Electronic Supplementary Information

Soil/Vulcan XC-72 hybrid as a high-effective catalytic cathode for

rechargeable Li-O₂ batteries

Xiaofei Hu,^a Xiaorui Fu,^a and Jun Chen*a,^b

Contents

Fig. S1

Fig. S2

- Fig. S3
- Fig. S4
- Fig. S5
- Fig. S6

Table S1

Fig. S1 (a) SEM image and (b) XRD of treated soil particles.

Fig. S2 Discharge cure of Li– O_2 batteries in Ar at 100 mA g⁻¹.

Fig. S3 Charge/discharge curves of Li–O₂ batteries with capacity cut-off 800 mAh g⁻¹ (0.4 mAh cm⁻²) at (a) 0.2 mA cm⁻² and (b) 0.4 mA cm⁻² in pure O₂. The cathode catalyst is hybrid of soil/C (soil:C = 1:10, mass ratio).

Fig. S4 OER terminal voltage curves of Li–O₂ batteries at different current densities.

Fig. S5 Discharge curves of Li– O_2 batteries at 0.2 mA cm⁻². Two states are selected to observe the cathode morphology by SEM. State 1: prior to discharge. State 2: after discharge to 2000 mAh g⁻¹.

Fig. S6 Raman spectrum of cathodes at different discharge/charge states in $Li-O_2$ batteries. During test, cathodes were sealed by optical glass, which is used to prevent air from contaminating discharge product.

 Table S1. Comparison of initial discharge capacity of soil/C hybrid and noble metal

 containing catalysts reported in literatures.

samples	citation	current density	Capacity /mAh cm ⁻²	Capacity /mAh g ⁻²
Porous gold	1	500 mA g^{-1}	0.45-5	~300
Pt-HSC/CP	2	1500 mA g^{-1}	-	6000
PdCu Nanocatalysts	3	200 mA g^{-1}	~3.24	~12000
Mn-Ru binary oxides	4	0.1 mA cm^{-2}	5.36	6500
Ru/ITO	5	0.15 mA cm^{-2}	1.81	905-1508
Soil/C hybrid	-	0.2 mA cm^{-2}	3.82	7640
		or 400 mA g^{-1}		

Table S2	. Comparison	of	electrochemical	performance	of	carbon	based	cathode	catalysts
reported i	n literatures.								

samples	citation	current density	cycle performance	Capacity
			/cycles	$/mAh g^{-1}$
Hierarchical carbon	6	250 mA g^{-1}	50	1000
Pt-HSC/CP	2	300 mA g^{-1}	205	1000
Graphene/Graphene-Tube	7	400 mA g^{-1}	50	1200-1600
N-Doped Carbon Fiber	8	500 mA g^{-1}	200	500
our samples:	-	0.2 mA cm^{-2}	100	800
Soil/C hybrid		0.4 mA cm^{-2}	75	800

Supplementary References

- 1 Z. Q. Peng, S. A. Freunberger, Y. H. Chen and P. G. Bruce, *Science* 2012, **337**, 563–566.
- J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang and X. B. Zhang, *Nat. Comm.*, 2013, 4, 2438–2448.
- 3 R. Choi, J. Jung, G. Kim, K. Song, Y. I. Kim, S. C. Jung, Y. K. Han, H. Song and Y. M. Kang, *Energy Environ. Sci.* 2014, 7, 1362–1368.
- K. Guo, Y. Li, J. Yang, Z. Q. Zou, X. Z. Xue, X. M. Li and H. Yang, *J. Mater. Chem. A* 2014, 2, 1509–1514.
- 5 F. J. Li, D. M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada and H. S. Zhou, *Nano Lett.* 2013, **13**, 4702–4707.
- 6 Z. Y. Guo, D. D. Zhou, X. L. Dong, Z. J. Qiu, Y. G. Wang and Y. Y. Xia, Adv. Mater.

2013, **25**, 5668–5672.

- Q. Li, P. Xu, W. Gao, S. G. Ma, G. Q. Zhang, R. G. Cao, J. Cho, H. L. Wang and G.
 Wu, Adv. Mater. 2014, 26, 1378–1386.
- 8 J. L. Shui, F. Du, C. M. Xue, Q. Li and L. M. Dai, *ACS Nano* 2014, **8**, 3015–3022.