Supplementary Information

Theoretical evaluation of Lanthanide Binding Tags as biomolecular handles for the organization of Single Ion Magnets and spin qubits

Lorena E. Rosaleny, Alejandro Gaita-Ariño

Fig S2: Box plots with the full distribution of Ω/Δ ratios for diverse LBT structures substituted, from left to right, by Nd, Tb, Ho, Er and Tm.

Fig S3: Box plots with the full distribution of estimates decoherence times t for diverse LBT structures substituted, from left to right, by Nd, Dy, Ho, Er and Tb.

Table S1: Ionic radii employed for the lanthanide series and the corresponding contraction/expansion for their coordination spheres. Starting from crystal structures of the Tb^{+3}/Gd^{+3} derivatives.

	Nd	Gd	Тb	Dy	Но	Er	Tm	Yb
ri	1.249	1.193	1.180	1.167	1.155	1.144	1.134	1.125
Tb Correction	0.069	0.013	0.000	-0.013	-0.025	-0.036	-0.046	-0.055
Gd Correction	0.056	0.000	-0.013	-0.026	-0.038	-0.049	-0.059	-0.068

Table S2: SIMPRE parameters calculated from chemical parameters: electronegativity of the metal (E_M) , radial displacement (D_i) and effective charge (Z_i) . In all cases number of ligands (N_L) is 8, valence of the metal (V_M) is 3, and electronegativity of the oxygen ligand (E_L) is 3.44.

	Nd	Tb	Dy	Но	Er	Tm	Yb
E _M	1.14	1.10	1.22	1.23	1.24	1.25	1.10
Dr	1.02	1.04	0.98	0.98	0.98	0.97	1.04
Zi	0.092	0.091	0.095	0.096	0.096	0.096	0.091