92.85(10)		
C28-N4-Fe1	166.5(3)	N4-C28-Fe1#2	165.7(3)				
#1 -x,y-1/2,-z+1/2 #2 -x,y+1/2,-z+1/2							

Table S1 Selected bond lengths (Å) and angles (°) for 1 and 2

Fig. S7 Variable-temperature ac magnetic susceptibility data for 1 measured under a 2 kOe dc field.

Fig. S8 The χ_{M}^{-1} vs. *T* plot and the Curie-Weiss fit of **2**.

Table S2 Relaxation fitting parameters from the least-square fitting of the Cole-Coleplots of 2 according to the generalized Debye model.

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹ K	$\chi_{\rm T}$ / cm ³ mol ⁻¹ K	τ / s	α
1.80	0.27534	0.65634	0.00188	0.41597
1.85	0.25202	0.64220	0.00116	0.44452
1.90	0.23103	0.62331	0.00068	0.44063
1.95	0.25627	0.61006	0.00052	0.40704
2.00	0.25092	0.60343	0.00044	0.44874
2.05	0.25000	0.58398	0.00029	0.38360
2.10	0.29163	0.57743	0.00022	0.41622