Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Supplementary Information for

DFT and TD-DFT studies of electronic structures and one-electron excitation state of cyanide-bridged molecular square complex

Yasutaka Kitagawa^{*1}, Mizuki Asaoka¹, Koji Miyagi¹, Toru Matsui², Masayuki Nihei³, Hiroshi Oshio³, Mitsutaka Okumura², Masayoshi Nakano¹

1) Graduate School of Engineering Science, Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

2) Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan,

3) Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-

1-1, Tsukuba, Ibaraki 305-8571, Japan

Figure S1.Illustration of experimental $\chi_m T$ vs T plot of $[Co_2Fe_2(CN)_6(tp^*)_2(dtbbpy)_4](PF_6)_2 \cdot 2MeOH (1).$

Figure S2. Possible spin-coupling structures in the open-shell $[Fe^{III}_{LS2}Co^{II}_{HS2}]$ state.

Figure S3 (a) Enlarged picture of Figure 3 (A).

Figure S3 (b) Enlarged picture of Figure 3 (B).

Figure S4 (a) Enlarged picture of Figure 4 (a).

Figure S4 (b) Enlarged picture of Figure 4 (b).

Table S1. Calculated absorption spectra by TD-B3LYP. Absorptions with non-zero oscillator strength are summarized here. ΔE and λ are absorption energies and *f* is a oscillator strengths. Dominant contributions are described by orbital numbers in Figure 3 (b).

state #	$\Delta E / eV$	λ / nm	<i>f</i> (a.u.)	Dominant contribution	%
4	1.20	1034	0.0001	365 -> 368	90
5	1.27	976	0.0004	364 -> 367	83
8	1.30	957	0.0015	363 -> 368	78
10	1.32	939	0.0001	365 -> 369	46
				366 -> 370	42
11	1.37	908	0.0016	365 -> 370	60
				366 -> 369	27
14	1.41	882	0.001	365 -> 371	43
				366 -> 372	32
16	1.42	875	0.0001	363 -> 369	36
			0.0001	364 -> 370	46
17	1 4 4	962	0.0004	363 -> 369	33
1/	1.44	803	0.0004	364 -> 370	29
19	1.46	850	0.0004	366 -> 372	37
				365 -> 371	15
22	1.51	819	0.0035	363 -> 371	41
				364 -> 373	25
23	1.52	813	0.0005	366 -> 373	62
				365 -> 371	21
25	1.53	810	0.0037	364 -> 372	70
28	1.56	796	0.0012	365 -> 374	80
30	1.59	779	0.0019	362 -> 367	78
31	1.60	776	0.0007	364 -> 373	32
			0.0007	363 -> 371	20
34	1.62	763	0.0015	361 -> 368	83
35	1.63	758	0.0011	363 -> 374	59
				364 -> 373	31
38	1.74	711	0.0006	362 -> 370	74
39	1.75	707	0.0004	361 -> 369	59
				361 -> 371	17

Derivation of the formula to deduce the J value

The magnetic properties of the polynuclear metal complexes are often discussed using Heisenberg Hamiltonian

$$H = -2\sum J_{ij}\hat{\boldsymbol{S}}_{i}\cdot\hat{\boldsymbol{S}}_{j},\tag{S1}$$

where J_{ij} is the orbital-averaged effective exchange integrals between the spin site i and j with total spin operators \hat{S}_i and \hat{S}_j , respectively. As depicted in Figure 2 (a), there are three types interactions i.e. J, J' and J''. However, J' and J'' are considered to be small enough than J, so that we consider only the adjacent ones. For simple systems such as linearly aligned two- or multi-spin models, Yamaguchi et al. has proposed that J_{ij} value can be calculated from the energy splitting between a broken-symmetry (BS) anti-ferromagnetic (AF) and a ferromagnetic (F) states by using an equation,

$$J_{ij} = \frac{{}^{AF}E - {}^{F}E}{\left\langle S^{2} \right\rangle^{F} - \left\langle S^{2} \right\rangle^{AF}}, \tag{S2}$$

where and denote the total energy and total spin angular momentum for the spin state X (X = AF and F), respectively. However, equation (2) cannot apply to the cyclic and plural *J* systems. For such complicated systems, Shoji et al. proposed a general algorithm for calculations of *J* values [M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, K. Yamaguchi, Chem. Phys Lett., 432, 343-347, 2006]. The $\langle \hat{S}_i \rangle$ value of the BS calculation can be evaluated with a spin correlation function $\langle \hat{s}_i \cdot \hat{s}_j \rangle$ between spin site *i* and *j*,

$${}^{\rm BS}\left\langle \hat{\boldsymbol{S}}^{2}\right\rangle = \sum_{i=1}^{N} \hat{\boldsymbol{s}}_{i} \left(\hat{\boldsymbol{s}}_{i} + 1 \right) + 2 \sum_{i < j} \left\langle \hat{\boldsymbol{s}}_{i} \cdot \hat{\boldsymbol{s}}_{j} \right\rangle + SP, \qquad (S3)$$

where \hat{s}_i is a spin operator for the spin site *i* and SP means effect of a spin polarization. If a coupling between sites s_i and s_j is ferromagnetic, the spin correlation function is obtained by

$${}^{\mathrm{F}}\left\langle \hat{\boldsymbol{s}}_{i}\cdot\hat{\boldsymbol{s}}_{j}\right\rangle =\left|\hat{\boldsymbol{s}}_{i}\right|\cdot\left|\hat{\boldsymbol{s}}_{j}\right|.$$
(S4)

While a correlation function for anti-ferromagnetic coupling becomes

$$\left\langle \hat{\boldsymbol{s}}_{i} \cdot \hat{\boldsymbol{s}}_{j} \right\rangle = -\left| \hat{\boldsymbol{s}}_{i} \right| \cdot \left| \hat{\boldsymbol{s}}_{j} \right| - \frac{N_{\beta}}{2} T^{2}, \qquad (S5)$$

where $N_{\rm b}$ and T are a number of beta electrons and overlap between spin orbitals.

Because ${}^{\mathrm{F}}\langle \hat{\boldsymbol{S}}^2 \rangle$ and ${}^{\mathrm{AF}}\langle \hat{\boldsymbol{S}}^2 \rangle$ are expressed by ${}^{\mathrm{F}}\langle \hat{\boldsymbol{S}}^2 \rangle = 20 + SP$, (S6a)

and

$${}^{\rm AF}\langle \hat{\boldsymbol{S}}^2 \rangle = 8 + {}^{\rm AF}\langle \hat{\boldsymbol{s}}_i \cdot \hat{\boldsymbol{s}}_j \rangle + SP.$$
(S6b)

Then, ${}^{AF}\langle \hat{\boldsymbol{s}}_i \cdot \hat{\boldsymbol{s}}_j \rangle$ is deduced by subtracting ${}^{AF}\langle \hat{\boldsymbol{S}}^2 \rangle$ from ${}^{F}\langle \hat{\boldsymbol{S}}^2 \rangle$ as follows,

$${}^{\mathrm{F}}\langle \hat{\boldsymbol{S}}^{2} \rangle - {}^{\mathrm{AF}} \langle \hat{\boldsymbol{S}}^{2} \rangle = 6 - 8 {}^{\mathrm{AF}} \langle \hat{\boldsymbol{s}}_{i} \cdot \hat{\boldsymbol{s}}_{j} \rangle$$
(S7)

On the other hand, total energies are expressed as

$${}^{\mathrm{F}}E = -8J^{\mathrm{F}} \langle \hat{\boldsymbol{s}}_{1} \cdot \hat{\boldsymbol{s}}_{2} \rangle, \qquad (S8a)$$
$${}^{\mathrm{F}}E = -8J^{\mathrm{AF}} \langle \hat{\boldsymbol{s}}_{i} \cdot \hat{\boldsymbol{s}}_{j} \rangle. \qquad (8b)$$

Then J value between Fe^{III} and Co^{II} is obtained from

$$J = \frac{{}^{\mathrm{AF}}E - {}^{\mathrm{F}}E}{8\left(\!\!\left(\hat{s}_{1} \cdot \hat{s}_{2}\right) - {}^{\mathrm{AF}}\left\langle\hat{s}_{1} \cdot \hat{s}_{2}\right\rangle\!\right)}$$
(S9)

By using the algorithm, J value of this cyclic system can be solved by using the formula.

On the other hand, Ising Hamiltonian, which consider only S_z component is also often used for a consideration of the magnetic interaction between fully localized spins.

$$\boldsymbol{H}_{\text{Ising}} = -2\sum J_{ij}^{z} \hat{\boldsymbol{S}}_{i}^{z} \cdot \hat{\boldsymbol{S}}_{i}^{z}$$
(S10)

spin correlation function of anti-ferromagnetic coupling becomes ${}^{AF}\langle \hat{s}_i \cdot \hat{s}_j \rangle = -|\hat{s}_i| \cdot |\hat{s}_j|$ which corresponds to fully localized spins on equation 5. Then, from equation 9, *J* becomes

$$J^{z} = \frac{{}^{\mathrm{AF}}E - {}^{\mathrm{F}}E}{16|\hat{\mathbf{s}}_{1}| \cdot |\hat{\mathbf{s}}_{2}|}$$
(S11)

Table S2. Calculated *J* values, ${}^{AF}\langle \hat{s}_i \cdot \hat{s}_j \rangle$ and spin polarization (SP) values with Heisenberg and Ising spin models.

Snin model	$^{AF}(\hat{\mathbf{s}},\hat{\mathbf{s}})$	SP 1)	J values		
Spin model	$\langle \mathbf{B}_i \ \mathbf{B}_j \rangle$	51 ×	1 - L	1-M	1-H
Heisengerg	-0.750525	0.0485	22	53	11
Ising	-0.750		22	53	11

1) Effect of spin polarization.

Table S3. Calculated relative energies of five spin-coupling states calculated with the1-H structure.

State _	Site 1 (Fe ^{III})	Site 2 (Co ^{II})	Site 3 (Fe ^{III})	Site 4 (Co ^{II})	Sz	Energy / cm ⁻¹
	s ₁ =1/2	s ₂ =3/2	s ₃ =1/2	s ₄ =3/2		
1 (F)	1	1	1	1	4	-64.2
2	-1	1	1	1	3	0.0
3	1	1	1	-1	1	0.0
4	-1	1	1	-1	0	0.0
5 (AF)	-1	1	-1	1	2	64.2

a) 1 and -1 means up and down spins, respectively.