Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Electronic Supplementary Information

A comparison of two classic Pb²⁺-dependent RNA-cleaving DNAzymes

Runjhun Saran and Juewen Liu*

Department of Chemistry, Waterloo Institute for Nanotechnology

Waterloo, Ontario, Canada N2L 3G1

Email: liujw@uwaterloo.ca

Table S1. DNA sequences used in the paper.

DNA	SEQUENCE (5'-3')
Substrate	
WT	GTCACGAGTCACTAT rAG GAAGATGGCGAAA
rAA	GTCACGAGTCACTAT rAA GAAGATGGCGAAA
rA2AP	GTCACGAGTCACTAT rA2AP GAAGATGGCGAAA
rAHX	GTCACGAGTCACTAT rAHX GAAGATGGCGAAA
GR5 DNAzyme	
WT	TTTCGCCATCT GAAGTAGCGCCGCCG TATAGTGACTCGTGAC
A6C	TTTCGCCATCT GAAGT<mark>C</mark>GCGCCGCCG TATAGTGACTCGTGAC
A6T	TTTCGCCATCT GAAGTTGCGCCGCCG TATAGTGACTCGTGAC
A6G	TTTCGCCATCT GAAGT<mark>G</mark>GCGCCGCCG TATAGTGACTCGTGAC
G7A	TTTCGCCATCT GAAGTAACGCCGCCG TATAGTGACTCGTGAC
G7C	TTTCGCCATCT GAAGTACCGCCGCCG TATAGTGACTCGTGAC
G7T	TTTCGCCATCT GAAGTATCGCCGCCG TATAGTGACTCGTGAC
C8A	TTTCGCCATCT GAAGTAGAGCCGCCG TATAGTGACTCGTGAC
C5G	TTTCGCCATCT GAAGTAGGGCCGCCG TATAGTGACTCGTGAC
C8T	TTTCGCCATCT GAAGTAGTGCCGCCG TATAGTGACTCGTGAC
G9A	TTTCGCCATCT GAAGTAGCACCGCCG TATAGTGACTCGTGAC
G9C	TTTCGCCATCT GAAGTAGC^CCCGCCG TATAGTGACTCGTGAC
G9T	TTTCGCCATCT GAAGTAGCTCCGCCG TATAGTGACTCGTGAC
C14A	TTTCGCCATCT GAAGTAGCGCCGCAG TATAGTGACTCGTGAC
C14G	TTTCGCCATCT GAAGTAGCGCCGC^GG TATAGTGACTCGTGAC
C14T	TTTCGCCATCT GAAGTAGCGCCGC^TG TATAGTGACTCGTGAC
G15A	TTTCGCCATCT GAAGTAGCGCCGCCA TATAGTGACTCGTGAC
G15C	TTTCGCCATCT GAAGTAGCGCCGCCC TATAGTGACTCGTGAC
G15T	TTTCGCCATCT GAAGTAGCGCCGCCT TATAGTGACTCGTGAC
1=T	TTTCGCCATCT T-GAAGTAGCGCCGCCG TATAGTGACTCGTGAC
1=TC	TTTCGCCATCT <mark>TCGAAGTAGCGCCGCCGTATAGTGACTCGTGAC</mark>
2=AAG	TTTCGCCATCTAAGTAGCGCCGCCGTATAGTGACTCGTGAC
2=AG	TTTCGCCATCT AGTAGCGCCGCCG TATAGTGACTCGTGAC
2=G	TTTCGCCATCTGTAGCGCCGCCGTATAGTGACTCGTGAC
2=none	TTTCGCCATCT TAGCGCCGCCG TATAGTGACTCGTGAC
3=A	TTTCGCCATCT GAAGAAGCGCCGCCG TATAGTGACTCGTGAC
3=C	TTTCGCCATCT GAAGCAGCGCCGCCG TATAGTGACTCGTGAC
3=G	TTTCGCCATCT GAAG<mark>G</mark>AGCGCCGCCG TATAGTGACTCGTGAC
17E DNAzyme	
W'I'	TTTTCGCCATCTTTCCCCGAGCCGGTCGAAATAGTGACTCGTGAC
A6C	TTTTCGCCATCTTTC TCCG<mark>C</mark>GCCGGTCGAAA TAGTGACTCGTGAC
A6G	TTTTCGCCATCTTTC TCCG^GGCCGGTCGAAA TAGTGACTCGTGAC
A6T	TTTTCGCCATCTTTC TCCGTGCCGGTCGAAA TAGTGACTCGTGAC
G'/A	TTTTCGCCATCTTTC TCCGAACCCGGTCGAAA TAGTGACTCGTGAC
G7C	TTTTCGCCATCTTTC TCCGACCCCGGTCGAAA TAGTGACTCGTGAC
G7T	TTTCGCCATCTTTC TCCGATCCGGTCGAAA TAGTGACTCGTGAC

A=Adenine; C=Cytosine; T=Thymine; G=Guanine; 2AP=2-AminoPurine; HX=Hypoxanthine

C13A	TTTCGCCATCTTTC TCCGAGCCGGTAGAAA TAGTGACTCGTGAC
C13G	TTTCGCCATCTTTC TCCGAGCCGGT<mark>G</mark>GAAA TAGTGACTCGTGAC
С13Т	TTTCGCCATCTTTC TCCGAGCCGGT<mark>T</mark>GAAA TAGTGACTCGTGAC
G14A	TTTCGCCATCTTTC TCCGAGCCGGTCAAAA TAGTGACTCGTGAC
G14C	TTTCGCCATCTTTC TCCGAGCCGGTC<mark>C</mark>AAA TAGTGACTCGTGAC
G14T	TTTCGCCATCTTTC TCCGAGCCGGTC<mark>T</mark>AAA TAGTGACTCGTGAC

Figure S1. Mfold predicted secondary structures from a few GR5 mutants and the wild-type GR5. All the other mutants fold into a structure similar to that for the wild-type GR5 and are not listed here. The cleavage site adenine is marked by the red circle. The substrate and enzyme strands are linked by a TTTT loop. In the wild-type GR5 structure, two G-C base pairs are predicted in the enzyme loop. However, these nucleotides are highly conserved for catalysis and thus are unlikely

to be confined in such a hairpin structure. Therefore, we still used the simple loop structure in the original GR5 selection paper (Breaker, R. R.; Joyce, G. F. *Chem. Biol.* **1994**, *1*, 223) in this work. The mutants in this figure have three base pairs in the loop and their misfold (i.e. deviation from the simple loop structure) might also be a reason for their inhibited activity.