Electronic Supplementary Information (ESI)

Bis(*N*-substituted oxamate)palladate(II) complexes as effective catalysts for the sustainable Heck carbon-carbon coupling reactions in *n*-Bu₄NBr as solvent

Francisco Ramón Fortea-Pérez, ^a Berit L. Rothenpieler, ^a, Nadia Marino, ^b Donatella Armentano, ^b Giovanni De Munno, ^b Miguel Julve ^a* and Salah-Eddine Stiriba ^a*

^a Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna (Valencia) , Spain. E-mail: miguel.julve@uv.es, stiriba@uv.es

^b Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 14/c, Rende (CS) 87036, Italy. E-mail: donatella.armentano@unicat.it

General Procedure for the Synthesis of the Proligands

The ethyl ester derivative of the aniline derivate was prepared by following a previously reported procedure.¹ The corresponding aniline derivative (83 mmol) was dissolved in THF (250 ml) under dinitrogen in a two round flask equipped with a dropping funnel, then treated with ethyl chlorooxoacetate (9.3 mL, 83 mmol) in presence of triethylamine (12 mL, 83 mmol) at room temperature, under continuous stirring for 30 min. The resulting solution was filtered off and the solvent removed under vacuum to afford oily crude, which rapidly turns to solid. The obtained white solid was suspended in water and filtered off, washed with a small amount of diethyl ether and dried under vacuum.

EtH-4-Fpma: Yield: 85%; IR (KBr/cm⁻¹): 3322 (N–H), 3116, 2987, 2944, 2905 (C–H), 1732, 1687 (C=O); ¹H NMR (CDCl₃) δ (ppm): 1.41-1.46 (t, *J* = 7.1Hz, 3H, CH₃), 4.39 – 4.46 (q, *J* = 7.1Hz, 2H, CH₂), 7.05 – 7.11 (m, *J* = 8.8 H, *J* = 2.8 Hz, 2H, H_{aryl}), 7.60 – 7.64 (m, *J* = 8.8 H, *J* = 2.8 Hz, 2H, H_{aryl}), 8.86 (s, 1H, NH) ; ¹³C NMR (CDCl₃) δ (ppm): 14.4, 64.26, 116.3, 116.6, 121.9, 122, 161.3, 192.2. Anal. calcd (found): C 56.87 (57.19); H 4.77 (5.58); N 6.63 (6.46).

EtH-4-Clpma: Yield: 90%; IR (KBr/cm⁻¹): 3334 (N–H), 3122, 2984, 2908, (C–H), 1729, 1698 (C=O); ¹H NMR (CDCl₃) δ (ppm): 1.29 – 1.34 (t, *J* = 7.1Hz, 3H, CH₃), 4.27 – 4.35 (q, *J* = 7.1Hz, 2H, CH₂), 7.41 – 7.44 (d, *J* = 8.5 H, *J* = 2.8 Hz 2H, H_{aryl}), 7.77 – 7.80 (d, *J* = 8.5 H, *J* = 2.8 Hz, 2H, H_{aryl}), 10.93 (s, 1H, NH); ¹³C NMR (CDCl₃) δ (ppm): 14.2, 62.9, 122.4, 128.1, 129.1, 136.8, 155.9, 160.8. Anal. calcd (found): C 52.76 (51.26); H 4.43 (5,45); N 6.15 (5.62).

EtH-4-Brpma: Yield: 95%; IR (KBr/cm⁻¹): 3334 (N–H), 3129, 2981, 2905, (C–H), 1729, 1705 (C=O); ¹H NMR (CDCl₃) δ (ppm): 1.29 – 1.34 (t, *J* = 7.1Hz, 3H, CH₃), 4.27 – 4.34 (q, *J* = 7.1Hz, 2H, CH₂), 7.54 – 7.57 (m, *J* = 8.5 H, *J* = 2.8 Hz, 2H, H_{aryl}), 7.71 – 7.74 (m, *J* = 8.5 H, *J* = 2.8 Hz, 2H, H_{aryl}), 10.92 (s, 1H, NH); ¹³C NMR (CDCl₃) δ (ppm): 14.2, 62.9, 116, 122.7, 132, 137, 155.9, 160.8. Anal.calcd (found): C 44.14 (47.74); H 3.70 (4.99); N 5.15 (5.42).

EtH-4-MeOpma: Yield: 94%; IR (KBr/cm⁻¹): 3352 (N–H), 3117, 2977, 2901, 2848 (C–H), 1724, 1697 (C=O); 1H NMR (CDCl₃) δ (ppm): 1.40 – 1.45 (t, *J* = 7.1Hz, 3H, CH₃), 3.81 (s, 3H, OCH₃), 4.37 – 4.45 (q, *J* = 7.1Hz, 2H, CH₂), 6.89 – 6.92 (m, *J* = 8.5 H, *J* = 2.8 Hz, 2H, H_{aryl}), 7.54 – 7.59 (m, *J* = 8.5 H, *J* = 2.8 Hz, 2H, H_{aryl}), 8.82 (s, 1H, NH); ¹³C NMR (CDCl₃) δ (ppm): 14.4, 55.9, 64, 114.8, 121.8, 129.9, 154, 157.6, 161.6; Anal. calcd (found): C 59.19 (59.83), H 5.87 (6.81), N 6.27 (6.13).

EtH-4-Isopma: Yield: 82%; IR (KBr/cm⁻¹): 3303 (N–H), 3050, 2960, 2870 (C–H), 1739, 1691 (C=O); 1H NMR (CDCl₃) δ (ppm): 1.23 – 1.25 (d, J = 6.9 Hz, 6H, CH₃), 1.41 – 1.45 (t, J = 7.1Hz, 3H, CH₃), 2.86 – 2.95 (m, J = 6.9 Hz, 1H, CH), 4.38 – 4.45 (q, 2H, CH₂), 7.22 – 7.26 (m, J = 8.5 H, J = 2.0 Hz, 2H, H_{aryl}), 7.53 – 7.58 (m, J = 8.5 H, J = 2.8 Hz, 2H, H_{aryl}), 8.83 (s, 1H, NH); ¹³C NMR (CDCl₃) δ (ppm): 14.4, 24.3, 34.1, 64.1, 120.3, 127.5, 134.4, 146.7, 154.2, 161.5; Anal. calcd (found): C 66.36 (66.43), H 7.28 (7.73), N 5.95 (7.73).

1 E. Pardo, R. Ruiz-García, J. Cano, X. Ottenwaelder, R. Lescouëzec, Y. Journaux, F. Lloret, and M. Julve, *Dalton. Trans.*, 2008, 2780.

Fig. S1 Stability of the palladium(II) oxamate-containing precatalyst after 90 days in water under ambient conditions.

Catalytic Results of the Heck-Vinylation of Aryl Halides.

	l + ∅	R0.5 m 	nol% cat. / 2 e Br, 5 - 30 min	R			
Entry ^a	Aryl halide	Olefin	Catalyst	Time (min)	Yield	TON	TOF (h ⁻¹)
1		COOEt	1	5	99	198	2376
2		COOEt	2	5	99	198	2376
3		COOEt	3	5	99	198	2376
4		COOEt	4	5	99	198	2376
5	⟨	COOEt	5	5	99	198	2376
6			1	30	99	198	396
7			2	30	99	198	396
8			3	30	99	198	396
9			4	30	99	198	396
10	< → -I		5	30	99	198	396

Table S1. Scope of Heck coupling reaction of iodobenzene with olefins

^a Reaction conditions: 0.5 mmol iodobenzene, 0.75 mmol olefin, 0.5 mol% cat.,1 mmol Et₃N, 5-30 min, 120 °C in n-Bu₄NBr. ^bDetermined by GC-MS analysis using perfluorotributylamine (PFTBA) as internal standard.

Table S2. Heck-vinylation of iodobenzene with ethyl acrylate in *n*-Bu₄NBr

$$\begin{array}{c} \textcircled{\begin{tabular}{c} 0 \\ -1 \end{array}} + \begin{array}{c} \overbrace{\begin{tabular}{c} 0 \\ 0 \end{array}} \\ 0 \end{array} \end{array} \begin{array}{c} 0.25 \text{ mol\% cat.} / 2 \text{ eq Et}_3 N \\ (n-\text{Bu}_4 N)\text{Br}, 120 \ ^\circ\text{C} \end{array} \end{array}$$

Entry ^a Catalyst	Catalyst	$Run - Yield (\%)^{b}$				$Run - TON / TOF (h^{-1})$											
	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	
1	1	97	94	99	99	97	98	99	99	388/4662	377/4525	400/4800	400/4800	388/4662	393/4719	400/4800	394/4732
2	2	63	79	94	93	94	96	97	97	253/3036	316/3789	374/4491	374/4487	378/4533	386/4732	388/4758	386/4735
3	3	69	12	53	77	81	86	88	83	277/3323	48/576	213/2561	307/2685	322/3869	345/4136	354/4242	333/3990
4	4	67	85	94	99	96	99	97	98	266/3193	339/4068	376/4516	400/4800	383/4598	400/4800	387/4645	391/4690
5	5	85	99	99	99	99	80	84	84	342/4100	400/4800	400/4800	400/4800	400/4800	319/3828	336/4035	338/4053

^a Reaction conditions: 0.5 mmol iodobenzene, 0.75 mmol ethyl acrylate, 0.25 mol% cat., 1 mmol of Et₃N, 5 min, 120 °C in *n*-Bu₄NBr. ^bDetermined by GC-MS analysis using perfluorotributylamine (PFTBA) as internal standard.

\langle	Br + =	R <u>0.5</u> <i>n</i> -Bi	⁵ mol% cat. / 2 eq u ₄ NBr, 3 - 4 h, 12	Et ₃ N 0 ℃		<u>}_</u> /_₽	ł
Entry	Aryl halide	Olefin	Catalyst	Time (h)	Yield	TON	TOF (h ⁻¹)
1	⟨Br	COOEt	1	3	99	198	66
2	⟨Br	COOEt	2	3	90	180	60
3	⟨	COOEt	3	3	91	182	61
4	⟨Br	COOEt	4	3	82	163	54
5	⟨Br	COOEt	5	3	89	177	59
6	⟨Br	COOEt	[PdCl ₂]	3	0	0	0
7	⟨Br	COOEt	[Pd ₃ (OAc) ₆]	3	0	0	0
8	⟨	COOEt	[Pd(dba) ₂]	3	74	148	37
9	⟨Br		1	4	92	184	46
10	⟨Br		2	4	76	152	38
11	⟨Br		3	4	77	155	39
12	⟨Br		4	4	92	184	46
13	⟨Br		5	4	90	179	45

Table S3. Scope of Heck coupling of bromobenzene with olefins in *n*-Bu₄NBr

^a Reaction conditions: 0.5 mmol bromobenzene, 0.75 mmol olefin, 0.5 mol% cat.,1 mmol Et₃N, 3-4 h, 120 °C in *n*-Bu₄NBr. ^bDetermined by GC-MS analysis using perfluorotributylamine (PFTBA) as internal standard

Table S4 . Heck coupling of aryl halide with olefins in <i>n</i> -Bu ₄ NBr									
R R'	0.5 mol% cat. / 2 eq Et ₃ N	-R'							
	<i>n</i> -Bu ₄ NBr, 120 °C								
X = I, Br, Cl									

Entry ^a	Catalyst	Aryl halide	Olefin	Time	Runs –	Yield	l ^b (%)
	۰ ۱			(min) 5	1 0	<u>2</u> 14	<u> </u>
1	1		ő	5	0	14	05
2	1	I-{CN		5	71	86	89
3	1	I-CH3		5	0	70	90
4	1			5	0	81	93
5	1	I-{		5	0	92	93
6	1			15	89	85	85
7	2	I		5	19	86	88
8	2	I-CN		5	99	53	87
9	2	I-CH3		5	41	47	85
10	2			5	47	89	93
11	2	I		5	17	43	92
10	2			15	99	-	98
13	3	I-		5	26	90	97
14	3	I-CN		5	99	99	-
15	3	I-CH3		5	96	2	58
16	3			5	53	96	98
17	3	ı–∕>−0′		5	37	93	99
18	3			15	83	95	94
19	4	I		5	47	75	90
20	4	I-CN		5	51	87	83
21	4			5	74	99	94
22	4			5	99	96	89
23	4	I		5	41	94	99

24	4		15	99	99	99
25	5	I	5	80	87	92
26	5	I-CN	5	-	86	88
27	5	I	5	37	90	99
28	5		5	75	93	99
29	5	I{O_	5	69	99	99
30	5		15 h	99	99	99
31	1	OBr	1.5 h	99	*c	* c
32	1	FBr	4 h	92	* c	* c
33	1	F-CI	72 h	* c	* c	* c
34	2	OBr	1.5 h	99	* c	* c
35	2	F — Br	4 h	94	*c	*c
36	2	F-CI	72 h	13	* c	* c
37	3	OBr	1.5 h	99	*c	* c
38	3	F — Br	4 h	93	*c	* c
39	3	F-CI	72 h	*c	*c	*c
40	4	OBr	1.5 h	99	*c	* c
41	4	F — Br	4 h	91	*c	* c
42	4	F-CI	72 h	*c	*c	* c
43	5	OBr	1.5 h	99	*c	* c
44	5	F - Br	4 h	94	*c	*c
45	5	F-CI	72 h	* c	* c	* c

^a Reaction conditions: 0.5 mmol aryl halide, 0.75 mmol olefins, 0.5 mol% cat., 1 mmol Et₃N, 120 °C in *n*-Bu₄NBr. ^b Determined by GC-MS analysis using perfluorotributylamine (PFTBA) as internal standard. ^c Not tested.

NMR Spectra of the Catalytic Products.

Fig. S2 ¹H-NMR, ¹³C-NMR and Dept-135-NMR (inset) spectra of (*E*)-1,2-diphenylethene.

Fig. S3 ¹H-NMR, ¹³C-NMR and Dept-135-NMR (inset) spectra of ethyl (2*E*)-3-phenylprop-2-enoate.

Fig. S4 ¹H-NMR, ¹³C-NMR and Dept-135-NMR spectra of ethyl (2*E*)-3-(4-methoxyphenyl)prop-2-enoate.

Fig. S5 ¹H-NMR, ¹³C-NMR and Dept-135-NMR (inset) spectra of ethyl (2*E*)-3-(4-methylphenyl)prop-2enoate.

Fig. S6 ¹H-NMR; ¹³C-NMR and Dept-135-NMR (inset) spectra of ethyl (4-acetylphenyl)prop-2-enoate.

Fig. S7 ¹H-NMR; ¹³C-NMR and Dept-135-NMR (inset) spectra of ethyl (2*E*)-3-(4-cyanophenyl)prop-2-enoate.

Fig. S8 ¹H-NMR, ¹³C-NMR and Dept-135-NMR (inset) spectra of methyl (2*E*)-4-(3-ethoxy-3-oxoprop-1-en-1-yl]benzoate.