# **Electronic Supplementary Information**

Molecular photo-charge-separators enabling single-pigmentdriven multi-electron transfer and storage leading to  $H_2$ evolution from water

Kyoji Kitamoto,<sup>1,2</sup> Makoto Ogawa,<sup>1</sup> Gopalakrishnan Ajayakumar,<sup>1</sup> Shigeyuki Masaoka,<sup>1</sup> Heinz-Bernhard Kraatz<sup>3,4</sup> and Ken Sakai<sup>1,2,5</sup>\*

<sup>1</sup>Department of Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.

<sup>2</sup>International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

<sup>3</sup>Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.

<sup>4</sup>Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.

<sup>5</sup>Center for Molecular Systems (CMS), Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.

#### **Experimental Section**

#### Materials

A 2.0 *M* methylamine solution in tetrahydrofuran (THF) was purchased from Watanabe Chemical Industries. PVP-protected colloidal Pt (2 nm in particle size) was purchased from Tanaka Holdings Co., Ltd. All other chemicals and solvents were purchased from Kanto Chemicals Co., Inc. and used without further purification. **4,4'-MV4**(PF<sub>6</sub>)<sub>8</sub>·5H<sub>2</sub>O,<sup>1</sup> **5,5'-MV4**(PF<sub>6</sub>)<sub>8</sub>·3H<sub>2</sub>O,<sup>2</sup> [Ru(bpy)<sub>2</sub>(**5,5'-MV4**)](PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O,<sup>2</sup> 4,4'-dicarboxy-2,2'-bipyridine,<sup>3</sup> [Ru(**5,5'-ME2**)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub>·H<sub>2</sub>O (**5,5'-ME2** = 5,5'-bis(N-methylcarbamoyl)-2,2'-bipyridine),<sup>4</sup> *cis*-RuCl<sub>2</sub>(DMSO)<sub>4</sub><sup>5</sup> (DMSO = dimethyl sulfoxide), [Ru(bpy)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O,<sup>6</sup> and MV(NO<sub>3</sub>)<sub>2</sub><sup>6</sup> were synthesized as previously described.

Synthesis of [Ru(4,4'-MV4)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub>·12H<sub>2</sub>O. A solution of cis-RuCl<sub>2</sub>(DMSO)<sub>4</sub> (24 mg, 0.050 mmol) and 4,4'-MV4(PF<sub>6</sub>)<sub>8</sub>·5H<sub>2</sub>O (0.490 mg, 0.195 mmol) in a water–ethanol mixture (1:1 v/v, 10 mL) was refluxed under Ar for 48 h, while the reaction progress was monitored spectrophotometrically. After cooling to room temperature, the reaction mixture was filtered to remove insoluble materials. To the filtrate was added water (ca. 5 mL), followed by concentration by evaporation in order to remove most of ethanol. To the resulting solution was added saturated aqueous NH<sub>4</sub>PF<sub>6</sub>, (ca. 0.5 mL), resulting in prompt deposition of the product as a reddish brown solid, which was collected by filtration. The crude product was purified on a Sephadex LH-20 column (ca. 60 cm) using acetonitrile:methanol (1:1 v/v) as an eluent. The first red band was collected and dried in vacuo to give a pure product as a dark red solid (yield: 251 mg, 63.7 %). <sup>1</sup>H NMR (CD<sub>3</sub>CN/TMS (TMS = tetramethylsilane), 20 °C, ppm):  $\delta$  9.02 (s, 6H), 8.91-8.83 (m, 48H), 8.43-8.38 (m, 48H), 7.92-7.87 (m, 12H), 7.70 (s, 6H), 7.06 (s, 6H), 6.66 (s, 6H), 4.83-4.61 (m, 30H), 4.41 (s, 36H), 3.81-3.64 (m, 24H), 2.77-2.61 (m, 12H); Anal. Calcd for C<sub>216</sub>H<sub>234</sub>F<sub>156</sub>N<sub>48</sub>O<sub>18</sub>P<sub>26</sub>Ru·12H<sub>2</sub>O (7876.79): C 32.94, H 3.30, N 8.54; found: C, 33.16; H, 3.21; N, 8.56, where the number of water solvate was calibrated based on the integrated intensity ratios of the <sup>1</sup>H NMR signals (averaged for three separately prepared samples).

**Synthesis of [Ru(5,5'-MV4)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub>·9H<sub>2</sub>O.** Prepared as described above for [Ru(4,4'-MV4)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub>·12H<sub>2</sub>O substituting **5,5'-MV4**(PF<sub>6</sub>)<sub>8</sub>·3H<sub>2</sub>O (495 mg, 0.195 mmol) for **4,4'-MV4**(PF<sub>6</sub>)<sub>8</sub>·5H<sub>2</sub>O (yield: 237 mg, 60.5 %). <sup>1</sup>H NMR (CD<sub>3</sub>CN/TMS, 20 °C, ppm) :  $\delta$  8.99-8.86 (m, 48H), 8.66 (m, 6H), 8.39 (m, 54H), 8.11-7.95 (m, 6H), 7.71-7.06 (m, 6H), 6.96-6.87 (m, 6H), 6.68-6.61 (m, 6H), 4.84-4.63 (m, 30H), 4.41 (s, 36H), 3.78-3.60 (m, 24H), 2.56-2.50 (m, 12H); Anal. Calcd for C<sub>216</sub>H<sub>234</sub>F<sub>156</sub>N<sub>48</sub>O<sub>19</sub>P<sub>26</sub>Ru·9H<sub>2</sub>O (7822.74): C 33.16, H 3.25, N 8.59; found: C 33.55, H 3.27, N 8.67, where the number of water solvate was calibrated based

on the integrated intensity ratios of the <sup>1</sup>H NMR signals (averaged for three separately prepared samples).

**Synthesis of 4,4'-bis(N-methylcarbamoyl)-2,2'-bipyridine (4,4'-ME2).** To a solution of 2,2'-bipyridine-4,4'-dicarboxylic acid (0.16 g, 0.655 mmol) in thionyl chloride (10 mL) was added a drop of dry dimethylformamide (DMF) followed by refluxing for 2 h with stirring. After the reaction mixture was cooled to room temperature, thionyl chloride and DMF were removed under reduced pressure to give the bis(chlorocarbonyl) derivative, which was dissolved in dry THF (25 mL) followed by addition of a 2.0 *M* methylamine solution in THF (2.0 mL). The solution was refluxed for 5 h. The resulting yellow precipitate was collected by filtration, washed several times with water, and dried in vacuo (yield: 145 mg, 79.2 %). <sup>1</sup>H NMR (DMSO-d<sub>6</sub>/TMS, 20 °C, ppm):  $\delta$  8.92 (d, *J* = 4.1 Hz, 2H), 8.86 (d, *J* = 4.8 Hz, 2H), 8.79 (s, 2H), 7.84 (dd, *J* = 4.8, 2.0 Hz, 2H), 2.84 (d, *J* = 4.1 Hz, 6H); ESI-TOF MS: m/z = 271.20 [M + H]<sup>+</sup> (Calcd for C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>: 271.29); Anal. Calcd for C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>·0.5H<sub>2</sub>O (279.30): C, 60.21; H, 5.41; N, 20.06; found: C, 60.50; H, 5.29; N, 19.78.

**Synthesis of [Ru(4,4'-ME2)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub>·2H<sub>2</sub>O.** Prepared as described above for [Ru(4,4'-MV4)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub>·12H<sub>2</sub>O by reacting *cis*-RuCl<sub>2</sub>(DMSO)<sub>4</sub> (40.5 mg, 0.0836 mmol) and 4,4'-bis(N-methylcarbamoyl)-2,2'-bipyridine (4,4'-ME2) (93.4 mg, 0.334 mmol) in a water-ethanol mixture (1 : 1 v/v, 20 mL) under Ar for 20 h to give a product as a dark red solid (yield: 70.8 mg, 68.4 %). <sup>1</sup>H NMR (CD<sub>3</sub>CN/TMS, 20 °C, ppm):  $\delta$  8.91 (d, *J* = 2.0 Hz, 6H), 7.82 (d, *J* = 6.2 Hz, 6H), 7.68 (dd, *J* = 5.5, 2.0 Hz, 6H), 2.93 (d, *J* = 4.9 Hz, 18H); ESI-TOF MS: m/z = 1057.42 [M - PF<sub>6</sub>]<sup>+</sup> (Calcd for C<sub>42</sub>H<sub>42</sub>F<sub>6</sub>N<sub>12</sub>O<sub>6</sub>PRu: 1057.19), m/z = 456.11 [M - 2PF<sub>6</sub>]<sup>2+</sup> (Calcd for C<sub>42</sub>H<sub>42</sub>N<sub>12</sub>O<sub>6</sub>Ru: 912.38); Anal. Calcd for C<sub>42</sub>H<sub>42</sub>F<sub>12</sub>N<sub>12</sub>O<sub>6</sub>P<sub>2</sub>Ru·2H<sub>2</sub>O (1237.89): C, 40.75; H, 3.75; N, 13.58; found: C, 40.65; H, 3.73; N, 13.38.

### General Methods.

<sup>1</sup>H NMR spectra were acquired on a JEOL JNM-ESA 600 spectrometer. ESI-TOF mass spectra were recorded on a JEOL JMS-T100CS spectrometer. UV-vis and UV-vis-NIR spectra were recorded on Shimadzu UV-2600 and UV-3600 spectrophotometer, respectively. Luminescence spectra were recorded on a Shimadzu RF-5300PC spectrofluorophotometer. Emission decays were recorded on a HORIBA FluoroCube 3000USKU using a HORIBA N-470L diode laser (472 nm) as an excitation source. Luminescence quantum yields were determined using a Hamamatsu C9920-02 absolute photoluminescence quantum yield measurement system equipped with a 150 W Xe lamp coupled to a monochromator for wavelength discrimination, an integrating sphere as a sample chamber, and a Hamamatsu C10027-01 multichannel detector for

signal detection. Nanosecond laser flash photolysis experiments were carried out using a Unisoku TSP-1000M-03R system equipped with a Nd:YAG laser (Minilite II-10, Continuum, CA, USA) as a pump source and a 150 W Xe lamp (L2195, Hamamatsu) as a probe source. Transient absorption spectra were recorded using multichannel detector with a gated image-intensifer (C954603, Hamamatsu), while single-wavelength transient absorption traces were monitored using an amplified photomultiplier tube (R2949, Hamamatsu). Molar conductivity measurements were carried out at 20 °C in water using a TOA CM-20S conductometer with a TOA CG-511B conductivity cell having a cell constant of 0.969 cm<sup>-1</sup>. Analysis of multi-step ion-pair formation equilibria was carried out based on our published procedures.<sup>2</sup> Square wave voltammograms were recorded on a BAS ALS Model 6022D electrochemical analyser, using a three electrode system consisting of a platinum working electrode, a platinum wire counter electrode, and a Ag/Ag<sup>+</sup> reference electrode (0.249 V vs. SCE), where TBAH (tetra(n-butyl)ammonium hexafluorophosphate) was used as a supporting electrolyte and all potentials reported were standardized by simultaneously observing the Fc/Fc<sup>+</sup> couple (Fc/Fc<sup>+</sup> = 0.155 V vs. SCE).

In Situ ESR Studies. ESR spectra were acquired on a JEOL JES-FA200 ESR spectrometer equipped with a EFM 2000AX NMR field meter (ECHO Electronic Co. Ltd.) for field calibration, using a ES-LC12 quartz flat cell (60 mm x 10 mm x 0.3 mm) for aqueous sample measurements. The spectra of monoradical species (MV<sup>+</sup>•), in situ generated by photolysis, were measured under Ar atmosphere at room temperature by careful exclusion of O<sub>2</sub> which immediately quenches radicals ( $MV^{+} + O_2 \rightarrow MV^{2+} + O_2^{-}$ ). Photolysis was performed using an Asahi Spectra MAX-303 300 W Xe lamp equipped with a visible mirror module ( $\lambda$  = 385-740 nm) with the light intensity diminished to 50% (ND filter). Radicals are also quite sensitive to the metallic impurities over the glassware surfaces since they can catalyze water reduction  $(2MV^{+} + 2H^{+} \rightarrow 2MV^{2+} + H_{2})$ . Therefore, the quartz cell was sufficiently cleaned by soaking in aqua regia prior to the use. The spin density of the monoradical site generated over the charge-separators was calibrated by measuring the ESR intensity of MV<sup>+</sup>• generated by photoirradiating the EDTA/ $[Ru(bpy)_3]^{2+}/MV^{2+}$  solution under the same experimental conditions, where calibration also relied on the concentrations of monoradical separately determined by in situ absorption spectroscopy performed under the same conditions (Fig. S9). The concentration of the monoradical site in the charge-separators were determined by spectral deconvolution as noted above.

**Photochemical H<sub>2</sub> Evolution Experiments.** Visible light irradiation ( $400 < \lambda < 800$  nm) was carried out using an ILC Technology CERMAX LX-300 Xe lamp (300 W) equipped with a

CM-1 cold mirror which suppresses UV and NIR irradiation. Photolysis was carried out in a Pyrex glass vial (ca. 20 mL in inner volume), immersed in a water bath thermostatted at 20 °C, and each photolysis solution (10 mL) was continuously purged with Ar (10 mL/min; STEC SEC-E40/PAC-D2 digital mass flow controller) with stirring. The vent gas was introduced into our computer-controlled automated gas chromatographic analysis line (Shimadzu GC-8A gas chromatograph equipped with a molecular sieve 5A column (2 m x 3 mm i.d.; 30 °C) with an Ar carrier), the details for which have been described elsewhere.<sup>7</sup>

**Molecular-Mechanics and Quantum-Mechanical Calculations.** Molecular modeling studies were carried out using SCIGRESS (version 2; Fujitsu Limited, 2009).<sup>8</sup> Energy-minimized structures were located using molecular mechanics calculations (MM3),<sup>9-11</sup> where electrostatic interactions were taken into consideration by approximating that two positive charges on each viologen cation are respectively located at the pyridinium nitrogen centres and a negative charge on each PF<sub>6</sub><sup>-</sup> anion at the phosphorous centre.

Density functional theory (DFT) calculations were performed using the Gaussian 09 package of programs<sup>12</sup> in order to understand the structural and spin-state candidates for the  $\pi$ -dimers given by stacking of singly reduced viologen derivatives. Calculations were also performed to simulate the UV-Vis-NIR absorption spectra of the candidates computed. For this purpose, we adopted a model compound given by condensation of N-acetyl-aspartic acid (CH<sub>3</sub>-CONH-CH(CH<sub>2</sub>-COOH)-COOH) and two equivalents of one-electron-reduced N-methyl-N'-(2-aminoethyl)-4,4'-bipyridinium cations (abbreviated as  $H_2N-CH_2-MV^+$ ); that is, CH<sub>3</sub>-CONH-CH(CH<sub>2</sub>-CONH-CH<sub>2</sub>-MV<sup>+</sup>)-CONH-CH<sub>2</sub>-MV<sup>+</sup>, noted as Asp-based (MV<sup>+</sup>)<sub>2</sub>. Calculations were also performed for the simplest model of a  $\pi$ -dimer given by stacking of one-electron-reduced N,N'-dimethyl-4,4'-bipyridinium cations, noted as non-derivatized  $(MV^{+})_{2}$ . The structures were fully optimized using the M06 hybrid functional, developed by Truhlar et al.,<sup>13-15</sup> and the 6-31G\*\* basis set with the effects of solvation in water taken into consideration using polarizable continuum model (PCM).<sup>16-18</sup> We experienced that calculations using M06 with PCM afford quite reasonable geometries involving this type of weak  $\pi$ - $\pi$ stacking and/or bonding interactions. Spin-unrestricted UM06 theory was used for triplet states, while spin-restricted and -unrestricted methods (i.e., M06 and UM06) were respectively employed for closed- and open-shell singlet states. Particularly, UM06 calculations (Guess=Mix) in broken symmetry (BS) were performed for the open-shell singlet states. For such BS singlet-state calculations, spin contamination is exhibited by nonzero values for the spin-squared expectation value, defined with  $\langle S^2 \rangle = S(S+1)$ , where S is the molecular spin quantum number. Actually, the spin-squared expectation values after spin annihilation were in the range  $\langle S^2 \rangle = 0.0026-0.0703$ , confirming that spin contamination of the triplet state is

negligibly small. These support the validity of the BS approach for these open-shell singlet states without employing the spin-projected methods eliminating the redundant spin contaminations. For the non-derivatized (MV<sup>+</sup>)<sub>2</sub>, two types of stacking geometries, eclipsed and staggered ones, were realized for all three possible spin states with the triplet only 1-2 kcal/mol higher in energy. When the Asp-based  $(MV^{+})_{2}$  was optimized for an eclipsed conformation, only the closed-shell singlet preserved the eclipsed conformation at the end of optimization, while the other two spin states resulted in slipped conformations of two  $MV^+$  moieties. When the Asp-based  $(MV^{+})_{2}$  was optimized for the staggered conformation, all spin states preserved the conformation with the triplet similarly higher than the others in energy. All stationary points were characterized by their harmonic vibrational frequencies as minima. The unscaled frequencies were used to compute the zero-point vibrational energy corrections to the energies. For all the candidates computed, electronic excited states were calculated by the TD-DFT method as implemented in Gaussian  $09^{19-21}$  with use of the functional and the basis set described above. For each candidate, a sufficient number of excited states were calculated so that spectral simulation covers the wavelength range down to around 200 nm. The calculated transitions were replaced by a Gaussian broadening function with a full width at half maximum height of 0.2 eV to simulate the electronic transition spectrum. Molecular orbital pictures were generated using GaussView 5.0.22

The choice of basis set  $(6-31G^{**})$  was confirmed to be valid within the scope of our study by testing the results computed using a larger basis set. For instance, the M06/6-311+G(2d,p)/PCM level of calculations afford optimized geometry consistent with that computed at the M06/6-31G<sup>\*\*</sup>/PCM level (Fig. S19). Moreover, the spectral features simulated using the TD-DFT results given by these two different calculation levels are essentially same (Figs. S20a-c). Consequently, the 6-31G<sup>\*\*</sup> basis set was adopted in all calculations in order to minimize the computational time and cost available.

**Monte Carlo Simulation of CS Lifetimes.** The simulation program has been coded in Pascal using Delphi ver. 5.0 and is available for any purposes at the authors' website:

### http:// www.scc.kyushu-u.ac.jp/Sakutai/softwares//cs\_lifetime\_vs\_migration.zip

This program supposes that several equivalent branches involving a few equivalent viologen acceptor sites are tethered to a single  $Ru(bpy)_3^{2+}$ -type photosensitizer, as depicted in Fig. 4a. The test case defined in Fig. 4a supposes that one branch has interaction with two equivalent branches. Even after conducting an inter-branch ET event, an exactly same situation is supposed to be recovered. Therefore, three branches, in this case, should be positioned in a trigonal

fashion. Our model also supposes that locations of two MV<sup>2+</sup>/MV<sup>+</sup> sites within a branch are rapidly exchanged or moving around so that inter-branch ET toward every adjacent branch can take place with an equal probability. Under such conditions, ET events can be classified into three types, intra-branch ET, inter-branch ET, and BET, as illustrated in the above picture. Our model supposes that probabilities of conducting these three ET events are different. Here the frequency factors for intra-branch ET, inter-branch ET, and BET are defined by (n intra) x (intra ff), (n inter) x (inter ff), and 1, respectively, where n intra defines the number of adjacent viologen units within the branch which has already accepted one electron from the photoexcited pigment, and n inter is the number of equivalent adjacent branches available for ET, while intra ff and inter ff are used to further tune the probabilities of intra-branch and inter-branch ET processes, respectively. Note that the frequency factor of BET is not defined as a variable parameter and is fixed as unity in this model. In the model depicted above, n intra and n inter must be specified as 1 and 2, respectively. In the experiments in Fig. 4b, intra ff = 4and inter ff = 10 are adopted as roughly optimized values to reproduce the experimentally observed CS decay profiles. When the CS decay profile of  $[Ru(x,x'-MV4)_3]^{26+}$  is examined, an appropriate model can be defined by supposing n intra = 1, n inter = 4, intra ff = 4, and inter ff = 10, by which the probabilities of conducting intra-branch ET, inter-branch ET, and BET are given as (n intra x intra ff)/{(n intra x intra ff) + (n inter x inter ff) + 1} = 4/45, (n inter x inter ff)/{(n intra x intra ff) + (n inter x inter ff) + 1} =40/45, and 1/45, respectively. In these experiments, three additional parameters are defined. One is a permeation coefficient ( $\kappa_{BET}$ ) when conducting BET and is defined as  $\kappa_{BET} = 1/3$ . On the other hand, the permeation coefficient ( $\kappa_{EM}$ ) for conducting all the remaining ET events leading to EM is also defined as unity ( $\kappa_{EM} = 1$  for intra branch and inter branch ET events). These specify that the probability of having a BET event is (1/45)x(1/3) = 1/135 in each step, while that of having a migration event is 44/45. A set of parameters defined with n intra = 1, n inter = 0, intra ff = 4, and inter\_ff = 10 is appropriate to examine the behavior of  $[Ru(bpy)_2(5,5'-MV4)]^{10+}$  since the inter-branch ET among the 5,5'-positioned branches can be ruled out. The last parameter is the time spent to complete each ET step  $(t_{div})$ . This include the time spent for diffusion, and is postulated as  $t_{div} = 6$  ns in these test cases. In summary, by using the values listed below, the lifetimes of a hundred thousand of CS states were generated by the Monte Carlo technique. As a result, the computed results somehow reflect the observed tendency, which strengthens the validity of such statistical approach in predicting electron migration within a multi-acceptor system.

## Parameters employed for the calculations given Fig. 4b:

| n_intra = 1              | no. of other $MV^{2+}$ units within the branch accepted one electron                |
|--------------------------|-------------------------------------------------------------------------------------|
| n_inter = 0, 1, 2, 3, 4  | no. of adjacent branches available for ET                                           |
| intra_ff = 4***          | frequency factor to conduct intra-branch ET                                         |
| inter_ff = 10            | frequency factor to conduct inter-branch ET                                         |
| $\kappa_{\rm BET} = 1/3$ | permeation coefficient for conducting BET                                           |
| $\kappa_{\rm EM} = 1$    | permeation coefficient for conducting self exchange among $\mathrm{MV}^{\!\!+}$ and |
| $MV^{2+}$                |                                                                                     |
| $t_{div} = 6 ns$         | time spent for completing each step                                                 |

\*\*\* The lower intra\_ff value relative to inter\_ff may be due to the fact that stronger association of a  $PF_6^-$  anion within each branch makes the intra-branch ET more difficult to proceed in compared with the inter-branch ET process.



**Figure S1**. The observed and calculated molar conductivity vs. the square root of the total PCS concentration ( $C_t$ ), measured for [Ru(**4,4'-MV4**)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub> and [Ru(**5,5'-MV4**)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub>. The solid and dashed lines show the fitting based on our published methods.<sup>2</sup>

**Table S1.** The observed molar conductivity of PCSs in water vs. the square root of the total concentration ( $C_t$ ), measured in air at 20 °C.

| Complex                  | $C_{\rm t}^{1/2} ({\rm mM}^{1/2})$ | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) |
|--------------------------|------------------------------------|-------------------------------------------------|
| $[Ru(4,4'-MV4)_3]^{26+}$ | 0.03147                            | 1081                                            |
|                          | 0.02817                            | 1151                                            |
|                          | 0.02442                            | 1202                                            |
|                          | 0.01996                            | 1304                                            |
|                          | 0.009995                           | 1769                                            |
| $[Ru(5,5'-MV4)_3]^{26+}$ | 0.03147                            | 1019                                            |
|                          | 0.02817                            | 1079                                            |
|                          | 0.02442                            | 1185                                            |
|                          | 0.01996                            | 1296                                            |
|                          | 0.01413                            | 1498                                            |

| Params               | $[Ru(4,4'-MV4)_3]^{26+}$                  | $[Ru(5,5'-MV4)_3]^{26+}$                   |
|----------------------|-------------------------------------------|--------------------------------------------|
| α                    | 0.67                                      | 0.69                                       |
| $K_1(eta_1)$         | $2.000 \times 10^5 (2.0 \times 10^5)$     | $1.500 \times 10^5 (2.0 \times 10^5)$      |
| $K_2(\beta_2)$       | $1.340 \times 10^5 (2.68 \times 10^{10})$ | $1.035 \times 10^5 (1.553 \times 10^{10})$ |
| $K_3(\beta_3)$       | $89780~(2.406\times10^{15})$              | $71420~(1.109\times10^{15})$               |
| $K_4(eta_4)$         | $60150~(1.447 \times 10^{20})$            | $49280~(5.463\times10^{19})$               |
| $K_5(\beta_5)$       | $40300~(7.416\times10^{24})$              | $34000 (1.858 \times 10^{24})$             |
| $K_6(eta_6)$         | $27000 \ (1.575 \times 10^{29})$          | $23460~(4.358\times 10^{28})$              |
| $K_7(eta_7)$         | $18090 (2.85 \times 10^{33})$             | $16190 (7.055 \times 10^{32})$             |
| $K_8(eta_8)$         | $12120 (3.454 \times 10^{37})$            | $11170 (7.880 \times 10^{36})$             |
| $K_9(eta_9)$         | $8121 (2.805 \times 10^{41})$             | 7707 ( $6.073 \times 10^{40}$ )            |
| $K_{10}(eta_{10})$   | 5441 (1.526 $\times$ 10 <sup>45</sup> )   | 5318 (3.229 × 10 <sup>44</sup> )           |
| $K_{11}(eta_{11})$   | $3645 (5.565 \times 10^{48})$             | $3669 (1.185 \times 10^{48})$              |
| $K_{12}(eta_{12})$   | 2443 (1.359 × 10 <sup>52</sup> )          | $2531~(3.000\times 10^{51})$               |
| $K_{13}(\beta_{13})$ | $1637 (2.224 \times 10^{55})$             | $1747 (5.251 \times 10^{54})$              |
| $K_{14}(eta_{14})$   | $1096 (2.439 \times 10^{58})$             | $1205 (6.317 \times 10^{57})$              |
| $K_{15}(\beta_{15})$ | 734.6 $(1.792 \times 10^{61})$            | $831.7 (5.254 \times 10^{60})$             |
| $K_{16} \beta_{16})$ | $492.2\;(8.820\times 10^{63})$            | 573.9 $(3.015 \times 10^{63})$             |
| $K_{17}(eta_{17})$   | $329.8 (2.909 \times 10^{66})$            | $396.0\ (1.194\times 10^{66})$             |
| $K_{18}(eta_{18})$   | 221.0 $(6.427 \times 10^{68})$            | 273.2 $(3.263 \times 10^{68})$             |
| $K_{19}(eta_{19})$   | $148.0\ (9.514\times 10^{70})$            | $188.5 (6.151 \times 10^{70})$             |
| $K_{20}(eta_{20})$   | 99.19 (9.437 × 10 <sup>72</sup> )         | $130.0 (8.001 \times 10^{72})$             |
| $K_{21}(eta_{21})$   | $66.45~(6.271\times10^{74})$              | $89.76 (7.182 \times 10^{74})$             |
| $K_{22}(eta_{22})$   | $44.52~(2.792\times10^{76})$              | $61.93 (4.448 \times 10^{76})$             |
| $K_{23}(eta_{23})$   | $29.83 (8.329 \times 10^{77})$            | 42.73 $(1.901 \times 10^{78})$             |
| $K_{24}(eta_{24})$   | $19.99\ (1.665\times 10^{79})$            | $29.49~(5.605\times10^{79})$               |
| $K_{25}(eta_{25})$   | $13.39 (2.229 \times 10^{80})$            | $20.35 (1.140 \times 10^{81})$             |
| $K_{26}(eta_{26})$   | $8.972 (2.000 \times 10^{81})$            | $14.04 (1.601 \times 10^{82})$             |

**Table S2.** The  $\alpha$  values, the stepwise formation constants ( $K_n$ ), and the total stability constants ( $\beta_n$ ) used to simulate the ion-pair formation behaviours shown in Fig. S1,  $\alpha$  is defined as  $\alpha = K_n/K_{n-1}$  and is approximated to be constant; see ref. 2.

| Chaminal ana sina | $[Ru(4,4'-MV4)_3]^{26+}$    | $[Ru(5,5'-MV4)_3]^{26+}$       |
|-------------------|-----------------------------|--------------------------------|
| Chemical species  | $C_{\rm t} = 0.04 {\rm mM}$ | $C_{\rm t} = 0.04 \; {\rm mM}$ |
| A <sup>26+</sup>  | $2.40 \times 10^{-12}$      | $1.15 \times 10^{-11}$         |
| $AX^{25+}$        | $2.64 	imes 10^{-10}$       | $9.44 \times 10^{-10}$         |
| $AX_2^{24+}$      | $1.94 \times 10^{-8}$       | $5.32 \times 10^{-8}$          |
| $AX_3^{23+}$      | $9.60 \times 10^{-7}$       | $2.07 	imes 10^{-6}$           |
| $AX_4^{22+}$      | $3.18 \times 10^{-5}$       | $5.56 \times 10^{-5}$          |
| $AX_5^{21+}$      | $7.04 \times 10^{-4}$       | $1.03 \times 10^{-4}$          |
| $AX_{6}^{20+}$    | $1.05 \times 10^{-2}$       | $1.32 \times 10^{-2}$          |
| $AX_{7}^{19+}$    | $1.04 \times 10^{-1}$       | $1.16 \times 10^{-1}$          |
| $AX_8^{18+}$      | $6.93 \times 10^{-1}$       | $7.06 \times 10^{-1}$          |
| $AX_9^{17+}$      | 3.10                        | 2.97                           |
| $AX_{10}^{16+}$   | 9.27                        | 8.60                           |
| $AX_{11}^{15+}$   | 18.6                        | 17.2                           |
| $AX_{12}^{14+}$   | 25.0                        | 23.7                           |
| $AX_{13}^{13+}$   | 22.5                        | 22.6                           |
| $AX_{14}^{12+}$   | 13.5                        | 14.8                           |
| $AX_{15}^{11+}$   | 5.47                        | 6.71                           |
| $AX_{16}^{10+}$   | 1.48                        | 2.10                           |
| $AX_{17}^{9+}$    | $2.69 \times 10^{-1}$       | $4.53 \times 10^{-1}$          |
| $AX_{18}^{8+}$    | $3.23 \times 10^{-2}$       | $6.74 \times 10^{-2}$          |
| $AX_{19}^{7+}$    | $2.66 \times 10^{-3}$       | $6.93 \times 10^{-3}$          |
| $AX_{20}^{6+}$    | $1.45 \times 10^{-4}$       | $4.91 \times 10^{-4}$          |
| $AX_{21}^{5+}$    | $5.30 \times 10^{-6}$       | $2.40 \times 10^{-5}$          |
| $AX_{22}^{4+}$    | $1.30 \times 10^{-7}$       | $8.10 	imes 10^{-7}$           |
| $AX_{23}^{3+}$    | $2.13 \times 10^{-9}$       | $1.89 	imes 10^{-8}$           |
| $AX_{24}^{2+}$    | $2.34 \times 10^{-11}$      | $3.03 \times 10^{-10}$         |
| $AX_{25}^{+}$     | $1.72 \times 10^{-13}$      | $3.36 \times 10^{-12}$         |
| $AX_{26}$         | $8.51 \times 10^{-16}$      | $2.57 \times 10^{-14}$         |

**Table S3.** The relative abundances of the chemical species derived from the PCSs under the conditions adopted in photochemical  $H_2$  evolution studies, where the formation constants listed in Table S2 are used to estimate the values listed in this table.



**Figure S2**. Relative abundances of the  $AX_m^{(z-m)+}$  species (X = PF<sub>6</sub><sup>-</sup>, m =1, 2, 3, ....) vs.  $C_t$  are calculated for (a) [Ru(**4,4'-MV4**)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub> and (b) [Ru(**5,5'-MV4**)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub> using the parameters determined for Fig. S1 (see Table S3 for details).



**Figure S3.** The space-filling model computed for one of the ion-pair adducts,  $\{[Ru(5,5'-MV4)_3](PF_6)_{12}\}^{14+}$  (computed by MM3).



**Figure S4**. (a) Absorption spectra recorded for an aqueous solution of each complex at 20 °C in air. The inset shows the magnification of the <sup>1</sup>MLCT bands. (b) Emission spectra recorded for an aqueous solution of each complex under Ar atmosphere at 20 °C. The excitation wavelength was 470 nm and both solutions had an equal absorbance at 470 nm (0.05). The red and blue lines correspond to the spectral data observed for  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and  $[Ru(5,5'-MV4)_3](PF_6)_{26}$ , respectively.

| Complex                                                               | $\lambda_{abs}(nm)$ | $\varepsilon (M^{-1}cm^{-1})$ | $\lambda_{\rm em}({\rm nm})$ | ${{\varPhi_{ m em}}^a}$ |
|-----------------------------------------------------------------------|---------------------|-------------------------------|------------------------------|-------------------------|
| [Ru( <b>4,4'-MV4</b> ) <sub>3</sub> ](PF <sub>6</sub> ) <sub>26</sub> | 468<br>257          | 27 100<br>248 600             | 633                          | 0.002                   |
| [Ru( <b>5,5'-MV4</b> ) <sub>3</sub> ](PF <sub>6</sub> ) <sub>26</sub> | 490<br>259          | 11 000<br>242 300             | 670                          | 0.001                   |
| $[Ru(bpy)_3]Cl_2 \cdot 6H_2O^b$                                       | 452<br>286          | 14 000<br>81 400              | 628                          | 0.042                   |

**Table S4.** Absorption and emission properties of PCSs together with those of  $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ .

<sup>*a*</sup>Emission quantum yields were determined using an absolute photoluminescence quantum yield measurement system equipped with an integrating sphere, as described in Experimental Section. <sup>*b*</sup>Values taken from ref. 23.



**Figure S5.** Transient absorption spectral changes observed after laser pulse excitation at 532 nm for an aqueous solution of (a)  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b)  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  in the absence of EDTA under Ar atmosphere at room temperature.



**Figure S6.** Transient absorption spectral changes observed after laser pulse excitation at 532 nm for an aqueous acetate buffer solution (0.1 M, pH 5.0) of (a)  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b)  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  in the absence of EDTA under Ar atmosphere at room temperature.



**Figure S7.** Transient absorption spectral changes observed after laser pulse excitation at 532 nm for an aqueous acetate buffer solution (0.1 M, pH 5.0) of (a)  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b)  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  in the presence of EDTA (30 mM) under Ar atmosphere at room temperature. The emission bleach seen above 600 nm in Figs. S5,S6 are not observable here, revealing that the triplet component has a minor contribution under these conditions.



**Figure S8.** Emission decays after laser pulse excitation at 472 nm, observed for an aqueous solution of (a)  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b)  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  under Ar atmosphere at 20 °C.



**Figure S9**. (a) Spectral changes during photolysis of an aqueous acetate buffer solution (0.1 M, pH = 5.0) containing 0.04 mM [Ru(bpy)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub>, 2 mM MV(NO<sub>3</sub>)<sub>2</sub>, and 30 mM EDTA under Ar atmosphere at 20 °C. (b) The total concentration of MV<sup>+</sup>• together with those divided into MV<sup>+</sup>• and (MV<sup>+</sup>)<sub>2</sub> components as a function of time.



**Figure S10.** Two spectral components extracted in spectral deconvolution analysis. In each case, all spectra observed during multi-charge storage can be expressed as the sum of two spectral components arising from  $MV^+$  and  $(MV^+)_2$ , with a definition of  $Abs(w, t) = C_m(t)\varepsilon_m(w) + C_d(t)\varepsilon_d(w)$ , where Abs is absorbance,  $C_m$  and  $C_d$  are molar concentrations of  $MV^+$  and  $(MV^+)_2$ , respectively,  $\varepsilon_m$  and  $\varepsilon_d$  are molar absorptivities of  $MV^+$  and  $(MV^+)_2$ , respectively, t is time, and w is wavelength. The original scans are those given in Figs. 5a-c and S9a.

| Complex                           | Species               | $\lambda_{abs}$ / nm | $\varepsilon / M^{-1} cm^{-1}$ |
|-----------------------------------|-----------------------|----------------------|--------------------------------|
| $[Ru(4,4'-MV4)_3]^{26+}$          | $(MV^+)_2$            | 358                  | 27 800                         |
|                                   |                       | 517                  | 10 700                         |
|                                   |                       | 894                  | 5 200                          |
|                                   | $\mathrm{MV}^+ullet$  | 397                  | 37 100                         |
|                                   |                       | 603                  | 14 800                         |
| $[Ru(5,5'-MV4)_3]^{26+}$          | $(MV^+)_2$            | 359                  | 26 700                         |
|                                   |                       | 516                  | 10 700                         |
|                                   |                       | 896                  | 5 400                          |
|                                   | $\mathrm{MV}^+ ullet$ | 397                  | 37 700                         |
|                                   |                       | 604                  | 13 300                         |
| $[Ru(bpy)_2(5,5'-MV4)]^{10+}$     | $(MV^+)_2$            | 354                  | 27 300                         |
|                                   |                       | 508                  | 11 500                         |
|                                   |                       | 1060                 | 6 300                          |
|                                   | $\mathrm{MV}^+ullet$  | 397                  | 35 400                         |
|                                   |                       | 602                  | 12 600                         |
| $[Ru(bpy)_3]^{2+}/MV^{2+}$ system | $(MV^+)_2$            | 360                  | 26 600                         |
|                                   |                       | 521                  | 10 400                         |
|                                   |                       | 872                  | 4 600                          |
|                                   | $\mathrm{MV}^+ ullet$ | 396                  | 42 600                         |
|                                   |                       | 603                  | 13 300                         |

**Table S5.** Absorption maxima and molar absorptivities for the  $MV^+$  and  $(MV^+)_2$  sites generated in each system. The values are determined from the spectra shown in Fig. S10, which were obtained by spectral deconvolution in Figs. S11–14.

| Irradiation<br>time | $MV^+ \bullet$<br>(M) | (MV <sup>+</sup> ) <sub>2</sub><br>(M) | MV <sup>+</sup> •<br>(%) | $(MV^{+})_{2}$<br>(%) | Number of<br>electrons stored<br>(molecule <sup>-1</sup> ) | $K_{\rm d} \left( { m M}^{-1}  ight)$ |
|---------------------|-----------------------|----------------------------------------|--------------------------|-----------------------|------------------------------------------------------------|---------------------------------------|
| 5 s                 | $1.05\times10^{-5}$   | $2.98\times10^{-5}$                    | 2.19                     | 12.4                  | 1.75                                                       | $2.69 \times 10^{5}$                  |
| 10 s                | $1.29\times10^{-5}$   | $4.25\times10^{-5}$                    | 2.68                     | 17.7                  | 2.45                                                       | $2.57 \times 10^5$                    |
| 30 s                | $1.51\times10^{-5}$   | $6.49\times 10^{-5}$                   | 3.16                     | 27.1                  | 3.63                                                       | $2.83 \times 10^5$                    |
| 1 min               | $1.74\times10^{-5}$   | $8.31\times10^{-5}$                    | 3.63                     | 34.6                  | 4.59                                                       | $2.73 \times 10^5$                    |
| 3 min               | $1.81\times10^{-5}$   | $1.04\times10^{-4}$                    | 3.76                     | 43.3                  | 5.65                                                       | $3.19\times10^5$                      |
| 5 min               | $1.82\times10^{-5}$   | $1.12\times10^{-4}$                    | 3.79                     | 46.7                  | 6.06                                                       | $3.39\times 10^5$                     |
| 10 min              | $1.81\times10^{-5}$   | $1.20\times10^{-\!4}$                  | 3.76                     | 49.9                  | 6.44                                                       | $3.67 \times 10^5$                    |
| 20 min              | $1.78\times10^{-5}$   | $1.23\times10^{-4}$                    | 3.71                     | 51.2                  | 6.59                                                       | $3.87\times10^5$                      |
| 30 min              | $1.77 	imes 10^{-5}$  | $1.25\times10^{-4}$                    | 3.69                     | 52.3                  | 6.71                                                       | $3.99 \times 10^5$                    |
| 40 min              | $1.79\times10^{-5}$   | $1.26\times10^{-4}$                    | 3.73                     | 52.3                  | 6.72                                                       | $3.91\times10^5$                      |
| 60 min              | $1.76\times10^{-5}$   | $1.27\times10^{-4}$                    | 3.67                     | 52.8                  | 6.78                                                       | $4.08\times10^5$                      |

**Table S6.** The net concentrations of the  $MV^+$  and  $(MV^+)_2$  sites generated over  $[Ru(4,4'-MV4)_3]^{26+}$  during the photolysis with EDTA (original spectral data in Fig. 5a). Some relevant parameters are also listed.

**Table S7.** The net concentrations of the  $MV^+$  and  $(MV^+)_2$  sites generated over  $[Ru(5,5'-MV4)_3]^{26+}$  during the photolysis with EDTA (original spectral data in Fig. 5b). Some relevant parameters are also listed.

| Irradiation<br>time | MV⁺•<br>(M)          | (MV <sup>+</sup> ) <sub>2</sub><br>(M) | MV⁺•<br>(%) | $({ m MV}^{+})_{2}$ (%) | Number of<br>electrons stored<br>(molecule <sup>-1</sup> ) | $K_{\rm d} \left( { m M}^{-1}  ight)$ |
|---------------------|----------------------|----------------------------------------|-------------|-------------------------|------------------------------------------------------------|---------------------------------------|
| 5 s                 | $7.26\times10^{-6}$  | $8.96\times10^{-6}$                    | 1.51        | 3.73                    | 0.63                                                       | $1.70 \times 10^5$                    |
| 10 s                | $9.28\times10^{-6}$  | $1.66 \times 10^{-5}$                  | 1.93        | 6.91                    | 1.06                                                       | $1.92 \times 10^5$                    |
| 30 s                | $1.31\times10^{-5}$  | $3.73\times10^{-5}$                    | 2.73        | 15.5                    | 2.19                                                       | $2.17 \times 10^5$                    |
| 1 min               | $1.51\times10^{-5}$  | $5.30\times10^{-5}$                    | 3.15        | 22.1                    | 3.03                                                       | $2.31 \times 10^5$                    |
| 3 min               | $1.72 	imes 10^{-5}$ | $7.91\times10^{-5}$                    | 3.58        | 33.0                    | 4.39                                                       | $2.68 	imes 10^5$                     |
| 5 min               | $1.79\times10^{-5}$  | $9.04\times10^{-5}$                    | 3.72        | 37.7                    | 4.97                                                       | $2.83 \times 10^5$                    |
| 10 min              | $1.87\times10^{-5}$  | $1.04\times10^{-4}$                    | 3.89        | 43.2                    | 5.65                                                       | $2.97 \times 10^5$                    |
| 20 min              | $1.93\times10^{-5}$  | $1.13\times10^{-4}$                    | 4.03        | 47.2                    | 6.14                                                       | $3.03 \times 10^5$                    |
| 30 min              | $1.96\times10^{-5}$  | $1.16 \times 10^{-4}$                  | 4.08        | 48.5                    | 6.31                                                       | $3.04 \times 10^5$                    |
| 40 min              | $1.86\times10^{-5}$  | $1.19\times10^{-4}$                    | 3.88        | 49.5                    | 6.41                                                       | $3.42 \times 10^5$                    |
| 60 min              | $2.02\times10^{-5}$  | $1.20\times10^{-4}$                    | 4.21        | 50.1                    | 6.52                                                       | $2.95\times 10^5$                     |

| Irradiation<br>time | MV <sup>+</sup> •<br>(M) | (MV <sup>+</sup> ) <sub>2</sub><br>(M) | MV <sup>+</sup> •<br>(%) | $({ m MV}^{^+})_2$ (%) | Number of<br>electrons stored<br>(molecule <sup>-1</sup> ) | $K_{\rm d} \left( {\rm M}^{-1}  ight)$ |
|---------------------|--------------------------|----------------------------------------|--------------------------|------------------------|------------------------------------------------------------|----------------------------------------|
| 1 min               | $8.06\times10^{-6}$      | $2.11 \times 10^{-7}$                  | 5.04                     | 0.026                  | 0.20                                                       | $3.24 \times 10^2$                     |
| 3 min               | $1.58\times10^{-5}$      | $2.00\times10^{-7}$                    | 9.86                     | 0.25                   | 0.41                                                       | $7.61 \times 10^2$                     |
| 5 min               | $2.29\times10^{-5}$      | $6.75\times10^{-7}$                    | 14.3                     | 0.84                   | 0.61                                                       | $1.28 \times 10^3$                     |
| 10 min              | $3.26\times10^{-5}$      | $2.82\times10^{-6}$                    | 20.4                     | 3.52                   | 0.96                                                       | $2.65 	imes 10^3$                      |
| 15 min              | $3.29\times10^{-5}$      | $6.01\times10^{-6}$                    | 20.6                     | 7.52                   | 1.12                                                       | $5.55\times10^3$                       |
| 20 min              | $3.33\times10^{-5}$      | $8.44\times10^{-6}$                    | 20.8                     | 10.5                   | 1.25                                                       | $7.61 \times 10^3$                     |
| 30 min              | $3.09\times10^{-5}$      | $1.31\times10^{-5}$                    | 19.3                     | 16.4                   | 1.43                                                       | $1.37\times10^4$                       |
| 40 min              | $2.96\times10^{-5}$      | $1.56\times10^{-5}$                    | 18.5                     | 19.5                   | 1.52                                                       | $1.78 	imes 10^4$                      |
| 50 min              | $2.87\times10^{-5}$      | $1.66\times10^{-5}$                    | 17.9                     | 20.8                   | 1.55                                                       | $2.02\times10^4$                       |
| 60 min              | $3.13\times10^{-5}$      | $1.58\times10^{-5}$                    | 19.6                     | 19.8                   | 1.58                                                       | $1.61 \times 10^4$                     |

**Table S8.** The net concentrations of the  $MV^+$  and  $(MV^+)_2$  sites generated over  $[Ru(bpy)_2(5,5^{2}-MV4)]^{10+}$  during the photolysis with EDTA (original spectral data in Fig. 5c). Some relevant parameters are also listed.

**Table S9.** The net concentrations of  $MV^+$  and  $(MV^+)_2$  generated in solution during the photolysis the EDTA/[Ru(bpy)<sub>3</sub>]<sup>2+</sup>/MV<sup>2+</sup> system (original spectral data in Fig. S9a). Some relevant parameters are also listed.

| Irradiation | $MV^+ \bullet$        | $(MV^+)_2$            | $MV^+ \bullet$ | $(MV^{+})_{2}$ | $K_{\rm d} \left( {\rm M}^{-1}  ight)$ |
|-------------|-----------------------|-----------------------|----------------|----------------|----------------------------------------|
| time        | (101)                 | (101)                 | (70)           | (70)           | 2                                      |
| 5 s         | $6.99 \times 10^{-5}$ | $1.79 \times 10^{-6}$ | 3.50           | 0.179          | $3.66 \times 10^{2}$                   |
| 10 s        | $1.03 \times 10^{-6}$ | $3.66 \times 10^{-6}$ | 5.14           | 0.366          | $3.46 \times 10^{2}$                   |
| 30 s        | $1.57 	imes 10^{-4}$  | $1.06 \times 10^{-5}$ | 7.83           | 1.06           | $4.33 	imes 10^2$                      |
| 1 min       | $2.10\times10^{-4}$   | $1.68\times10^{-5}$   | 10.5           | 1.68           | $3.81 \times 10^2$                     |
| 3 min       | $2.86\times10^{-4}$   | $3.05\times10^{-5}$   | 14.3           | 3.05           | $3.73 \times 10^2$                     |
| 5 min       | $3.02\times10^{-4}$   | $3.31\times10^{-5}$   | 15.1           | 3.31           | $3.64 \times 10^2$                     |
| 10 min      | $3.12 \times 10^{-4}$ | $3.76\times10^{-5}$   | 15.6           | 3.76           | $3.86 	imes 10^2$                      |
| 15 min      | $3.12 \times 10^{-4}$ | $3.73\times10^{-5}$   | 15.6           | 3.73           | $3.82 \times 10^2$                     |



**Figure S11.** Deconvolution of spectral changes observed during the photolysis of  $[Ru(4,4'-MV4)_3](PF_6)_{26}$ . The raw data were taken from those in Fig. 5a, where the spectral component derived from the unphotolyzed charge separator was removed by substruction. Each spectrum was fitted to the sum of two spectral components shown in Fig. S10a, the concentrations of MV<sup>+</sup>• and (MV<sup>+</sup>)<sub>2</sub> were determined by the least-squares method implemented in our program.<sup>24</sup>



Figure S11 (Continued).



**Figure S12.** Deconvolution of spectral changes observed during the photolysis of  $[Ru(5,5'-MV4)_3](PF_6)_{26}$ . The raw data were taken from those in Fig. 5b, where the spectral component derived from the unphotolyzed charge separator was removed by substruction. Each spectrum was fitted to the sum of two spectral components shown in Fig. S10b, the concentrations of MV<sup>+</sup>• and (MV<sup>+</sup>)<sub>2</sub> were determined by the least-squares method implemented in our program.<sup>24</sup>



Figure S12 (Continued).



**Figure S13.** Deconvolution of spectral changes observed during the photolysis of  $[Ru(bpy)_2(5,5'-MV4)](PF_6)_{10}$ . The raw data were taken from those in Fig. 5c, where the spectral component derived from the unphotolyzed charge separator was removed by substruction. Each spectrum was fitted to the sum of two spectral components shown in Fig. S10c, the concentrations of MV<sup>+</sup>• and (MV<sup>+</sup>)<sub>2</sub> were determined by the least-squares method implemented in our program.<sup>24</sup>



Figure S13 (Continued).



**Figure S14.** Deconvolution of spectral changes observed during the photolysis of  $[Ru(bpy)_3]^{2+}/MV^{2+}$  system. The raw data were taken from those in Fig. S9a, where the spectral component derived from the unphotolyzed charge separator was removed by substruction. Each spectrum was fitted to the sum of two spectral components shown in Fig. S10d, the concentrations of  $MV^+$  and  $(MV^+)_2$  were determined by the least-squares method implemented in our program.<sup>24</sup>



Figure S14 (Continued).



**Figure S15.** Molar absorptivities of 12-electron reduced species generated by adding Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>. For each case, spectra before (—) and after (---) adding an excess of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> (ca. 0.4 mg, 2.30  $\mu$ mol) were observed for a 0.04 mM solution of each complex in an aqueous 0.1 M acetate buffer solution (pH = 5.0) under Ar atmosphere at 20 °C. Measurements were carried out using a quartz cell having a path length of 5 mm.

|                                                                                           | [Ru( <b>4,4'-M</b> V                    | <b>(4)</b> <sub>3</sub> ] <sup>26+</sup> | [Ru( <b>5,5'-MV</b>                     | <b>[4</b> ) <sub>3</sub> ] <sup>26+</sup> |
|-------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|
| Reduction Method                                                                          | Photochemically<br>(60-min irradiation) | Thermally                                | Photochemically<br>(60-min irradiation) | Thermally                                 |
| Reductant                                                                                 | EDTA                                    | $Na_2S_2O_4$                             | EDTA                                    | $Na_2S_2O_4$                              |
| ⊿Abs at 530 nm                                                                            | 2.660                                   | 1.930 <sup><i>a</i></sup>                | 2.510                                   | 1.850 <sup><i>a</i></sup>                 |
| ⊿Abs at 900 nm                                                                            | 1.290                                   | 0.948 <sup><i>a</i></sup>                | 1.310                                   | 0.959 <sup>a</sup>                        |
| Number of electron<br>stored (molecule <sup>-1</sup> )<br>(calcd. from<br>∠Abs at 530 nm) | 8.27                                    | 12                                       | 8.14                                    | 12                                        |
| Number of electron<br>stored (molecule <sup>-1</sup> )<br>(calcd. from<br>⊿Abs at 900 nm) | 8.16                                    | 12                                       | 8.20                                    | 12                                        |
| Number of electron<br>stored (molecule <sup>-1</sup> )<br>(average)                       | 8.2                                     |                                          | 8.2                                     |                                           |

**Table S10.** The number of electrons stored over the PCSs at the saturation stage, determined by using the molar absorptivities of 12-electron-reduced species generated by adding a large excess of  $Na_2S_2O_4$  (see Fig. S15).

<sup>*a*</sup>Measurements were carried out using a quartz cell having an optical path length of 5 mm.



**Figure S16.** Reduced charge storage efficiency with a neutral donor. Spectral changes during photolysis of an aqueous solution (pH = 7.0) containing 30 mM triethanolamine (TEOA) in the presence of each PCS (0.04 mM) under Ar atmosphere at 20 °C, where the pH was adjusted with HCl. The results in **a** and **b** were given for  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and  $[Ru(5,5'-MV4)_3](PF_6)_{26}$ , respectively. The number of electrons stored at saturation was estimated to be 1.9 for  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and 1.7 for  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  using the absorption coefficient per viologen unit at 548 nm where an isosbestic point is given for the monomer-dimer equilibrium, i.e.,  $\varepsilon_{548}(MV^{+} \cdot) = \frac{1}{2}\varepsilon_{548}((MV^{+})_2) = 8920 M^{-1}cm^{-1}$ , which was reported in the literature.<sup>25</sup>



**Figure S17.** Oxidation and reduction waves for (a)  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b)  $[Ru(5,5'-MV4)_3](PF_6)_{26}$ , observed using square wave voltammetry. Measurements were carried out for a 1 mM solution of each complex in acetonitrile containing 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAH) at room temperature under Ar. The validity of these deconvolution treatments was confirmed by observing the bpy/bpy<sup>-</sup>• redox couples of the controls free of viologen tethers  $[Ru(4,4'-ME2)_3](PF_6)_2$  and  $[Ru(5,5'-ME2)_3](PF_6)_2$ .


**Figure S18.** Oxidation and reduction waves for (a)  $[Ru(4,4'-ME2)_3](PF_6)_2$  and (b)  $[Ru(5,5'-ME2)_3](PF_6)_2$ , observed using square wave voltammetry. Measurements were carried out for a 1 mM solution of each complex in acetonitrile containing 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAH) at room temperature under Ar.

**Table S11.** Redox potentials for the PCSs together with the corresponding controls. Measurements were carried out for a solution of each complex (1 mM) in an acetonitrile solution containing 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAH) at room temperature under Ar atmosphere. Potentials are given in volts vs.  $Fc/Fc^+$ .

| · · ·                    |                |                     |                     |                     |                     |                     |
|--------------------------|----------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Complex                  | Oxidation      |                     |                     | Reduction           |                     |                     |
| Complex                  | $E_{\rm ox,1}$ | $E_{\rm red,1}{}^a$ | $E_{\rm red,2}^{b}$ | $E_{\rm red,3}^{c}$ | $E_{\rm red,4}^{c}$ | $E_{\rm red,5}^{c}$ |
| Photo-charge-separators  |                |                     |                     |                     |                     |                     |
| $[Ru(4,4'-MV4)_3]^{26+}$ | 1.10           | -0.78               | -1.25               | -1.33               | -1.49               | -1.92               |
| $[Ru(5,5'-MV4)_3]^{26+}$ | 1.02           | -0.79               | -1.27               | -1.21               | -1.70               | -1.94               |
| Controls                 |                |                     |                     |                     |                     |                     |
| $[Ru(4,4'-ME2)_3]^{2+}$  | 1.06           | -                   | -                   | -1.40               | -1.56               | -1.84               |
| $[Ru(5,5'-ME2)_3]^{2+}$  | 1.02           | -                   | -                   | -1.25               | -2.06               | -2.17               |
| 2                        |                |                     |                     |                     |                     |                     |

<sup>*a*</sup>Reduction for the  $MV^{2+}/MV^{+}$  couple. <sup>*b*</sup>Reduction for the  $MV^{+}/MV^{0}$  couple. <sup>*c*</sup>Reductions at the 2,2'-bipyridine moieties, where these reduction peaks are overlapped with that of the  $MV^{+}/MV^{0}$  couple (see Fig. S17).

**Table S12.** SCF energies given for the model systems optimized at the M06/6-31G\*\* level of DFT in either restricted or unrestricted model under water solvated condition using polarizable continuum model (PCM) method implemented in the Gaussian 09 package. All the structures given were confirmed as a local minimum structure.<sup>*a*</sup>

| Initial geometry | spin<br>state                                                                    | Uncorrected<br>SCF Energy<br>(hartree) | ZPE<br>(hartree) | ZPE-Corrected<br>SCF Energy<br>(hartree) | ZPE-Corrected<br>SCF Energy<br>(kcal/mol) | Relative<br>Energy<br>(kcal/mol)      | Coordinates |
|------------------|----------------------------------------------------------------------------------|----------------------------------------|------------------|------------------------------------------|-------------------------------------------|---------------------------------------|-------------|
|                  | $\pi$ -dimer of                                                                  | one-electron-r                         | educed non-d     | erivatized N,N-din                       | nethyl-4,4'-bipyridi                      | nium, (MV <sup>+</sup> ) <sub>2</sub> | 2           |
|                  | closed-shell<br>singlet                                                          | -1149.266                              | 0.478646         | -1148.787                                | -720875.5                                 | 0.5                                   | Table S13   |
| Eclipsed         | open-shell<br>singlet                                                            | -1149.266                              | 0.478587         | -1148.788                                | -720875.7                                 | 0.3                                   | Table S14   |
|                  | triplet                                                                          | -1149.264                              | 0.477917         | -1148.786                                | -720874.7                                 | 1.4 <sup>b</sup>                      | Table S15   |
|                  | closed-shell<br>singlet                                                          | -1149.265                              | 0.477755         | -1148.788                                | -720875.7                                 | 0.3                                   | Table S16   |
| Staggered        | open-shell<br>singlet                                                            | -1149.267                              | 0.478704         | -1148.788                                | -720876                                   | 0.0                                   | Table S17   |
|                  | triplet                                                                          | -1149.263                              | 0.478221         | -1148.785                                | -720874                                   | 2.0                                   | Table S18   |
|                  |                                                                                  | π-d                                    | limer of Asp-b   | ased $(MV^{+})_{2}$ mode                 | l system                                  |                                       |             |
|                  | closed-shell<br>singlet                                                          | -1850.349                              | 0.683717         | -1849.665                                | -1160683                                  | 8.4                                   | Table S19   |
| Eclipsed         | open-shell<br>singlet                                                            | -1850.36                               | 0.684557         | -1849.676                                | -1160690                                  | 1.6 <sup>b</sup>                      | Table S20   |
|                  | triplet                                                                          | -1850.356                              | 0.683761         | -1849.672                                | -1160688                                  | 3.8 <sup>b</sup>                      | Table S21   |
|                  | closed-shell<br>singlet                                                          | -1850.36                               | 0.684653         | -1849.676                                | -1160690                                  | 1.5                                   | Table S22   |
| Staggered        | open-shell<br>singlet                                                            | -1850.362                              | 0.683778         | -1849.678                                | -1160692                                  | 0.0                                   | Table S23   |
|                  | triplet                                                                          | -1850.359                              | 0.685284         | -1849.674                                | -1160689                                  | 2.6                                   | Table S24   |
|                  | one-electron-reduced N,N-dimethyl-4,4'-bipyridinium, MV <sup>+</sup> • (monomer) |                                        |                  |                                          |                                           |                                       |             |
| NA               | doublet                                                                          | -574.6239                              | 0.236928         | -574.387                                 | -360433.6                                 | 4.5                                   | Table S25   |

<sup>*a*</sup>ZPE = zero point energy given in frequency calculations. All the structures, except for those with notification b, converged with structures satisfying the initial type of stacking manner. <sup>*b*</sup>The geometry optimization of these three systems rather converged with the structures converted into slipped geometries. Several attempts to preserve the initial eclipsed structures failed with some of them converted into staggered geometries.

**Table S13.** Geometry optimized for the eclipsed  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its closed-shell singlet state (stereo view shown below). Optimized at the M06/6-31G\*\* level under water solvated model (PCM, polarizable continuum model).<sup>*a*</sup>

| ৡ <mark>৾</mark> ᠆ᢡ᠆ᢡ᠆ᢡ᠆ᢤ | <u>ᡒ᠆ᡱ᠆</u> ᠼ᠆ᠼ᠆ᢩᠼ᠆ᢤ |
|---------------------------|----------------------|
| <b>ᡷ᠆ᡱ᠆</b> ᡬᠣ᠆ᡬᡷ᠆ᡬᡷ᠆ᢤ    | ᡷ᠆ᡱ᠆ᡬ᠆ᡩ᠆ᡩ᠆ᢤ          |

| Atom | Х         | Y         | Ζ         |
|------|-----------|-----------|-----------|
| N1   | -3.448225 | -1.705794 | -0.000135 |
| N2   | -3.617504 | 1.590656  | 0.000131  |
| N3   | 3.617522  | -1.590900 | -0.000184 |
| N4   | 3.448205  | 1.705686  | 0.000209  |
| C5   | -1.394671 | -1.621856 | 1.202244  |
| C6   | -2.754735 | -1.672647 | -1.176631 |
| C7   | -0.630212 | -1.593205 | -0.000161 |
| C8   | -2.754638 | -1.674060 | 1.176349  |
| C9   | -1.394777 | -1.620338 | -1.202529 |
| C10  | 0.796786  | -1.571969 | -0.000195 |
| C11  | 1.562432  | -1.567728 | 1.201262  |
| C12  | 1.562431  | -1.567885 | -1.201645 |
| C13  | 2.924132  | -1.581115 | -1.176355 |
| C14  | 2.924131  | -1.580945 | 1.175984  |
| C15  | 5.070484  | -1.732203 | -0.000181 |
| C16  | -4.898090 | -1.863295 | -0.000095 |
| C17  | -1.562423 | 1.567477  | 1.201582  |
| C18  | -2.924110 | 1.581544  | -1.176043 |
| C19  | -0.796796 | 1.572163  | 0.000134  |
| C20  | -2.924130 | 1.580479  | 1.176298  |
| C21  | -1.562399 | 1.568611  | -1.201334 |
| C22  | 0.630242  | 1.593395  | 0.000152  |
| C23  | 1.394736  | 1.621316  | -1.202230 |
| C24  | 1.394680  | 1.621378  | 1.202558  |
| C25  | 2.754661  | 1.673439  | 1.176686  |
| C26  | 2.754713  | 1.673380  | -1.176301 |
| C27  | 4.898105  | 1.862957  | 0.000243  |
| C28  | -5.070528 | 1.731607  | 0.000139  |
| H29  | -3.354590 | -1.694586 | 2.080766  |
| H30  | -0.919839 | -1.582216 | -2.177272 |
| H31  | -3.354741 | -1.691993 | -2.081041 |
| H32  | 1.087270  | -1.545754 | -2.176687 |
| H33  | 3.524243  | -1.582952 | -2.080879 |
| H34  | 3.524251  | -1.582530 | 2.080505  |
| H35  | 5.483696  | -1.252746 | -0.890378 |
| H36  | 5.353375  | -2.789227 | 0.000177  |
| H37  | -5.315480 | -1.387334 | -0.890548 |
| H38  | -5.315462 | -1.387361 | 0.890389  |

| H39 | -5.172922 | -2.922644 | -0.000100 |
|-----|-----------|-----------|-----------|
| H40 | -1.087279 | 1.544767  | 2.176624  |
| H41 | -3.524238 | 1.581710  | 2.080828  |
| H42 | -3.524211 | 1.583643  | -2.080572 |
| H43 | 0.919591  | 1.584876  | 2.177291  |
| H44 | 3.354622  | 1.693529  | 2.081107  |
| H45 | 3.354701  | 1.693329  | -2.080705 |
| H46 | 5.315383  | 1.386856  | 0.890673  |
| H47 | 5.173084  | 2.922270  | 0.000428  |
| H48 | -5.483597 | 1.251814  | -0.889950 |
| H49 | -5.353649 | 2.788559  | 0.000339  |
| H50 | -5.483685 | 1.251523  | 0.890032  |
| H51 | 1.087258  | -1.545162 | 2.176291  |
| H52 | -0.919597 | -1.585834 | 2.177002  |
| H53 | -1.087198 | 1.547285  | -2.176390 |
| H54 | 0.919697  | 1.584650  | -2.176982 |
| H55 | 5.315384  | 1.387118  | -0.890333 |
| H56 | 5.483784  | -1.252132 | 0.889651  |
|     |           |           |           |

| SCF Done:   | E(RM06) =     | -1149.26596594 | A.U. afte | r 1 cycles |         |
|-------------|---------------|----------------|-----------|------------|---------|
|             |               | 1              | 2         |            | 3       |
|             |               | Α              | А         |            | А       |
| Frequencies | 25.1          | 103            | 35.3224   |            | 64.3741 |
| Red. masses | s <b></b> 4.4 | -862           | 6.2447    |            | 3.7135  |

| Zero-point correction=                       | 0.478646 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.503873                    |
| Thermal correction to Enthalpy=              | 0.504817                    |
| Thermal correction to Gibbs Free Energy=     | 0.425881                    |
| Sum of electronic and zero-point Energies=   | -1148.787320                |
| Sum of electronic and thermal Energies=      | -1148.762093                |
| Sum of electronic and thermal Enthalpies=    | -1148.761149                |
| Sum of electronic and thermal Free Energies= | -1148.840085                |
|                                              |                             |

| ]       | Item  | Value    | Threshold | Converged? |
|---------|-------|----------|-----------|------------|
| Maximum | Force | 0.000022 | 0.000450  | YES        |
| RMS     | Force | 0.000003 | 0.000300  | YES        |

**Table S14.** Geometry optimized for the eclipsed  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its open-shell singlet state based on a broken-symmetry DFT approach (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>



| <b>A</b> to me | V         | V         | 7         | Smin Donaita |
|----------------|-----------|-----------|-----------|--------------|
| Atom           | <u> </u>  | Y         | <u>L</u>  | Spin Density |
| NI             | -3.422494 | 1./301/4  | 0.000090  | -0.072261    |
| N2             | -3.642457 | -1.582569 | -0.000081 | 0.073625     |
| N3             | 3.642453  | 1.582500  | 0.000301  | -0.073624    |
| N4             | 3.422498  | -1.730198 | -0.000297 | 0.072261     |
| C5             | -1.369378 | 1.639637  | -1.202546 | -0.019761    |
| C6             | -2.728920 | 1.695912  | 1.176672  | -0.026791    |
| C7             | -0.604858 | 1.609284  | 0.000045  | -0.079255    |
| C8             | -2.728938 | 1.696354  | -1.176518 | -0.026795    |
| C9             | -1.369364 | 1.639182  | 1.202655  | -0.019765    |
| C10            | 0.821730  | 1.582446  | 0.000086  | -0.082308    |
| C11            | 1.587600  | 1.573010  | -1.201452 | -0.018974    |
| C12            | 1.587423  | 1.572303  | 1.201725  | -0.018983    |
| C13            | 2.949009  | 1.578046  | 1.176588  | -0.027804    |
| C14            | 2.949183  | 1.578719  | -1.176101 | -0.027805    |
| C15            | 5.096711  | 1.710807  | 0.000456  | 0.005643     |
| C16            | -4.872433 | 1.887376  | 0.000140  | 0.005463     |
| C17            | -1.587505 | -1.572404 | -1.201640 | 0.018981     |
| C18            | -2.949110 | -1.578626 | 1.176273  | 0.027802     |
| C19            | -0.821726 | -1.582417 | -0.000048 | 0.082305     |
| C20            | -2.949085 | -1.578192 | -1.176416 | 0.027802     |
| C21            | -1.587526 | -1.572856 | 1.201538  | 0.018980     |
| C22            | 0.604851  | -1.609234 | -0.000094 | 0.079255     |
| C23            | 1.369448  | -1.639639 | 1.202453  | 0.019762     |
| C24            | 1.369304  | -1.639041 | -1.202748 | 0.019766     |
| C25            | 2.728857  | -1.695821 | -1.176840 | 0.026790     |
| C26            | 2.729003  | -1.696392 | 1.176349  | 0.026795     |
| C27            | 4.872429  | -1.887430 | -0.000462 | -0.005463    |
| C28            | -5.096706 | -1.710910 | -0.000135 | -0.005643    |
| H29            | -3.328995 | 1.717729  | -2.080826 | 0.001648     |
| H30            | -0.894239 | 1.600327  | 2.177249  | 0.001588     |
| H31            | -3.328959 | 1.716922  | 2.080999  | 0.001648     |
| H32            | 1.111942  | 1.552980  | 2.176646  | 0.001544     |
| H33            | 3.549269  | 1.575573  | 2.080981  | 0.001666     |
| H34            | 3.549589  | 1.576791  | -2.080400 | 0.001666     |
| H35            | 5.505162  | 1.226753  | 0.890295  | -0.001163    |
| H36            | 5.389005  | 2.765192  | 0.000479  | -0.005326    |
| H37            | -5.289447 | 1.410916  | 0.890558  | -0.001150    |
| H38            | -5.289477 | 1.411034  | -0.890321 | -0.001151    |

| H40-1.112086-1.553179-2.176593-0.001544H41-3.549409-1.575830-2.080768-0.001666H42-3.549457-1.5766132.080611-0.001666H430.894138-1.599981-2.177316-0.001588H443.328849-1.716773-2.081200-0.001648H453.329108-1.7178132.080624-0.001648H465.289396-1.410828-0.8908280.001150H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001584H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                       | H39 | -5.147670 | 2.946610  | 0.000225  | -0.005151 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----------|-----------|-----------|
| H41 $-3.549409$ $-1.575830$ $-2.080768$ $-0.001666$ H42 $-3.549457$ $-1.576613$ $2.080611$ $-0.001666$ H43 $0.894138$ $-1.599981$ $-2.177316$ $-0.001588$ H44 $3.328849$ $-1.716773$ $-2.081200$ $-0.001648$ H45 $3.329108$ $-1.717813$ $2.080624$ $-0.001648$ H46 $5.289396$ $-1.410828$ $-0.890828$ $0.001150$ H47 $5.147655$ $-2.946665$ $-0.000719$ $0.005151$ H48 $-5.505296$ $-1.226974$ $0.889701$ $0.001165$ H49 $-5.388973$ $-2.765304$ $-0.000274$ $0.005327$ H50 $-5.505262$ $-1.226747$ $-0.889865$ $0.001164$ H51 $1.112273$ $1.554325$ $-2.177164$ $0.001587$ H53 $-1.112137$ $-1.553950$ $2.176513$ $-0.001587$ H54 $0.894411$ $-1.601048$ $2.177102$ $-0.001587$ H55 $5.289552$ $-1.411204$ $0.890026$ $0.001165$ H56 $5.505354$ $1.226714$ $-0.889267$ $-0.001165$ | H40 | -1.112086 | -1.553179 | -2.176593 | -0.001544 |
| H42 $-3.549457$ $-1.576613$ $2.080611$ $-0.001666$ H43 $0.894138$ $-1.599981$ $-2.177316$ $-0.001588$ H44 $3.328849$ $-1.716773$ $-2.081200$ $-0.001648$ H45 $3.329108$ $-1.717813$ $2.080624$ $-0.001648$ H46 $5.289396$ $-1.410828$ $-0.890828$ $0.001150$ H47 $5.147655$ $-2.946665$ $-0.000719$ $0.005151$ H48 $-5.505296$ $-1.226974$ $0.889701$ $0.001165$ H49 $-5.388973$ $-2.765304$ $-0.000274$ $0.005327$ H50 $-5.505262$ $-1.226747$ $-0.889865$ $0.001164$ H51 $1.112273$ $1.554325$ $-2.176459$ $0.001544$ H52 $-0.894278$ $1.601019$ $-2.177164$ $0.001587$ H53 $-1.112137$ $-1.553950$ $2.176513$ $-0.001544$ H54 $0.894411$ $-1.601048$ $2.177102$ $-0.001587$ H55 $5.289552$ $-1.411204$ $0.890026$ $0.001150$ H56 $5.505354$ $1.226714$ $-0.889267$ $-0.001165$   | H41 | -3.549409 | -1.575830 | -2.080768 | -0.001666 |
| H430.894138-1.599981-2.177316-0.001588H443.328849-1.716773-2.081200-0.001648H453.329108-1.7178132.080624-0.001648H465.289396-1.410828-0.8908280.001150H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                           | H42 | -3.549457 | -1.576613 | 2.080611  | -0.001666 |
| H443.328849-1.716773-2.081200-0.001648H453.329108-1.7178132.080624-0.001648H465.289396-1.410828-0.8908280.001150H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001165H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                 | H43 | 0.894138  | -1.599981 | -2.177316 | -0.001588 |
| H453.329108-1.7178132.080624-0.001648H465.289396-1.410828-0.8908280.001150H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001165H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                       | H44 | 3.328849  | -1.716773 | -2.081200 | -0.001648 |
| H465.289396-1.410828-0.8908280.001150H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001165H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                            | H45 | 3.329108  | -1.717813 | 2.080624  | -0.001648 |
| H475.147655-2.946665-0.0007190.005151H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                 | H46 | 5.289396  | -1.410828 | -0.890828 | 0.001150  |
| H48-5.505296-1.2269740.8897010.001165H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                      | H47 | 5.147655  | -2.946665 | -0.000719 | 0.005151  |
| H49-5.388973-2.765304-0.0002740.005327H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H48 | -5.505296 | -1.226974 | 0.889701  | 0.001165  |
| H50-5.505262-1.226747-0.8898650.001164H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H49 | -5.388973 | -2.765304 | -0.000274 | 0.005327  |
| H511.1122731.554325-2.1764590.001544H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H50 | -5.505262 | -1.226747 | -0.889865 | 0.001164  |
| H52-0.8942781.601019-2.1771640.001587H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H51 | 1.112273  | 1.554325  | -2.176459 | 0.001544  |
| H53-1.112137-1.5539502.176513-0.001544H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H52 | -0.894278 | 1.601019  | -2.177164 | 0.001587  |
| H540.894411-1.6010482.177102-0.001587H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H53 | -1.112137 | -1.553950 | 2.176513  | -0.001544 |
| H555.289552-1.4112040.8900260.001150H565.5053541.226714-0.889267-0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H54 | 0.894411  | -1.601048 | 2.177102  | -0.001587 |
| H56 5.505354 1.226714 -0.889267 -0.001165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H55 | 5.289552  | -1.411204 | 0.890026  | 0.001150  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H56 | 5.505354  | 1.226714  | -0.889267 | -0.001165 |

| SCF Done:     | E(UM06) =       | -1149.266174   | <b>1</b> 71 | A.U. after | 1 cycles     |           |
|---------------|-----------------|----------------|-------------|------------|--------------|-----------|
| Annihilation  | of the first sp | oin contaminar | nt:         |            |              |           |
| S**2 before   | annihilation    | 0.2387,        | after       | 0.0026     |              |           |
|               |                 |                |             |            |              |           |
|               |                 | 1              |             | 2          |              | 3         |
|               |                 | А              |             | А          |              | А         |
| Frequencies   | 30.83           | 28             |             | 37.6395    |              | 67.4139   |
| Red. masses   | 4.52            | 266            |             | 6.3416     |              | 3.7880    |
|               |                 |                |             |            |              |           |
| Zara naint aa | rraction-       |                |             | 0 4785     | 97 (Hartrook | Dortiala) |

| Zero-point correction-                       | 0.478387 (Hartice/Farticie) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.503854                    |
| Thermal correction to Enthalpy=              | 0.504799                    |
| Thermal correction to Gibbs Free Energy=     | 0.425929                    |
| Sum of electronic and zero-point Energies=   | -1148.787588                |
| Sum of electronic and thermal Energies=      | -1148.762320                |
| Sum of electronic and thermal Enthalpies=    | -1148.761376                |
| Sum of electronic and thermal Free Energies= | -1148.840245                |
|                                              |                             |

|        | Item     | Value    | Threshold | Converged? |
|--------|----------|----------|-----------|------------|
| Maximu | Im Force | 0.000031 | 0.000450  | YES        |
| RMS    | Force    | 0.000008 | 0.000300  | YES        |

**Table S15.** Geometry optimized for the *initially* eclipsed  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its triplet state (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>

| <u>}-3-4</u>         | ᡔᠼᢆᠼ        | }-32-3    | ᡷ᠆ᠿᢓ᠆ᢓᡠ᠆ᢤ             |              |
|----------------------|-------------|-----------|-----------------------|--------------|
| ૾ૢૢૢૢૢૢૢૢૢૢૢ૾ૺ       | <del></del> | ું કુ–વું | <u>)</u> _&&_&        | -\$          |
| Atom                 | Х           | Y         | Z                     | Spin Density |
| N1                   | -2.335340   | -2.158700 | 0.087631              | 0.157926     |
| N2                   | -4.612815   | 0.849699  | -0.054047             | 0.151230     |
| N3                   | 4.612738    | -0.852089 | 0.004658              | 0.153078     |
| N4                   | 2.335940    | 2.158959  | -0.037744             | 0.154797     |
| C5                   | -0.314818   | -1.713871 | 1.267826              | 0.036817     |
| C6                   | -1.659734   | -2.064368 | -1.095262             | 0.061852     |
| C7                   | 0.434357    | -1.619315 | 0.057640              | 0.169516     |
| C8                   | -1.649551   | -1.980326 | 1.256164              | 0.060490     |
| C9                   | -0.324096   | -1.804856 | -1.136333             | 0.040712     |
| C10                  | 1.835473    | -1.358778 | 0.040766              | 0.146231     |
| C11                  | 2.578379    | -1.071018 | 1.224320              | 0.050550     |
| C12                  | 2 602241    | -1 368888 | -1 162849             | 0 048404     |
| C13                  | 3 942030    | -1 129295 | -1 154163             | 0.046249     |
| C14                  | 3 917821    | -0.831389 | 1 181507              | 0.045237     |
| C15                  | 6 058896    | -0.655219 | -0.009169             | -0.011695    |
| C16                  | -3 749464   | -2 517534 | 0 110308              | -0.011550    |
| C17                  | -2 619618   | 1 371837  | 1 140416              | 0.033873     |
| C18                  | -3 901467   | 0.827976  | -1 220809             | 0.056064     |
| C19                  | -1 835583   | 1 358860  | -0.051931             | 0.167913     |
| C20                  | -3 959021   | 1 131442  | 1 113403              | 0.059188     |
| C20                  | -2 561541   | 1.068378  | -1 245432             | 0.039910     |
| C22                  | -0.434202   | 1.619242  | -0.048316             | 0.160265     |
| C22                  | 0 330016    | 1.726823  | -1 247846             | 0.100205     |
| C24                  | 0.309495    | 1 791904  | 1 156992              | 0.040218     |
| C25                  | 1 6/5661    | 2 050804  | 1.135335              | 0.053915     |
| C26                  | 1.64/286    | 1 99/9/9  | -1 21661/             | 0.057362     |
| C20<br>C27           | 3 7/9023    | 2 523054  | -0.038867             | -0.012298    |
| $C_{28}$             | 6 058813    | 0.650705  | 0.050080              | 0.012220     |
| С28<br>H20           | 2 235/100   | 2.061664  | -0.059080             | -0.011739    |
| H30                  | -2.233490   | 1 726803  | 2.100115              | -0.003451    |
| П30<br>Ц21           | 0.155708    | -1.720803 | 1 003280              | -0.003234    |
| ПЭТ<br>Ц22           | -2.232314   | -2.207038 | -1.333203             | -0.003082    |
| П32<br>Ц22           | 2.143049    | -1.373000 | -2.123397             | -0.003327    |
| П33<br>Ц24           | 4.545011    | -1.141009 | -2.037331             | -0.002932    |
| П34<br>Ц25           | 4.49/2/2    | -0.003332 | 2.071180              | -0.002940    |
| ПЭЭ<br>ЦЭС           | 0.348023    | -0.133440 | -0.734701<br>0.060515 | 0.002823     |
| П30<br>Ц27           | 0.3/8343    | -1.013334 | 0.000313              | 0.010438     |
| П <i>Э /</i><br>1120 | -4.223403   | -2.1/33/0 | -0.0110/4             | 0.002144     |
| Н <b>3</b> 8<br>1120 | -4.232999   | -2.033198 | 0.903383              | 0.003801     |
| П39                  | -3.8/1208   | -3.001308 | 0.194902              | 0.012232     |

| H40 | -2.175599 | 1.583393  | 2.106794  | -0.002884 |
|-----|-----------|-----------|-----------|-----------|
| H41 | -4.572881 | 1.146380  | 2.008081  | -0.003263 |
| H42 | -4.468090 | 0.599425  | -2.118065 | -0.003147 |
| H43 | -0.159859 | 1.699815  | 2.130794  | -0.003205 |
| H44 | 2.227571  | 2.179959  | 2.042462  | -0.003247 |
| H45 | 2.261247  | 2.088641  | -2.118166 | -0.003443 |
| H46 | 4.210789  | 2.186838  | 0.892508  | 0.002752  |
| H47 | 3.867716  | 3.607191  | -0.125787 | 0.010600  |
| H48 | -6.336636 | 0.043078  | -0.922334 | 0.003366  |
| H49 | -6.579157 | 1.611775  | -0.111959 | 0.010615  |
| H50 | -6.357540 | 0.127292  | 0.851782  | 0.001639  |
| H51 | 2.097239  | -1.018812 | 2.195045  | -0.003661 |
| H52 | 0.155919  | -1.587396 | 2.236949  | -0.003049 |
| H53 | -2.066295 | 1.013320  | -2.208904 | -0.003146 |
| H54 | -0.129398 | 1.614210  | -2.224097 | -0.003214 |
| H55 | 4.249297  | 2.039684  | -0.881891 | 0.002169  |
| H56 | 6.346272  | -0.028252 | 0.837119  | 0.001939  |

| SCF Done:     | E(UM06) =        | -1149.2638341   | A.U. af    | ter 1 cycle    | es            |
|---------------|------------------|-----------------|------------|----------------|---------------|
| Annihilatio   | n of the first s | pin contaminant | :          |                |               |
| S**2 before   | e annihilation   | 2.0104,         | after 2.00 | 001            |               |
|               |                  |                 |            |                | 2             |
|               |                  | 1               | 2          |                | 3             |
|               |                  | A               | Α          | Δ              | А             |
| Frequencies   | s 16.74          | 158             | 32.2392    | ,<br>,         | 57.9186       |
| Red. masse    | s 4.6            | 625             | 6.1281     | l              | 3.6716        |
| Zero-point co | orrection=       |                 | 0          | .477917 (Hartı | ree/Particle) |
| Thermal co    | rrection to End  | ergy=           | (          | 0.503796       |               |
| Thermal co    | rrection to Ent  | thalpy=         | 0          | .504740        |               |
| Thermal co    | rrection to Gil  | bs Free Energy  | = 0.4      | 21901          |               |
| Sum of elec   | tronic and zer   | o-point Energie | s= -       | 1148.785917    |               |
| Sum of elec   | ctronic and the  | rmal Energies=  |            | -1148.760038   |               |
| Sum of elec   | ctronic and the  | rmal Enthalpies | =          | -1148.759094   |               |
| Sum of elec   | etronic and the  | rmal Free Energ | gies= -    | 1148.841933    |               |
| It            | em               | Value           | Threshold  | Converged?     |               |

|        | Item    | Value    | Threshold | Converged |
|--------|---------|----------|-----------|-----------|
| Maximu | m Force | 0.000008 | 0.000450  | YES       |
| RMS    | Force   | 0.000002 | 0.000300  | YES       |

| Atom               | Х                      | Y                     | Ζ                     |
|--------------------|------------------------|-----------------------|-----------------------|
| N1                 | 3.042423               | -1.794459             | 1.514777              |
| N2                 | 3.032392               | 1.793303              | -1.529595             |
| N3                 | -3.031467              | 1.827775              | 1.497494              |
| N4                 | -3.041772              | -1.828189             | -1.486218             |
| C5                 | 0.660072               | -1.778684             | 1.492015              |
| C6                 | 3.046155               | -0.431160             | 1.543056              |
| C7                 | 0.617225               | -0.350414             | 1.513550              |
| C8                 | 1.845626               | -2.449747             | 1.476867              |
| C9                 | 1.887641               | 0.287933              | 1.557361              |
| C10                | -0.606433              | 0.384137              | 1.510289              |
| C11                | -1.876416              | -0.253510             | 1.570222              |
| C12                | -0.649287              | 1.811976              | 1.465427              |
| C13                | -1.834938              | 2.482536              | 1.443742              |
| C14                | -3.035046              | 0.465178              | 1.549817              |
| C15                | -4.294453              | 2.546197              | 1.369678              |
| C16                | 4.305652               | -2.515007             | 1.401170              |
| C17                | 1.876801               | -0.288446             | -1.572832             |
| C18                | 1.835256               | 2.449162              | -1.488604             |
| C19                | 0.606854               | 0.350003              | -1.522679             |
| C20                | 3.035663               | 0.430447              | -1.560795             |
| C21                | 0.649799               | 1.778612              | -1.502839             |
| C22                | -0.616842              | -0.384244             | -1.512111             |
| C23                | -1.887246              | 0.253176              | -1.566435             |
| C24                | -0.659485              | -1.812011             | -1.463887             |
| C25                | -1.844998              | -2.482666             | -1.436062             |
| C26                | -3.045686              | -0.465607             | -1.539981             |
| C27                | -4.304403              | -2.546585             | -1.354411             |
| C28                | 4.288797               | 2.519392              | -1.383312             |
| H29                | 1.897783               | -3.533012             | 1.448294              |
| H30                | 1.979165               | 1.367862              | 1.607305              |
| H31                | 4.023991               | 0.041239              | 1.5/1/2/              |
| H32                | 0.254626               | 2.410364              | 1.445/11              |
| H33                | -1.88/54/              | 3.365135              | 1.396459              |
| H34                | -4.012663              | -0.006511             | 1.592936              |
| H35                | -4.135011              | 3.602865              | 1.58/100              |
| H30                | -5.020290              | 2.143133              | 2.0/941/              |
| H3/                | 4.704491               | -2.418392             | 0.385650              |
| H38<br>1120        | 4.145540               | -3.309810             | 1.023202              |
| H39                | 5.027010               | -2.10/652             | 2.113100              |
| П40<br>Ц41         | 1.908124               | -1.308194             | -1.023323<br>1.505452 |
| П41<br>Ц42         | 4.0120//               | -0.042/00             | -1.373433<br>1 150776 |
| П42<br>Ц42         | 1.000717               | 5.352430<br>2.410401  | -1.438270<br>1 115076 |
| П43<br>Ц44         | U.2444 / /<br>1 207241 | -2.410401<br>2 565170 | -1.4438/0             |
| П44<br>Ц <i>45</i> | -1.09/241              | -3.3031/8             | -1.3003/9             |
| П4Э<br>1142        | -4.023334              | 0.003913              | -1.3/9044             |
| H40                | -4.093333              | -2.43/003             | -0.33/133             |

**Table S16.** Geometry optimized for the staggered  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its closed-shell singlet state (stereo view shown below). Optimized at the M06/6-31G\*\* level using PCM.<sup>*a*</sup>

| H47 | -4.144463 | -3.604207 | -1.566720 |
|-----|-----------|-----------|-----------|
| H48 | 4.587859  | 2.547555  | -0.329639 |
| H49 | 4.166344  | 3.538459  | -1.752944 |
| H50 | 5.066671  | 2.022005  | -1.965815 |
| H51 | -1.967546 | -1.332577 | 1.636257  |
| H52 | -0.244251 | -2.376773 | 1.486284  |
| H53 | -0.254762 | 2.376370  | -1.496653 |
| H54 | -1.978951 | 1.332189  | -1.632827 |
| H55 | -5.030724 | -2.147419 | -2.065864 |
| H56 | -4.685832 | 2.441373  | 0.351991  |

| SCF Done:  | E(RM06) = | -1149.26537041 | A.U. after | 1 cycles |         |
|------------|-----------|----------------|------------|----------|---------|
|            |           | 1              | 2          |          | 3       |
|            |           | А              | А          |          | А       |
| Frequencie | s 30.5    | 881            | 43.7482    |          | 64.4238 |
| Red. masse | es 4.2    | 2558           | 4.9255     |          | 3.9748  |

| Zero-point correction=                       | 0.477755 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.503922                    |
| Thermal correction to Enthalpy=              | 0.504866                    |
| Thermal correction to Gibbs Free Energy=     | 0.422917                    |
| Sum of electronic and zero-point Energies=   | -1148.787616                |
| Sum of electronic and thermal Energies=      | -1148.761449                |
| Sum of electronic and thermal Enthalpies=    | -1148.760505                |
| Sum of electronic and thermal Free Energies= | -1148.842454                |
|                                              |                             |

| ]       | ltem  | Value    | Threshold | Converged? |
|---------|-------|----------|-----------|------------|
| Maximum | Force | 0.000007 | 0.000450  | YES        |
| RMS     | Force | 0.000001 | 0.000300  | YES        |

**Table S17.** Geometry optimized for the staggered  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its open-shell singlet state based on a broken-symmetry DFT approach (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>



|      |           | -         |           |              |
|------|-----------|-----------|-----------|--------------|
| Atom | Х         | Y         | Ζ         | Spin Density |
| N1   | -3.049958 | -1.691405 | -1.594336 | -0.111228    |
| N2   | -3.049870 | 1.691400  | 1.594418  | 0.111226     |
| N3   | 3.048308  | 1.882817  | -1.422372 | -0.111958    |
| N4   | 3.048392  | -1.882824 | 1.422322  | 0.111959     |
| C5   | -0.667774 | -1.690841 | -1.581450 | -0.031845    |
| C6   | -3.044974 | -0.327325 | -1.598505 | -0.041848    |
| C7   | -0.615011 | -0.263714 | -1.572718 | -0.124397    |
| C8   | -1.856496 | -2.355234 | -1.576238 | -0.035020    |
| C9   | -1.882945 | 0.384608  | -1.598108 | -0.031853    |
| C10  | 0.614361  | 0.458904  | -1.539110 | -0.124710    |
| C11  | 1.882257  | -0.184722 | -1.613417 | -0.028867    |
| C12  | 0.666514  | 1.881818  | -1.425083 | -0.034556    |
| C13  | 1.855467  | 2.543210  | -1.357686 | -0.033328    |
| C14  | 3.044027  | 0.523802  | -1.547086 | -0.043856    |
| C15  | 4.311952  | 2.588927  | -1.241088 | 0.008812     |
| C16  | -4.308080 | -2.418289 | -1.465997 | 0.008733     |
| C17  | -1.882843 | -0.384612 | 1.598194  | 0.031861     |
| C18  | -1.856405 | 2.355233  | 1.576374  | 0.035026     |
| C19  | -0.614915 | 0.263718  | 1.572809  | 0.124397     |
| C20  | -3.044873 | 0.327316  | 1.598575  | 0.041846     |
| C21  | -0.667682 | 1.690845  | 1.581617  | 0.031834     |
| C22  | 0.614457  | -0.458893 | 1.539129  | 0.124709     |
| C23  | 1.882363  | 0.184723  | 1.613394  | 0.028869     |
| C24  | 0.666597  | -1.881803 | 1.425094  | 0.034554     |
| C25  | 1.855541  | -2.543206 | 1.357674  | 0.033330     |
| C26  | 3.044124  | -0.523807 | 1.547026  | 0.043855     |
| C27  | 4.312004  | -2.588949 | 1.240860  | -0.008812    |
| C28  | -4.307965 | 2.418296  | 1.465863  | -0.008733    |
| H29  | -1.916482 | -3.438551 | -1.566018 | 0.002146     |
| H30  | -1.968092 | 1.465788  | -1.624155 | 0.002570     |
| H31  | -4.019649 | 0.151451  | -1.612740 | 0.002681     |
| H32  | -0.233745 | 2.484705  | -1.381585 | 0.002936     |
| H33  | 1.914247  | 3.621790  | -1.256359 | 0.002091     |
| H34  | 4.019750  | 0.049152  | -1.598031 | 0.002813     |
| H35  | 4.169792  | 3.648780  | -1.455560 | -0.000804    |
| H36  | 5.058777  | 2.185144  | -1.927936 | -0.003196    |
| H37  | -4.588968 | -2.507164 | -0.410981 | -0.007995    |

| H38-4.197971-3.414926-1.896308-0H39-5.093106-1.884629-2.004910-0H40-1.967989-1.4657921.624251-0H41-4.019551-0.1514581.612778-0H42-1.9164033.4385491.566204-0 | 0.001467<br>0.002185<br>0.002571<br>0.002681<br>0.002146 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| H39-5.093106-1.884629-2.004910-0H40-1.967989-1.4657921.624251-0H41-4.019551-0.1514581.612778-0H42-1.9164033.4385491.566204-0                                 | 0.002185<br>0.002571<br>0.002681<br>0.002146             |
| H40-1.967989-1.4657921.624251-0H41-4.019551-0.1514581.612778-0H42-1.9164033.4385491.566204-0                                                                 | 0.002571<br>0.002681<br>0.002146                         |
| H41-4.019551-0.1514581.612778-0H42-1.9164033.4385491.566204-0                                                                                                | 0.002681<br>0.002146                                     |
| H42 -1.916403 3.438549 1.566204 -0                                                                                                                           | 0.002146                                                 |
|                                                                                                                                                              |                                                          |
| H43 -0.233672 -2.484676 1.381617 -0                                                                                                                          | 0.002936                                                 |
| H44 1.914313 -3.621785 1.256339 -0                                                                                                                           | 0.002091                                                 |
| H45 4.019847 -0.049151 1.597933 -0                                                                                                                           | 0.002813                                                 |
| H46 4.665181 -2.473116 0.210600 0                                                                                                                            | 0.007744                                                 |
| H47 4.169869 -3.648785 1.455439 0                                                                                                                            | 0.000804                                                 |
| H48 -4.588381 2.507672 0.410764 0                                                                                                                            | ).007996                                                 |
| H49 -4.198017 3.414742 1.896663 0                                                                                                                            | 0.001470                                                 |
| H50 -5.093235 1.884421 2.004203 0                                                                                                                            | 0.002181                                                 |
| H51 1.967194 -1.260518 -1.725164 0                                                                                                                           | 0.002389                                                 |
| H52 0.234162 -2.293096 -1.579420 0                                                                                                                           | 0.002824                                                 |
| H53 0.234251 2.293099 1.579672 -0                                                                                                                            | 0.002823                                                 |
| H54 1.967312 1.260522 1.725099 -C                                                                                                                            | 0.002389                                                 |
| H55 5.058944 -2.185121 1.927553 0                                                                                                                            | ).003194                                                 |
| H56 4.665314 2.473010 -0.210904 -0                                                                                                                           | 0.007743                                                 |

Sum of electronic and thermal Enthalpies=

Item

Force

Maximum Force

RMS

Sum of electronic and thermal Free Energies=

| SCF Done: E                                | E(UM06) = -12     | 149.266820 | )23   | A.U. after | 1 cycles     |            |
|--------------------------------------------|-------------------|------------|-------|------------|--------------|------------|
| Annihilation                               | of the first spin | contamina  | nt:   |            |              |            |
| S**2 before a                              | nnihilation       | 0.5574,    | after | 0.0165     |              |            |
|                                            | 1                 |            |       | 2          |              | 3          |
|                                            | А                 |            |       | А          |              | А          |
| Frequencies -                              | - 41.7060         |            |       | 41.7674    |              | 57.5305    |
| Red. masses -                              | - 4.4950          |            |       | 5.6279     |              | 4.4980     |
| Zero-point co                              | rrection=         |            |       | 0.478      | 704 (Hartree | /Particle) |
| Thermal correction to Energy=              |                   |            |       | 0.5045     | 599          |            |
| Thermal correction to Enthalpy=            |                   |            |       | 0.5055     | 44           |            |
| Thermal correction to Gibbs Free Energy=   |                   |            | y=    | 0.42467    | 7            |            |
| Sum of electronic and zero-point Energies= |                   |            | es=   | -1148      | .788117      |            |
| Sum of electronic and thermal Energies=    |                   |            | =     | -114       | 8 762221     |            |

Value

0.000007

0.000001

-1148.761277

-1148.842143

YES

YES

Threshold Converged?

0.000450

0.000300

**Table S18.** Geometry optimized for the staggered  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its triplet state (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>

| Atom | Х         | Y          | Ζ         | Spin Density |
|------|-----------|------------|-----------|--------------|
| N1   | 3.603456  | 1.334508   | 1.332283  | 0.156519     |
| N2   | 3.022191  | -1.642972  | -1.345125 | 0.155224     |
| N3   | -3.020395 | 1.884648   | -1.072986 | 0.155761     |
| N4   | -3.607734 | -1.557964  | 1.099455  | 0.157287     |
| C5   | 1.258415  | 1.376910   | 1.742248  | 0.045623     |
| C6   | 3.369127  | 1.529633   | -0.000255 | 0.054831     |
| C7   | 0.965935  | 1.594039   | 0.362611  | 0.165884     |
| C8   | 2.539667  | 1.252503   | 2.185144  | 0.050061     |
| C9   | 2.106119  | 1.655486   | -0.492419 | 0.040390     |
| C10  | -0.367384 | 1.726726   | -0.122260 | 0.153854     |
| C11  | -1.493097 | 1.794624   | 0.751669  | 0.044691     |
| C12  | -0.682592 | 1.772626   | -1.512767 | 0.049395     |
| C13  | -1.972130 | 1.842879   | -1.946368 | 0.048622     |
| C14  | -2.762434 | 1.877234   | 0.269110  | 0.052853     |
| C15  | -4.393421 | 2.006443   | -1.551884 | -0.011900    |
| C16  | 4.963632  | 1.132434   | 1.820741  | -0.011775    |
| C17  | 1.497020  | -1.947026  | 0.458373  | 0.045417     |
| C18  | 1.973185  | -1.418619  | -2.189380 | 0.047335     |
| C19  | 0.371299  | -1.695708  | -0.380455 | 0.152046     |
| C20  | 2.766431  | -1.922418  | -0.032539 | 0.054750     |
| C21  | 0.684981  | -1.442432  | -1.748822 | 0.048271     |
| C22  | -0.964423 | -1.669055  | 0.115456  | 0.165996     |
| C23  | -2.095994 | -1.519650  | -0.740638 | 0.039906     |
| C24  | -1.270025 | -1.764516  | 1.506090  | 0.045468     |
| C25  | -2.553416 | -1.701133  | 1.956256  | 0.051972     |
| C26  | -3.361547 | -1.474788  | -0.242726 | 0.054361     |
| C27  | -4.966912 | -1.413538  | 1.610262  | -0.011843    |
| C28  | 4.392925  | -1.643298  | -1.845497 | -0.012187    |
| H29  | 2.780031  | 1.077869   | 3.228782  | -0.003178    |
| H30  | 2.005751  | 1.822241   | -1.559706 | -0.003126    |
| H31  | 4.249620  | 1.585002   | -0.633129 | -0.003607    |
| H32  | 0.090778  | 1.722240   | -2.272092 | -0.003375    |
| H33  | -2.230106 | 1.861036   | -3.000153 | -0.003077    |
| H34  | -3.630335 | 1.941348   | 0.918293  | -0.003591    |
| H35  | -4.457571 | 1.619197   | -2.569843 | 0.001727     |
| H36  | -4.713724 | 3.052524   | -1.541397 | 0.010950     |
| H37  | 5.232805  | 0.071938   | 1.782478  | 0.010529     |
| H38  | 5.035500  | 1.485267   | 2.850835  | 0.002608     |
| H39  | 5.658425  | 1.703938   | 1.202849  | 0.002784     |
| H40  | 1.377701  | -2.177292  | 1.511614  | -0.003454    |
| H41  | 3.635210  | -2.119714  | 0.587882  | -0.003604    |
| H42  | 2.230660  | -1.211945  | -3.223110 | -0.002988    |
| H43  | -0.490135 | -1.875260  | 2.251842  | -0.003531    |
| H44  | -2.803529 | -1.756940  | 3.010557  | -0.003259    |
| H45  | -4.235043 | -1.37/9972 | -0.880358 | -0.003611    |
| H46  | -5.204085 | -0.358100  | 1.778772  | 0.010687     |

| H47 | -5.061077 | -1.958163 | 2.551074  | 0.002430  |
|-----|-----------|-----------|-----------|-----------|
| H48 | 4.465772  | -0.967141 | -2.699227 | 0.002535  |
| H49 | 4.691771  | -2.649863 | -2.153162 | 0.011078  |
| H50 | 5.065670  | -1.291773 | -1.059773 | 0.002920  |
| H51 | -1.373586 | 1.799362  | 1.829390  | -0.003449 |
| H52 | 0.468981  | 1.284914  | 2.480631  | -0.003451 |
| H53 | -0.089332 | -1.238172 | -2.480614 | -0.003326 |
| H54 | -1.986762 | -1.456611 | -1.818023 | -0.003025 |
| H55 | -5.672187 | -1.829745 | 0.888661  | 0.002934  |
| H56 | -5.055985 | 1.420127  | -0.910142 | 0.003656  |

| SCF Done:   | E(UM06) =         | -1149.263074    | 83 A.U. a | fter 1 cycle  | es             |
|-------------|-------------------|-----------------|-----------|---------------|----------------|
| Annihilatio | n of the first sp | in contaminan   | t:        |               |                |
| S**2 befor  | e annihilation    | 2.0105,         | after 2.0 | 001           |                |
|             |                   | 1               | 2         |               | 3              |
|             |                   | A               | 1         | 4             | А              |
| Frequencie  | s 25.13           | 33              | 31.4966   | 5             | 38.4939        |
| Red. masse  | es 5.10           | 29              | 4.371     | 9             | 3.9949         |
| Zero-point  | correction=       |                 |           | 0.478221 (Har | tree/Particle) |
| Thermal co  | rrection to Ene   | rgy=            |           | 0.504381      |                |
| Thermal co  | rrection to Entl  | nalpy=          | C         | 0.505325      |                |
| Thermal co  | rrection to Gib   | bs Free Energy  | y= 0.4    | 421615        |                |
| Sum of elec | etronic and zero  | o-point Energie | es=       | -1148.784854  |                |
| Sum of elec | ctronic and ther  | mal Energies=   | =         | -1148.758694  |                |
| Sum of elec | ctronic and ther  | mal Enthalpie   | s=        | -1148.757750  |                |
| Sum of elec | ctronic and ther  | mal Free Ener   | gies=     | -1148.841460  |                |
| It          | tem               | Value           | Threshold | Converged?    |                |
| Maximum     | Force             | 0.000012        | 0.000450  | ) YES         |                |
| RMS         | Force             | 0.00000         | 3 0.00030 | 0 YES         |                |

**Table S19.** Geometry optimized for the eclipsed  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its closed-shell singlet state (stereo view shown below). Optimized at the M06/6-31G\*\* level using PCM.<sup>*a*</sup>



| Atom | Х         | Y         | Ζ         |
|------|-----------|-----------|-----------|
| N1   | 0.381072  | 1.722839  | -0.525541 |
| N2   | 0.734344  | -1.596734 | -1.340183 |
| N3   | -6.580773 | 1.395853  | 0.604448  |
| N4   | -6.001083 | -1.852822 | 0.792604  |
| C5   | -1.450766 | 1.523622  | 0.985835  |
| C6   | -0.494056 | 1.858090  | -1.566368 |
| C7   | -2.396417 | 1.616522  | -0.076983 |
| C8   | -0.114905 | 1.553728  | 0.741704  |
| С9   | -1.840779 | 1.822480  | -1.373850 |
| H10  | 0.624160  | 1.440234  | 1.529504  |
| H11  | -2.469931 | 1.951160  | -2.247636 |
| H12  | -0.049126 | 1.999549  | -2.546431 |
| C13  | -3.804174 | 1.545598  | 0.149814  |
| C14  | -4.362874 | 1.478162  | 1.459216  |
| C15  | -4.749502 | 1.519068  | -0.912118 |
| C16  | -6.089063 | 1.445502  | -0.667056 |
| C17  | -5.709880 | 1.418603  | 1.653333  |
| H18  | -4.436134 | 1.527107  | -1.951031 |
| H19  | -6.826335 | 1.419873  | -1.462976 |
| H20  | -6.155393 | 1.379304  | 2.642480  |
| C21  | -8.023368 | 1.437555  | 0.831847  |
| H22  | -8.532038 | 0.909321  | 0.022321  |
| H23  | -8.375099 | 2.472850  | 0.861050  |

| 004                     | 1.015507  | 1 (00(75  | 0 7 4 7 0 9 6 |
|-------------------------|-----------|-----------|---------------|
| C24                     | 1.815507  | 1.600675  | -0.747086     |
| H25                     | 1.985408  | 1.408549  | -1.808930     |
| H26                     | 2.169859  | 0.722869  | -0.189146     |
| C27                     | 2.618031  | 2.818776  | -0.288763     |
| H28                     | 2.611690  | 3.590517  | -1.068241     |
| H29                     | 2.163216  | 3.252054  | 0.607113      |
| N30                     | 3.975079  | 2.436738  | 0.049025      |
| H31                     | 4.305494  | 2.599495  | 0.990489      |
| C32                     | 4.769003  | 1.786862  | -0.837681     |
| O33                     | 4.421293  | 1.572267  | -1.995709     |
| H34                     | -1.014877 | -1.777757 | 1.497416      |
| C35                     | -0.861472 | -1.656056 | 0.430794      |
| C36                     | -0.285321 | -1.371219 | -2.225707     |
| C37                     | -1 958372 | -1 513282 | -0 467933     |
| C38                     | 0 426389  | -1 717354 | -0.016833     |
| C39                     | -1 587918 | -1 325534 | -1 830229     |
| H40                     | 1 247056  | -1 880727 | 0.671479      |
| П <del>4</del> 0<br>Ц/1 | 0.010181  | 1 2/3233  | 3 262580      |
| C42                     | 2 218442  | -1.2+3233 | -5.202589     |
| C42                     | -5.518442 | -1.363630 | -0.042933     |
| C45                     | -4.400040 | -1.043210 | -0.903200     |
| C44                     | -3.0809/1 | -1.0/2152 | 1.331217      |
| C45                     | -4.988983 | -1./89426 | 1./10045      |
| C46                     | -5.691066 | -1.//8206 | -0.535635     |
| H47                     | -2.946469 | -1.612987 | 2.122067      |
| H48                     | -5.288652 | -1.846301 | 2.751704      |
| H49                     | -6.529725 | -1.837810 | -1.222597     |
| C50                     | -7.370569 | -2.107497 | 1.223765      |
| H51                     | -7.538964 | -1.640441 | 2.197593      |
| H52                     | -7.556509 | -3.182566 | 1.310242      |
| C53                     | 2.094289  | -1.776110 | -1.896918     |
| H54                     | 2.465738  | -0.805132 | -2.255660     |
| H55                     | 1.978474  | -2.426993 | -2.769139     |
| C56                     | 3.132910  | -2.384224 | -0.968496     |
| H57                     | 2.709759  | -3.177414 | -0.343379     |
| H58                     | 3.885090  | -2.855140 | -1.608351     |
| N59                     | 3.853414  | -1.422411 | -0.153226     |
| H60                     | 3.499486  | -1.160202 | 0.757552      |
| C61                     | 5.131680  | -1.077487 | -0.463876     |
| 062                     | 5.731111  | -1.500249 | -1.442388     |
| C63                     | 6 056575  | 1 239673  | -0 269943     |
| H64                     | 6 738517  | 1.0432.02 | -1 103065     |
| H65                     | 6 531754  | 1.013202  | 0 428809      |
| C66                     | 5 803774  | -0.084666 | 0.475590      |
| С00<br>Н67              | 5 19/930  | 0 107852  | 1 368029      |
| N68                     | 7 046585  | -0 673813 | 0 015017      |
| H60                     | 7.554000  | 1 220201  | 0.71371/      |
| П09<br>С70              | 7.004999  | -1.230391 | 0.23989/      |
| C70<br>071              | /.003398  | -0.33034/ | 2.115120      |
| 0/1                     | /.054416  | 0.412433  | 2.902304      |
| U/2                     | 8.928/90  | -0.996802 | 2.410/09      |
| H/3                     | 9.68/011  | -0.215269 | 2.51/6/9      |
| H/4                     | 9.253262  | -1.704801 | 1.644312      |

| H75 | 8.859373  | -1.514635 | 3.371482  |
|-----|-----------|-----------|-----------|
| H76 | -3.738395 | 1.491866  | 2.345655  |
| H77 | -1.764565 | 1.372607  | 2.013192  |
| H78 | -2.331018 | -1.136834 | -2.598233 |
| H79 | -4.245283 | -1.600231 | -2.036848 |
| H80 | -8.067273 | -1.683894 | 0.496650  |
| H81 | -8.258736 | 0.951749  | 1.780807  |

| SCF Done:   | E(RM06) = | -1850.34855691 | A.U. afte | r 1 cycles |         |
|-------------|-----------|----------------|-----------|------------|---------|
|             |           | 1              | 2         |            | 3       |
|             |           | А              | А         |            | А       |
| Frequencies | s 20.2    | .820           | 24.4298   |            | 34.5737 |
| Red. masses | s 5.6     | 5289           | 5.4753    |            | 6.9115  |
|             |           |                |           |            |         |

| Zero-point correction=                       | 0.683717 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.722627                    |
| Thermal correction to Enthalpy=              | 0.723572                    |
| Thermal correction to Gibbs Free Energy=     | 0.613296                    |
| Sum of electronic and zero-point Energies=   | -1849.664840                |
| Sum of electronic and thermal Energies=      | -1849.625929                |
| Sum of electronic and thermal Enthalpies=    | -1849.624985                |
| Sum of electronic and thermal Free Energies= | -1849.735261                |
|                                              |                             |

| ]       | Item  | Value    | Threshold | Converged? |
|---------|-------|----------|-----------|------------|
| Maximum | Force | 0.000040 | 0.000450  | YES        |
| RMS     | Force | 0.000005 | 0.000300  | YES        |

**Table 20.** Geometry optimized for the *initially* eclipsed  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its open-shell singlet state based on a broken-symmetry DFT approach (stereo view shown below). Optimized at the UM06/6-31G<sup>\*\*</sup> level using PCM, where a slipped dimer was given even though the initial structure was taken to be an eclipsed one.<sup>*a*</sup>



| Atom | Х         | Y         | Ζ         | Spin Density |
|------|-----------|-----------|-----------|--------------|
| N1   | -0.579215 | 0.799073  | 1.263225  | 0.143958     |
| N2   | 2.107937  | -2.901017 | -0.012621 | -0.148714    |
| N3   | -7.428932 | 1.835096  | -0.143692 | 0.151134     |
| N4   | -4.750688 | -1.553130 | -1.025406 | -0.147376    |
| C5   | -2.854936 | 0.663352  | 1.942194  | 0.048753     |
| C6   | -0.970899 | 1.312325  | 0.054634  | 0.063168     |
| C7   | -3.311760 | 1.211030  | 0.707293  | 0.154233     |
| C8   | -1.528359 | 0.476803  | 2.189161  | 0.050235     |
| C9   | -2.283770 | 1.523544  | -0.231798 | 0.033504     |
| H10  | -1.162109 | 0.063774  | 3.123527  | -0.002732    |
| H11  | -2.513536 | 1.922687  | -1.213891 | -0.003258    |
| H12  | -0.166538 | 1.515160  | -0.648884 | -0.003424    |
| C13  | -4.693055 | 1.415626  | 0.421918  | 0.170112     |
| C14  | -5.730113 | 1.060020  | 1.336899  | 0.038247     |
| C15  | -5.145305 | 1.993836  | -0.802463 | 0.040300     |
| C16  | -6.470328 | 2.186142  | -1.051349 | 0.051454     |
| C17  | -7.041749 | 1.270577  | 1.039138  | 0.051441     |
| H18  | -4.448528 | 2.310284  | -1.570805 | -0.003124    |
| H19  | -6.829854 | 2.625038  | -1.976284 | -0.003109    |
| H20  | -7.843315 | 1.003080  | 1.719995  | -0.003096    |
| C21  | -8.846218 | 1.947628  | -0.472456 | -0.011668    |

| H22 | -9.222249 | 0.998546  | -0.868564 | 0.010570  |
|-----|-----------|-----------|-----------|-----------|
| H23 | -8.983838 | 2.729852  | -1.220337 | 0.001668  |
| C24 | 0.848116  | 0.600367  | 1.515735  | -0.017335 |
| H25 | 1.226827  | -0.085474 | 0.747387  | 0.013018  |
| H26 | 0.957009  | 0.111555  | 2.487961  | 0.000101  |
| C27 | 1.618627  | 1.925484  | 1.460112  | 0.007507  |
| H28 | 1.072250  | 2.642135  | 0.834063  | -0.000703 |
| H29 | 1.705131  | 2.363923  | 2.456483  | -0.000355 |
| N30 | 2.956696  | 1.735048  | 0.929323  | -0.000235 |
| H31 | 3.720927  | 2.171446  | 1.429217  | 0.000076  |
| C32 | 3.116875  | 1.461413  | -0.401256 | -0.000636 |
| O33 | 2.158521  | 1.238689  | -1.132559 | 0.000799  |
| H34 | -0.836245 | -3.538427 | 1.433859  | 0.002743  |
| C35 | -0.152336 | -3.089991 | 0.721779  | -0.031342 |
| C36 | 1.712997  | -2.043003 | -0.999374 | -0.055547 |
| C37 | -0.621800 | -2.265131 | -0.345219 | -0.170081 |
| C38 | 1.166814  | -3.392255 | 0.852642  | -0.058935 |
| C39 | 0.400542  | -1.724525 | -1.183183 | -0.042974 |
| H40 | 1.537513  | -4.052467 | 1.630747  | 0.003454  |
| H41 | 2.503803  | -1.632801 | -1.620661 | 0.003763  |
| C42 | -2.007961 | -2.018860 | -0.566316 | -0.152608 |
| C43 | -2.487030 | -1.354472 | -1.733889 | -0.041881 |
| C44 | -3.017744 | -2.422848 | 0.355805  | -0.043307 |
| C45 | -4.336023 | -2.184527 | 0.112390  | -0.051799 |
| C46 | -3.817694 | -1.151937 | -1.939153 | -0.052894 |
| H47 | -2.767488 | -2.909736 | 1.292081  | 0.003293  |
| H48 | -5.118926 | -2.471759 | 0.807024  | 0.002817  |
| H49 | -4.203977 | -0.664883 | -2.829243 | 0.003085  |
| C50 | -6.173261 | -1.405793 | -1.313683 | 0.013298  |
| H51 | -6.725441 | -1.327172 | -0.373792 | -0.002664 |
| H52 | -6.542087 | -2.265740 | -1.880223 | -0.009524 |
| C53 | 3.510922  | -3.287754 | 0.146743  | 0.010777  |
| H54 | 4.015805  | -3.145746 | -0.813234 | -0.001395 |
| H55 | 3.542053  | -4.356115 | 0.384254  | -0.004590 |
| C56 | 4.219584  | -2.498971 | 1.234536  | -0.008180 |
| H57 | 3.663991  | -2.558375 | 2.175945  | 0.000604  |
| H58 | 5.202948  | -2.954793 | 1.397789  | -0.000975 |
| N59 | 4.394533  | -1.097818 | 0.901250  | 0.000019  |
| H60 | 3.888507  | -0.396432 | 1.429664  | -0.000036 |
| C61 | 5.414935  | -0.708096 | 0.100750  | -0.000097 |
| O62 | 6.135569  | -1.503969 | -0.490315 | -0.000135 |
| C63 | 4.532835  | 1.446259  | -0.921803 | -0.000002 |
| H64 | 4.514216  | 0.953048  | -1.899909 | 0.000015  |
| H65 | 4.839360  | 2.488629  | -1.081043 | -0.000040 |
| C66 | 5.613169  | 0.800203  | -0.038221 | -0.000027 |
| H67 | 5.605128  | 1.258345  | 0.961222  | 0.000000  |
| N68 | 6.917077  | 1.008102  | -0.615300 | -0.000001 |
| H69 | 7.354926  | 0.191377  | -1.026965 | 0.000001  |
| C70 | 7.544481  | 2.206904  | -0.528345 | -0.000004 |
| 071 | 7.016230  | 3.176494  | 0.010309  | -0.000009 |
| C72 | 8.924707  | 2.269716  | -1.121965 | 0.000001  |
|     |           |           |           |           |

| H73 | 8.983844  | 3.136424  | -1.785723 | -0.000001 |
|-----|-----------|-----------|-----------|-----------|
| H74 | 9.203796  | 1.370582  | -1.676768 | 0.000000  |
| H75 | 9.648879  | 2.426609  | -0.316486 | 0.000000  |
| H76 | -5.510164 | 0.612274  | 2.299938  | -0.003008 |
| H77 | -3.547430 | 0.378954  | 2.726565  | -0.003458 |
| H78 | 0.169371  | -1.028114 | -1.982546 | 0.003732  |
| H79 | -1.807105 | -1.010938 | -2.506120 | 0.003346  |
| H80 | -6.329009 | -0.493454 | -1.895546 | -0.003372 |
| H81 | -9.408438 | 2.213107  | 0.424834  | 0.003427  |
|     |           |           |           |           |

| SCF Done:     | E(UM06) =      | -1850.3603    | 1410  | A.U. after | 1 cycles     |           |
|---------------|----------------|---------------|-------|------------|--------------|-----------|
| Annihilation  | of the first s | pin contamina | ant:  |            |              |           |
| S**2 before   | annihilation   | 0.9784,       | after | 0.0703     |              |           |
|               |                | 1             |       | 2          |              | 3         |
|               |                | A             |       | 2<br>A     |              | A         |
| Frequencies   | 12.42          | 227           |       | 27.2485    |              | 33.0382   |
| Red. masses   | 5.4            | 960           |       | 5.1177     |              | 5.8513    |
| Zero point co | rrection=      |               |       | 0.6845     | 57 (Hartroo/ | Particle) |

| Zero-point correction-                       | 0.084337 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.723256                    |
| Thermal correction to Enthalpy=              | 0.724200                    |
| Thermal correction to Gibbs Free Energy=     | 0.613813                    |
| Sum of electronic and zero-point Energies=   | -1849.675757                |
| Sum of electronic and thermal Energies=      | -1849.637058                |
| Sum of electronic and thermal Enthalpies=    | -1849.636114                |
| Sum of electronic and thermal Free Energies= | -1849.746501                |
|                                              |                             |
|                                              |                             |

| Ι       | tem   | Value    | Threshold | Converged? |
|---------|-------|----------|-----------|------------|
| Maximum | Force | 0.000073 | 0.000450  | YES        |
| RMS     | Force | 0.000011 | 0.000300  | YES        |

**Table S21.** Geometry optimized for the *initially* eclipsed  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its triplet state (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM, where a slipped dimer was given even though the initial structure was taken to be an eclipsed one.<sup>*a*</sup>



| Atom | Х         | Y         | Z         | Spin Density |
|------|-----------|-----------|-----------|--------------|
| N1   | -0.388639 | 1.148345  | 0.038265  | 0.155956     |
| N2   | 1.750139  | -2.587439 | -0.247369 | 0.155715     |
| N3   | -7.419636 | 1.855048  | -0.095039 | 0.154539     |
| N4   | -5.241323 | -1.720993 | 0.478408  | 0.155526     |
| C5   | -2.425847 | 1.655935  | 1.159144  | 0.047102     |
| C6   | -1.081901 | 0.955056  | -1.125932 | 0.053775     |
| C7   | -3.191323 | 1.454827  | -0.027969 | 0.166059     |
| C8   | -1.072982 | 1.508077  | 1.164842  | 0.051732     |
| C9   | -2.432816 | 1.105261  | -1.184883 | 0.035479     |
| H10  | -0.473520 | 1.664904  | 2.055643  | -0.003342    |
| H11  | -2.910398 | 0.913114  | -2.139823 | -0.003079    |
| H12  | -0.489922 | 0.658207  | -1.987006 | -0.003319    |
| C13  | -4.610994 | 1.578993  | -0.051123 | 0.164166     |
| C14  | -5.380990 | 1.779340  | 1.133732  | 0.042458     |
| C15  | -5.369413 | 1.509968  | -1.257578 | 0.042578     |
| C16  | -6.724051 | 1.647485  | -1.252757 | 0.053492     |
| C17  | -6.735568 | 1.909548  | 1.086253  | 0.048725     |
| H18  | -4.889533 | 1.367914  | -2.219949 | -0.003193    |
| H19  | -7.316554 | 1.606503  | -2.160901 | -0.003160    |
| H20  | -7.337604 | 2.058563  | 1.976754  | -0.003043    |
| C21  | -8.878130 | 1.904179  | -0.105671 | -0.011802    |

| 1122 | 0.220069  | 2 225596  | 1 052250  | 0.002522  |
|------|-----------|-----------|-----------|-----------|
| H22  | -9.220068 | 2.325586  | -1.052359 | 0.002533  |
| H23  | -9.224891 | 2.539050  | 0./108/4  | 0.002625  |
| C24  | 1.066834  | 1.025046  | 0.045395  | -0.009/29 |
| H25  | 1.350563  | 0.077896  | -0.428039 | 0.003325  |
| H26  | 1.404/91  | 1.005467  | 1.086250  | 0.000/8/  |
| C27  | 1./19646  | 2.1/6602  | -0.709328 | 0.009051  |
| H28  | 1.391186  | 2.162353  | -1.757656 | -0.000526 |
| H29  | 1.408922  | 3.132521  | -0.277830 | -0.000492 |
| N30  | 3.161223  | 2.092859  | -0.650290 | 0.000800  |
| H31  | 3.669251  | 2.841937  | -0.200009 | 0.000051  |
| C32  | 3.856694  | 1.115847  | -1.286323 | 0.000164  |
| 033  | 3.311442  | 0.189128  | -1.880229 | 0.001030  |
| H34  | -0.504832 | -2.114740 | 2.170876  | -0.003065 |
| C35  | -0.148048 | -2.223683 | 1.152519  | 0.037289  |
| C36  | 0.933879  | -2.498104 | -1.344620 | 0.060341  |
| C37  | -1.040531 | -2.175744 | 0.040491  | 0.182517  |
| C38  | 1.186237  | -2.445635 | 0.989228  | 0.060489  |
| C39  | -0.407640 | -2.301769 | -1.233453 | 0.031555  |
| H40  | 1.848475  | -2.515805 | 1.843568  | -0.003610 |
| H41  | 1.423286  | -2.605865 | -2.307442 | -0.003474 |
| C42  | -2.449841 | -2.020738 | 0.187345  | 0.147722  |
| C43  | -3.346211 | -2.063403 | -0.920836 | 0.054268  |
| C44  | -3.069490 | -1.802655 | 1.452955  | 0.044864  |
| C45  | -4.418447 | -1.657932 | 1.567290  | 0.046672  |
| C46  | -4.690743 | -1.922766 | -0.753191 | 0.040879  |
| H47  | -2.486787 | -1.722431 | 2.363970  | -0.003348 |
| H48  | -4.907523 | -1.484949 | 2.521077  | -0.003310 |
| H49  | -5.386375 | -1.965271 | -1.585050 | -0.002942 |
| C50  | -6.688142 | -1.648482 | 0.655122  | -0.010371 |
| H51  | -6.926694 | -0.855976 | 1.370426  | 0.004162  |
| H52  | -7.076208 | -2.600374 | 1.029442  | 0.010888  |
| C53  | 3.138550  | -3.037440 | -0.464702 | -0.011406 |
| H54  | 3.498670  | -2.524411 | -1.364939 | 0.003463  |
| H55  | 3.113413  | -4.115387 | -0.666497 | 0.011150  |
| C56  | 4.108257  | -2.763377 | 0.666404  | 0.001199  |
| H57  | 3.752485  | -3.131727 | 1.632790  | -0.000183 |
| H58  | 5.018040  | -3.326236 | 0.437574  | -0.000296 |
| N59  | 4.490313  | -1.370804 | 0.775252  | 0.000220  |
| H60  | 3.943937  | -0.732231 | 1.338302  | -0.000134 |
| C61  | 5.571531  | -0.916408 | 0.102636  | 0.000040  |
| O62  | 6.298690  | -1.635880 | -0.573454 | 0.000049  |
| C63  | 5.354947  | 1.223331  | -1.136769 | -0.000005 |
| H64  | 5.827282  | 0.700604  | -1.974916 | -0.000006 |
| H65  | 5.681883  | 2.268725  | -1.136583 | 0.000012  |
| C66  | 5.836431  | 0.577319  | 0.176454  | 0.000035  |
| H67  | 5.319434  | 1.043102  | 1.025966  | 0.000000  |
| N68  | 7.255165  | 0.766297  | 0.353559  | 0.000002  |
| H69  | 7.860444  | 0.042856  | -0.015724 | 0.000000  |
| C70  | 7.752831  | 1.937511  | 0.830073  | 0.000000  |
| 071  | 7.019738  | 2.859630  | 1.174667  | 0.000002  |
| C72  | 9.251822  | 2.027216  | 0.905246  | 0.000000  |
|      | -         |           |           |           |

| H73 | 9.598635  | 2.773307  | 0.183467  | 0.000000  |
|-----|-----------|-----------|-----------|-----------|
| H74 | 9.756705  | 1.079330  | 0.703361  | 0.000000  |
| H75 | 9.533728  | 2.381749  | 1.900276  | 0.000000  |
| H76 | -4.913972 | 1.824608  | 2.111689  | -0.003318 |
| H77 | -2.894445 | 1.945778  | 2.093072  | -0.003363 |
| H78 | -0.972963 | -2.242606 | -2.157302 | -0.002701 |
| H79 | -2.989868 | -2.221286 | -1.932786 | -0.003681 |
| H80 | -7.160088 | -1.421216 | -0.303076 | 0.000707  |
| H81 | -9.295844 | 0.899181  | 0.015156  | 0.010703  |
|     |           |           |           |           |

| SCF Done:     | E(UM06) =        | -1850.3559   | 1956  | A.U. after | 1 cycles |         |
|---------------|------------------|--------------|-------|------------|----------|---------|
| Annihilation  | of the first spi | in contamina | nt:   |            |          |         |
| S**2 before a | annihilation     | 2.0103,      | after | 2.0001     |          |         |
|               |                  |              |       |            |          |         |
|               | 1                | l            |       | 2          |          | 3       |
|               | 1                | 4            |       | А          |          | А       |
| Frequencies - | - 17.352         | 25           |       | 26.5547    |          | 28.6000 |
| Red. masses · | 5.393            | 34           |       | 5.8990     |          | 5.5435  |

| Zero-point correction=                       | 0.683761 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.722847                    |
| Thermal correction to Enthalpy=              | 0.723792                    |
| Thermal correction to Gibbs Free Energy=     | 0.611390                    |
| Sum of electronic and zero-point Energies=   | -1849.672158                |
| Sum of electronic and thermal Energies=      | -1849.633072                |
| Sum of electronic and thermal Enthalpies=    | -1849.632128                |
| Sum of electronic and thermal Free Energies= | -1849.744530                |
|                                              |                             |

| Ι       | tem   | Value    | Threshold | Converged? |
|---------|-------|----------|-----------|------------|
| Maximum | Force | 0.000050 | 0.000450  | YES        |
| RMS     | Force | 0.000008 | 0.000300  | YES        |

**Table S22.** Geometry optimized for the staggered  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its closed-shell singlet state (stereo view shown below). Optimized at the M06/6-31G\*\* level using PCM.<sup>*a*</sup>



| Atom | Х         | Y         | Z         |
|------|-----------|-----------|-----------|
| N1   | -0.499509 | -1.852438 | -1.272666 |
| N2   | -0.352933 | 2.528756  | 0.458734  |
| N3   | 6.036085  | 0.839645  | -1.487463 |
| N4   | 5.074862  | -1.578092 | 2.418002  |
| C5   | 1.848313  | -2.130268 | -0.971236 |
| C6   | -0.287505 | -0.574398 | -1.714330 |
| C7   | 2.112987  | -0.792553 | -1.402975 |
| C8   | 0.575725  | -2.609714 | -0.903068 |
| С9   | 0.969121  | -0.054423 | -1.808966 |
| H10  | 0.354436  | -3.614886 | -0.558927 |
| H11  | 1.050316  | 0.959418  | -2.187755 |
| H12  | -1.181508 | -0.014078 | -1.985726 |
| C13  | 3.430153  | -0.241487 | -1.434726 |
| C14  | 4.582181  | -1.007424 | -1.107406 |
| C15  | 3.690174  | 1.115879  | -1.794075 |
| C16  | 4.957365  | 1.616574  | -1.795747 |
| C17  | 5.831086  | -0.458928 | -1.130518 |
| H18  | 2.889269  | 1.793952  | -2.066627 |
| H19  | 5.172953  | 2.648527  | -2.052864 |
| H20  | 6.720403  | -1.030453 | -0.881190 |
| C21  | 7.375268  | 1.412975  | -1.397167 |
| H22  | 7.420961  | 2.323033  | -1.996400 |
| H23  | 8.105444  | 0.698021  | -1.781807 |
| C24  | -1.865909 | -2.284637 | -0.970792 |
| H25  | -2.261608 | -1.608187 | -0.199721 |
| H26  | -1.801773 | -3.277290 | -0.519267 |

| C27 | -2.815770 | -2.282708 | -2.182725 |
|-----|-----------|-----------|-----------|
| H28 | -2.351122 | -1.762550 | -3.026304 |
| H29 | -3.028302 | -3.302868 | -2.508405 |
| N30 | -4.071524 | -1.624353 | -1.880298 |
| H31 | -4.807779 | -2.137798 | -1.398905 |
| C32 | -4.137898 | -0.278542 | -1.838406 |
| O33 | -3.212656 | 0.450082  | -2.218191 |
| H34 | 0.205219  | -0.534707 | 1.663547  |
| C35 | 0.468444  | 0.452711  | 1.298014  |
| C36 | 0.935556  | 2.982421  | 0.374509  |
| C37 | 1.820888  | 0.886197  | 1.236072  |
| C38 | -0.563339 | 1.255958  | 0.905544  |
| C39 | 1.997070  | 2.221350  | 0.757346  |
| H40 | -1.596600 | 0.926277  | 0.949313  |
| H41 | 1.058431  | 3.992283  | -0.003242 |
| C42 | 2.912224  | 0.056289  | 1.630295  |
| C43 | 4.252945  | 0.531642  | 1.677147  |
| C44 | 2.740129  | -1.305479 | 2.030025  |
| C45 | 3.803829  | -2.075702 | 2.389564  |
| C46 | 5.282889  | -0.282791 | 2.046238  |
| H47 | 1.762573  | -1.774028 | 2.055341  |
| H48 | 3.695070  | -3.114986 | 2.682026  |
| H49 | 6.312049  | 0.062712  | 2.081835  |
| C50 | 6.213863  | -2.448978 | 2.685029  |
| H51 | 6.630216  | -2.826061 | 1.744108  |
| H52 | 5.893064  | -3.290420 | 3.300822  |
| C53 | -1.437963 | 3.354786  | -0.095604 |
| H54 | -1.555857 | 3.101825  | -1.160384 |
| H55 | -1.096236 | 4.391684  | -0.048100 |
| C56 | -2.771342 | 3.245514  | 0.620165  |
| H57 | -2.632724 | 3.212453  | 1.707710  |
| H58 | -3.344219 | 4.156187  | 0.401122  |
| N59 | -3.505251 | 2.067026  | 0.196390  |
| H60 | -3.304273 | 1.680521  | -0.729235 |
| C61 | -4.558781 | 1.592260  | 0.897469  |
| O62 | -4.985232 | 2.107055  | 1.923702  |
| C63 | -5.365763 | 0.285791  | -1.175261 |
| C64 | -5.138947 | 0.286697  | 0.355712  |
| H65 | -4.389152 | -0.491098 | 0.585659  |
| N66 | -6.337272 | -0.034440 | 1.082290  |
| H67 | -6.630003 | 0.631812  | 1.788802  |
| C68 | -6.828964 | -1.296550 | 1.031512  |
| O69 | -6.336648 | -2.152432 | 0.293458  |
| C70 | -8.014832 | -1.587267 | 1.904437  |
| H71 | -8.856247 | -1.883788 | 1.271207  |
| H72 | -8.316841 | -0.739856 | 2.524157  |
| H73 | -7.777283 | -2.438852 | 2.548249  |
| H74 | 4.511742  | -2.053370 | -0.826678 |
| H75 | 2.647071  | -2.803036 | -0.680837 |
| H76 | 2.979633  | 2.673355  | 0.679104  |
| H77 | 4.501850  | 1.556745  | 1.422207  |
|     |           |           |           |

| H78 | 6.982949  | -1.890042 | 3.221677  |
|-----|-----------|-----------|-----------|
| H79 | 7.613329  | 1.651432  | -0.354974 |
| H80 | -5.554035 | 1.293634  | -1.557203 |
| H81 | -6.235506 | -0.337076 | -1.395476 |

| SCF Done:   | E(RM06) =   | -1850.36048938 | A.U. after | 1 cycles     |            |
|-------------|-------------|----------------|------------|--------------|------------|
|             |             | 1              | 2          |              | 3          |
|             |             | А              | А          |              | А          |
| Frequencies | s 22.9      | 914            | 29.4012    |              | 37.7741    |
| Red. masse  | s 5.3       | 724            | 5.0956     |              | 6.0167     |
| Zero-noint  | correction= |                | 0 684      | 653 (Hartree | (Particle) |

| Zero-point correction-                       | 0.084055 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.722976                    |
| Thermal correction to Enthalpy=              | 0.723921                    |
| Thermal correction to Gibbs Free Energy=     | 0.616090                    |
| Sum of electronic and zero-point Energies=   | -1849.675836                |
| Sum of electronic and thermal Energies=      | -1849.637513                |
| Sum of electronic and thermal Enthalpies=    | -1849.636569                |
| Sum of electronic and thermal Free Energies= | -1849.744399                |
|                                              |                             |

| Ι       | tem   | V   | alue   | Threshold | Converged? |  |
|---------|-------|-----|--------|-----------|------------|--|
| Maximum | Force | 0.0 | 00037  | 0.000450  | YES        |  |
| RMS     | Force | 0.0 | 000005 | 0.000300  | YES        |  |

**Table S23.** Geometry optimized for the staggered  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its open-shell singlet state based on a broken-symmetry DFT approach (stereo view shown below). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>



| Atom | Х         | Y         | Ζ         | Spin Density |
|------|-----------|-----------|-----------|--------------|
| N1   | -0.516901 | -1.956060 | -1.143114 | 0.110678     |
| N2   | -0.367372 | 2.561898  | 0.210663  | -0.116615    |
| N3   | 6.061896  | 0.599914  | -1.538480 | 0.114695     |
| N4   | 5.113146  | -1.242465 | 2.582226  | -0.112583    |
| C5   | 1.826281  | -2.249343 | -0.830095 | 0.030973     |
| C6   | -0.282945 | -0.731949 | -1.711733 | 0.054233     |
| C7   | 2.115770  | -0.967290 | -1.390813 | 0.134449     |
| C8   | 0.546466  | -2.696739 | -0.710865 | 0.038465     |
| C9   | 0.981219  | -0.246243 | -1.858438 | 0.023463     |
| H10  | 0.309591  | -3.659114 | -0.268824 | -0.002310    |
| H11  | 1.079615  | 0.729290  | -2.323900 | -0.002169    |
| H12  | -1.169930 | -0.181917 | -2.023527 | -0.003339    |
| C13  | 3.441378  | -0.444787 | -1.460206 | 0.123878     |
| C14  | 4.576901  | -1.191309 | -1.034509 | 0.035564     |
| C15  | 3.730313  | 0.865135  | -1.948861 | 0.033700     |
| C16  | 5.002816  | 1.350331  | -1.962722 | 0.035516     |
| C17  | 5.831315  | -0.660405 | -1.072214 | 0.040082     |
| H18  | 2.946466  | 1.521719  | -2.310527 | -0.002851    |
| H19  | 5.240067  | 2.348583  | -2.316079 | -0.002175    |
| H20  | 6.706810  | -1.215027 | -0.748421 | -0.002570    |
| C21  | 7.397065  | 1.181801  | -1.454240 | -0.009016    |
| H22  | 7.518338  | 1.931066  | -2.238184 | 0.001726     |
| H23  | 8.144172  | 0.398663  | -1.594440 | 0.002021     |
| C24  | -1.888304 | -2.338024 | -0.800104 | -0.009123    |
| H25  | -2.274761 | -1.586604 | -0.097661 | 0.008233     |
| H26  | -1.837389 | -3.283198 | -0.254714 | 0.000067     |

| C27           | -2.838952 | -2.441380 | -2.006276 | 0.004650  |
|---------------|-----------|-----------|-----------|-----------|
| H28           | -2.381024 | -1.984369 | -2.889133 | -0.000585 |
| H29           | -3.044232 | -3.485818 | -2.249499 | -0.000117 |
| N30           | -4.097711 | -1.769079 | -1.751442 | -0.000080 |
| H31           | -4.831083 | -2.248675 | -1.233220 | -0.000019 |
| C32           | -4.164545 | -0.423582 | -1.803781 | 0.000086  |
| O33           | -3.238632 | 0.275083  | -2.234981 | 0.000320  |
| H34           | 0.225860  | -0.363209 | 1.710499  | 0.002260  |
| C35           | 0.474817  | 0.588796  | 1.252219  | -0.026436 |
| C36           | 0.915963  | 3.017435  | 0.074133  | -0.041213 |
| C37           | 1.823145  | 1.031237  | 1.145395  | -0.137150 |
| C38           | -0.565073 | 1.338988  | 0.788089  | -0.049868 |
| C39           | 1.985464  | 2.307626  | 0.526152  | -0.028534 |
| H40           | -1.595135 | 1.006066  | 0.864328  | 0.002749  |
| H41           | 1.027839  | 3.983541  | -0.407154 | 0.002469  |
| C42           | 2.927157  | 0.266188  | 1.625466  | -0.120881 |
| C43           | 4.258397  | 0.773092  | 1.643998  | -0.035455 |
| C44           | 2.780287  | -1.058684 | 2.136849  | -0.034970 |
| C45           | 3.853934  | -1.769968 | 2.579539  | -0.033350 |
| C46           | 5.298262  | 0.021401  | 2.103723  | -0.039947 |
| H47           | 1 813180  | -1 547862 | 2 177266  | 0.002895  |
| H48           | 3 762422  | -2.782192 | 2.959814  | 0.002095  |
| H49           | 6 318304  | 0 393331  | 2 125361  | 0.002576  |
| C50           | 6 261791  | -2 057191 | 2 963751  | 0.008865  |
| H51           | 6 680458  | -2.559747 | 2.085419  | -0.008032 |
| H52           | 5 949831  | -2.805272 | 3 693959  | -0.001516 |
| C53           | -1 465693 | 3 338362  | -0 388427 | 0.008802  |
| H54           | -1 598364 | 3 008641  | -1 429699 | -0.007859 |
| H55           | -1 129853 | 4 377814  | -0 422458 | -0.001404 |
| C56           | -2 786488 | 3 277220  | 0 355383  | -0.001998 |
| H57           | -2.628935 | 3 331394  | 1 439499  | 0.000300  |
| H58           | -3 369436 | 4 164883  | 0.076178  | 0.000149  |
| N59           | -3 518208 | 2.065218  | 0.036635  | -0.000006 |
| H60           | -3 322855 | 1 606861  | -0.856842 | -0.000086 |
| C61           | -4 565168 | 1 647013  | 0.781233  | 0.000025  |
| 062           | -4 985163 | 2 242407  | 1 765835  | -0.000030 |
| C63           | -5 390079 | 0 184757  | -1 175829 | 0.000063  |
| C64           | -5 150363 | 0 303241  | 0 348616  | 0.000189  |
| H65           | -4 400805 | -0.457217 | 0.632152  | -0.000021 |
| N66           | -6 342782 | 0.047378  | 1 110282  | 0.000015  |
| H67           | -6 619655 | 0.769924  | 1 766347  | 0.0000013 |
| C68           | -6 837994 | -1 212791 | 1 174249  | -0.000002 |
| 069           | -6 360877 | -2 129518 | 0 502720  | 0.000015  |
| C70           | -8 010993 | -1 421794 | 2 087669  | 0.000000  |
| H71           | -8 875252 | -1 727682 | 1 490414  | 0.000000  |
| H72           | -8 276219 | -0.533517 | 2 665900  | 0.000000  |
| H73           | -7 782051 | -2 243335 | 2 772100  | 0.000000  |
| H74           | 4 484795  | -2 209356 | -0 672308 | -0.002822 |
| H75           | 2 612186  | -2 905038 | -0 472628 | -0.002720 |
| H76           | 2 965470  | 2 751265  | 0 388332  | 0.002764  |
| H77           | 4 488392  | 1 781037  | 1 314755  | 0.002800  |
| <b>**</b> / / |           | 1./0103/  | 1.011100  | 0.002000  |

| H78                           | 7.025027              | -1.419800     | 3.413554         | -0.002216   |
|-------------------------------|-----------------------|---------------|------------------|-------------|
| H79                           | 7.543798              | 1.652658      | -0.476299        | 0.008241    |
| H80                           | -5.586841             | 1.160457      | -1.629932        | -0.000004   |
| H81                           | -6.258738             | -0.456499     | -1.340505        | -0.000005   |
| <sup>a</sup> Part of the Gaus | sian output file:     |               |                  |             |
| SCF Done: E(U                 | JM06) = -1850.362     | 205086 A.U.   | after 1 cycles   |             |
| Annihilation of               | the first spin contam | inant:        |                  |             |
| S**2 before ann               | ihilation 0.592       | 5, after 0.   | 0189             |             |
|                               | 1                     |               | 2                | 3           |
|                               | Α                     |               | А                | А           |
| Frequencies                   | 19.8549               | 26.562        | 27               | 33.5035     |
| Red. masses                   | 5.2190                | 5.23          | 68               | 6.1737      |
| Zero-point corre              | ection=               |               | 0.683778 (Hartre | e/Particle) |
| Thermal correct               | ion to Energy=        |               | 0.722623         |             |
| Thermal correct               | ion to Enthalpy=      |               | 0.723567         |             |
| Thermal correct               | ion to Gibbs Free En  | nergy= 0      | 0.613354         |             |
| Sum of electron               | ic and zero-point En  | ergies=       | -1849.678273     |             |
| Sum of electron               | ic and thermal Energ  | gies=         | -1849.639428     |             |
| Sum of electron               | ic and thermal Entha  | lpies=        | -1849.638484     |             |
| Sum of electron               | ic and thermal Free I | Energies=     | -1849.748697     |             |
|                               |                       | 2             |                  |             |
| Item                          | Va                    | lue Threshold | d Converged?     |             |

|        | nem      | value    | Threshold | Convergeu: |
|--------|----------|----------|-----------|------------|
| Maximu | Im Force | 0.000012 | 0.000450  | YES        |
| RMS    | Force    | 0.000002 | 0.000300  | YES        |

**Table S24.** Geometry optimized for the staggered  $\pi$ -dimer of Asp-based (MV<sup>+</sup>)<sub>2</sub> in its triplet state. Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>



| Atom | Х         | Y         | Z         | Spin Density |
|------|-----------|-----------|-----------|--------------|
| N1   | -0.200701 | -1.906104 | -0.131274 | 0.148368     |
| N2   | -0.908868 | 2.783396  | -0.539057 | 0.157431     |
| N3   | 6.617846  | -0.563608 | -1.329726 | 0.156339     |
| N4   | 5.061197  | 0.318801  | 2.341366  | 0.154206     |
| C5   | 2.084624  | -2.442850 | 0.247888  | 0.046290     |
| C6   | 0.166611  | -1.038074 | -1.124767 | 0.062701     |
| C7   | 2.520501  | -1.510828 | -0.740490 | 0.159017     |
| C8   | 0.763403  | -2.610820 | 0.529250  | 0.052718     |
| C9   | 1.474662  | -0.838780 | -1.441061 | 0.035223     |
| H10  | 0.412455  | -3.299382 | 1.290903  | -0.003165    |
| H11  | 1.686158  | -0.129988 | -2.234397 | -0.003227    |
| H12  | -0.654451 | -0.524994 | -1.623471 | -0.003891    |
| C13  | 3.897678  | -1.225267 | -0.969939 | 0.170992     |
| C14  | 4.946744  | -1.878711 | -0.255182 | 0.031858     |
| C15  | 4.330193  | -0.229696 | -1.895888 | 0.050012     |
| C16  | 5.648832  | 0.073933  | -2.048541 | 0.050337     |
| C17  | 6.250867  | -1.541028 | -0.446415 | 0.057122     |
| H18  | 3.623421  | 0.332406  | -2.496656 | -0.003650    |
| H19  | 5.992785  | 0.836935  | -2.738809 | -0.003169    |
| H20  | 7.065236  | -2.027168 | 0.082793  | -0.003867    |
| C21  | 8.026488  | -0.204204 | -1.456078 | -0.012029    |
| H22  | 8.139895  | 0.542728  | -2.241972 | 0.000186     |
| H23  | 8.615241  | -1.087942 | -1.715325 | 0.007283     |
| C24  | -1.617548 | -2.041402 | 0.197225  | -0.009017    |
| H25  | -2.024241 | -1.027082 | 0.301648  | 0.005211     |

| H26 | -1.698501 | -2.529183 | 1.171839  | 0.000661  |
|-----|-----------|-----------|-----------|-----------|
| C27 | -2.395503 | -2.804422 | -0.886217 | 0.008956  |
| H28 | -1.886789 | -2.686636 | -1.849456 | -0.000896 |
| H29 | -2.438323 | -3.872768 | -0.664219 | -0.000163 |
| N30 | -3.743342 | -2.294543 | -1.018590 | 0.000271  |
| H31 | -4.505615 | -2.695134 | -0.473261 | -0.000009 |
| C32 | -3.928873 | -1.064488 | -1.540243 | 0.000326  |
| O33 | -3.007732 | -0.409208 | -2.043666 | 0.001264  |
| H34 | 0.040765  | 0.822145  | 1.993588  | -0.003728 |
| C35 | 0.170947  | 1.464159  | 1.128006  | 0.038661  |
| C36 | 0.317608  | 3.087948  | -1.069549 | 0.066574  |
| C37 | 1.467581  | 1.799915  | 0.638668  | 0.181005  |
| C38 | -0.961640 | 1.956390  | 0.548509  | 0.056922  |
| C39 | 1.473656  | 2.633523  | -0.518673 | 0.026972  |
| H40 | -1.947636 | 1.714058  | 0.929902  | -0.003822 |
| H41 | 0.305067  | 3.717988  | -1.953395 | -0.003798 |
| C42 | 2.671407  | 1.330884  | 1.241061  | 0.138156  |
| C43 | 3.956283  | 1.811426  | 0.854752  | 0.055886  |
| C44 | 2.681039  | 0.328334  | 2.254960  | 0.042281  |
| C45 | 3.849116  | -0.154769 | 2.760381  | 0.047515  |
| C46 | 5.096970  | 1.306322  | 1.401882  | 0.049630  |
| H47 | 1.759339  | -0.111912 | 2.621060  | -0.003210 |
| H48 | 3.883961  | -0.939544 | 3.509721  | -0.002977 |
| H49 | 6.082966  | 1.665452  | 1.123330  | -0.003475 |
| C50 | 6.284360  | -0.266309 | 2.880137  | -0.012432 |
| H51 | 6.312572  | -1.336945 | 2.653693  | 0.008204  |
| H52 | 6.325709  | -0.123188 | 3.962929  | 0.008405  |
| C53 | -2.089957 | 3.377470  | -1.193671 | -0.012494 |
| H54 | -2.190655 | 2.923686  | -2.189550 | 0.009347  |
| H55 | -1.870545 | 4.439354  | -1.341973 | 0.006348  |
| C56 | -3.390721 | 3.258242  | -0.437798 | 0.001095  |
| H57 | -3.278964 | 3.589872  | 0.602884  | -0.000313 |
| H58 | -4.106443 | 3.947104  | -0.904883 | -0.000328 |
| N59 | -3.897468 | 1.900038  | -0.471217 | 0.000249  |
| H60 | -3.476521 | 1.238692  | -1.127848 | -0.000577 |
| C61 | -5.018022 | 1.555671  | 0.200108  | 0.000014  |
| O62 | -5.671462 | 2.338871  | 0.878247  | 0.000007  |
| C63 | -5.303068 | -0.486546 | -1.332151 | 0.000047  |
| C64 | -5.376175 | 0.076090  | 0.107972  | 0.000088  |
| H65 | -4.623559 | -0.456667 | 0.715713  | 0.000080  |
| N66 | -6.661233 | -0.138737 | 0.715171  | 0.000017  |
| H67 | -7.139157 | 0.682986  | 1.069057  | 0.000004  |
| C68 | -7.028810 | -1.395597 | 1.062708  | -0.000002 |
| O69 | -6.333888 | -2.373111 | 0.776293  | 0.000005  |
| C70 | -8.332405 | -1.532571 | 1.793705  | 0.000001  |
| H71 | -9.000408 | -2.170549 | 1.207729  | 0.000000  |
| H72 | -8.826468 | -0.576693 | 1.983068  | 0.000000  |
| H73 | -8.151846 | -2.039134 | 2.746167  | 0.000000  |
| H74 | 4.740531  | -2.661151 | 0.468088  | -0.003171 |
| H75 | 2.790081  | -3.028393 | 0.826958  | -0.003386 |
| H76 | 2.399254  | 2.907747  | -1.013922 | -0.002693 |
|     | -         |           |           |           |

| H77 | 4.067399  | 2.602451  | 0.121201  | -0.004008 |
|-----|-----------|-----------|-----------|-----------|
| H78 | 7.148449  | 0.216642  | 2.420883  | 0.000469  |
| H79 | 8.393111  | 0.210671  | -0.511907 | 0.008746  |
| H80 | -5.491603 | 0.288638  | -2.080445 | -0.000003 |
| H81 | -6.061121 | -1.265869 | -1.438673 | 0.000000  |

| SCF Done: $E(UM06) = -185$        | 0.35941522   | A.U. after | 1 cycles        |            |
|-----------------------------------|--------------|------------|-----------------|------------|
| Annihilation of the first spin co | ntaminant:   |            |                 |            |
| S**2 before annihilation          | 2.0104, a    | fter 2.000 | 1               |            |
|                                   |              |            |                 |            |
| 1                                 |              | 2          |                 | 3          |
| Α                                 |              | А          |                 | А          |
| Frequencies 24.0821               |              | 24.5110    |                 | 34.6882    |
| Red. masses 5.5299                |              | 5.7750     |                 | 5.5969     |
|                                   |              |            |                 |            |
| Zero-point correction=            |              | 0.6        | 685284 (Hartree | /Particle) |
| Thermal correction to Energy=     |              | 0.7        | 23522           |            |
| Thermal correction to Enthalpy    | =            | 0.72       | 24466           |            |
| Thermal correction to Gibbs Fr    | ee Energy=   | 0.615      | 5389            |            |
| Sum of electronic and zero-point  | nt Energies= | -18        | 49.674131       |            |
| Sum of electronic and thermal     | -1           | 849.635893 |                 |            |
| Sum of electronic and thermal     | Enthalpies=  | -18        | 349.634949      |            |

-1849.744027

| I       | tem   | Value Threshold   | Converged? |
|---------|-------|-------------------|------------|
| Maximum | Force | 0.000062 0.000450 | YES        |
| RMS     | Force | 0.000008 0.000300 | YES        |

Sum of electronic and thermal Free Energies=

| 111  |           | L         |           | e            |
|------|-----------|-----------|-----------|--------------|
| Atom | Х         | Y         | Ζ         | Spin Density |
| N1   | -3.535206 | -0.001708 | -0.025953 | 0.155170     |
| N2   | 3.535208  | -0.001671 | 0.025968  | 0.155170     |
| C3   | -1.480407 | 1.201345  | 0.010664  | 0.043079     |
| C4   | -2.840522 | -1.177444 | -0.038911 | 0.050615     |
| C5   | -0.712582 | -0.001034 | -0.004397 | 0.160178     |
| C6   | -2.840665 | 1.174805  | 0.002401  | 0.052738     |
| C7   | -1.479833 | -1.203362 | -0.031526 | 0.047263     |
| C8   | 0.712581  | -0.001026 | 0.004416  | 0.160181     |
| С9   | 1.480396  | 1.201359  | -0.010645 | 0.043093     |
| C10  | 1.479843  | -1.203349 | 0.031544  | 0.047246     |
| C11  | 2.840529  | -1.177417 | 0.038929  | 0.050621     |
| C12  | 2.840658  | 1.174832  | -0.002388 | 0.052734     |
| C13  | 4.993231  | 0.005230  | -0.033445 | -0.012318    |
| C14  | -4.993230 | 0.005269  | 0.033373  | -0.012318    |
| H15  | -3.441316 | 2.078407  | 0.016188  | -0.003253    |
| H16  | -1.004889 | -2.177809 | -0.057868 | -0.003433    |
| H17  | -3.439137 | -2.082064 | -0.059835 | -0.003154    |
| H18  | 1.004908  | -2.177801 | 0.057886  | -0.003432    |
| H19  | 3.439162  | -2.082025 | 0.059848  | -0.003155    |
| H20  | 3.441291  | 2.078446  | -0.016182 | -0.003253    |
| H21  | 5.335276  | 0.082141  | -1.069970 | 0.010885     |
| H22  | 5.378054  | -0.916758 | 0.405061  | 0.001922     |
| H23  | -5.378048 | -0.917114 | -0.404297 | 0.001915     |
| H24  | -5.375276 | 0.853536  | -0.537735 | 0.003558     |
| H25  | -5.335329 | 0.083136  | 1.069807  | 0.010883     |
| H26  | 1.005900  | 2.176156  | -0.032644 | -0.003242    |
| H27  | -1.005919 | 2.176147  | 0.032666  | -0.003242    |
| H28  | 5.375315  | 0.854013  | 0.536869  | 0.003549     |

**Table S25.** Geometry optimized for the one-electron-reduced N,N'-dimethyl-4,4'-bipypridinium  $MV^+$  (doublet). Optimized at the UM06/6-31G\*\* level using PCM.<sup>*a*</sup>

| SCF Done:                                   | E(UM06) = | -574.6238880 | 18     | A.U. after | 1 cycles |         |
|---------------------------------------------|-----------|--------------|--------|------------|----------|---------|
| Annihilation of the first spin contaminant: |           |              |        |            |          |         |
| $S^{**2}$ before annihilation 0.7549,       |           | after        | 0.7500 |            |          |         |
|                                             |           |              |        |            |          |         |
|                                             |           | 1            |        | 2          |          | 3       |
|                                             |           | А            |        | А          |          | А       |
| Frequencies                                 | 35.90     | 018          |        | 41.8198    |          | 56.6065 |
| Red. masses                                 | s 1.0     | 969          |        | 1.1182     |          | 2.8076  |
|                                             |           |              |        |            |          |         |

Zero-point correction=

0.236928 (Hartree/Particle)

| Thermal correction to Energy=                | 0.249931    |
|----------------------------------------------|-------------|
| Thermal correction to Enthalpy=              | 0.250875    |
| Thermal correction to Gibbs Free Energy=     | 0.195163    |
| Sum of electronic and zero-point Energies=   | -574.386960 |
| Sum of electronic and thermal Energies=      | -574.373958 |
| Sum of electronic and thermal Enthalpies=    | -574.373013 |
| Sum of electronic and thermal Free Energies= | -574.428725 |

|         | Item    | Value    | Threshold | Converged? |
|---------|---------|----------|-----------|------------|
| Maximum | n Force | 0.000006 | 0.000450  | YES        |
| RMS     | Force   | 0.000001 | 0.000300  | YES        |

**Table S26.** Electronic transitions computed by TD-DFT for the closed-shell singlet state of the non-derivatized  $(MV^+)_2$  in an eclipsed fashion, for which part of the Gaussian output is shown. Relevant MO's are shown below:



| Excited State 10: | Singlet-A | 4.2195 eV | 293.83 nm | f=0.0883 | <s**2>=0.000</s**2> |
|-------------------|-----------|-----------|-----------|----------|---------------------|
| 96 ->100          | 0.69579   |           |           |          |                     |
Table S27. Electronic transitions computed by TD-DFT for the open-shell singlet state of the non-derivatized  $(MV^+)_2$  in an eclipsed fashion, for which part of the Gaussian output is shown. Relevant MO's are shown below:





MO102 β



MO101 β



MO100  $\beta$  (LUMO)



MO99 β (HOMO)



MO98 β



Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| Excited State 2:    | 0.742-A  | 1.6413 eV | 755.42 nm | f=0.2663 | <s**2>=-0.112</s**2> |
|---------------------|----------|-----------|-----------|----------|----------------------|
| 99A ->100A          | 0.72586  |           |           |          |                      |
| 99B ->100B          | -0.72584 |           |           |          |                      |
| 99A <-100A          | -0.17043 |           |           |          |                      |
| 99B <-100B          | 0.17043  |           |           |          |                      |
|                     |          |           |           |          |                      |
| Excited State 8:    | 2.122-A  | 2.6012 eV | 476.64 nm | f=0.3999 | <s**2>=0.876</s**2>  |
| 98A ->100A          | -0.19097 |           |           |          |                      |
| 99A ->102A          | 0.57701  |           |           |          |                      |
| 99A ->105A          | -0.34636 |           |           |          |                      |
| 98B ->100B          | 0.19100  |           |           |          |                      |
| 99B ->102B          | -0.57700 |           |           |          |                      |
| 99B ->105B          | 0.34636  |           |           |          |                      |
| Excited State 10:   | 2.382-A  | 2.9757 eV | 416.65 nm | f=0.0589 | <s**2>=1.168</s**2>  |
| 98A ->100A          | -0.14707 |           |           |          |                      |
| 99A ->102A          | 0.32958  |           |           |          |                      |
| 99A ->105A          | 0.59280  |           |           |          |                      |
| 98B ->100B          | 0.14706  |           |           |          |                      |
| 99B ->102B          | -0.32955 |           |           |          |                      |
| 99B ->105B          | -0.59279 |           |           |          |                      |
| Evolted State 17.   | 2 (04 4  | 2 7002 .V | 224.26    | £_0 4529 | < <u></u>            |
| Exciled State $1/2$ | 2.094-A  | 5.7092 ev | 334.20 nm | 1=0.4558 | <5***2>=1.303        |
| 93A - 100A          | 0.11035  |           |           |          |                      |
| 94A - >104A         | 0.13372  |           |           |          |                      |
| 95A - >100A         | 0.3393/  |           |           |          |                      |
| 90A - 103A          | -0.23791 |           |           |          |                      |
| 9/A - >101A         | 0.33293  |           |           |          |                      |
| 98A ->100A          | -0.362/6 |           |           |          |                      |
| 99A -> 102A         | -0.14/49 |           |           |          |                      |
| 99A ->105A          | -0.12408 |           |           |          |                      |
| 93B ->106B          | -0.11653 |           |           |          |                      |
| 94B ->104B          | -0.13372 |           |           |          |                      |
| 95B ->100B          | -0.33936 |           |           |          |                      |
| 96B ->103B          | -0.23790 |           |           |          |                      |
| 97B ->101B          | -0.33293 |           |           |          |                      |
| 98B ->100B          | 0.36277  |           |           |          |                      |
| 99B ->102B          | 0.14748  |           |           |          |                      |
| 99B ->105B          | 0.12419  |           |           |          |                      |

| Excited State 20: | 2.162-A  | 4.0578 eV | 305.54 nm | f=0.7752 | <s**2>=0.918</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 94A ->104A        | 0.11446  |           |           |          |                     |
| 96A ->103A        | -0.21479 |           |           |          |                     |
| 97A ->101A        | 0.32284  |           |           |          |                     |
| 98A ->100A        | 0.52239  |           |           |          |                     |
| 99A ->102A        | 0.19305  |           |           |          |                     |
| 94B ->104B        | -0.11446 |           |           |          |                     |
| 96B ->103B        | -0.21479 |           |           |          |                     |
| 97B ->101B        | -0.32283 |           |           |          |                     |
| 98B ->100B        | -0.52236 |           |           |          |                     |
| 99B ->102B        | -0.19305 |           |           |          |                     |
|                   |          |           |           |          |                     |
| Excited State 22: | 1.629-A  | 4.1760 eV | 296.90 nm | f=0.0826 | <s**2>=0.414</s**2> |
| 93A ->100A        | 0.16280  |           |           |          |                     |
| 96A ->100A        | 0.65559  |           |           |          |                     |
| 97A ->102A        | 0.14673  |           |           |          |                     |
| 93B ->100B        | -0.16280 |           |           |          |                     |
| 96B ->100B        | -0.65557 |           |           |          |                     |
| 97B ->102B        | -0.14672 |           |           |          |                     |
|                   |          |           |           |          |                     |

Table S28. Electronic transitions computed by TD-DFT for the triplet state of the non-derivatized  $(MV^+)_2$  in an *slipped* fashion, for which part of the Gaussian output is shown. Relevant MO's are shown below, where MO97 $\beta$ -MO100 $\beta$  are identical to the corresponding  $\alpha$ MO's:



MO100  $\alpha$  (SOMO)

Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| Excited State 4: $00.4 > 102.4$ | 3.015-A  | 2.3723 eV | 522.64 nm | f=0.4087 | <s**2>=2.023</s**2> |
|---------------------------------|----------|-----------|-----------|----------|---------------------|
| 99A ->102A                      | -0.54/89 |           |           |          |                     |
| 100A ->101A                     | 0.87362  |           |           |          |                     |
| 97B ->100B                      | -0.18650 |           |           |          |                     |
| 98B -> 99B                      | 0.23950  |           |           |          |                     |
|                                 |          |           |           |          |                     |
| Excited State 8:                | 3.010-A  | 2.5857 eV | 479.49 nm | f=0.0419 | <s**2>=2.014</s**2> |
| 99A ->102A                      | 0.87667  |           |           |          |                     |
| 99A ->105A                      | -0.11567 |           |           |          |                     |
| 100A ->101A                     | 0.41804  |           |           |          |                     |

| 100A -~104A                        | 0.11470  |            |             |          |                              |
|------------------------------------|----------|------------|-------------|----------|------------------------------|
| 98B -> 99B                         | -0.10201 |            |             |          |                              |
| Evolted State 14:                  | 2 174 4  | 25117 N    | 252.06 mm   | £-0.0254 | ~~**1>-2 260                 |
| Exclued State 14. $00A > 102A$     | 0.10296  | 5.5117 ev  | 555.00 mm   | 1-0.9554 | <3.2>=2.209                  |
| 99A - >102A                        | 0.19380  |            |             |          |                              |
| 100A ->101A<br>02D >106D           | -0.18/20 |            |             |          |                              |
| 93B ->100B                         | 0.10783  |            |             |          |                              |
| 94D ->101D<br>05D >102D            | 0.14994  |            |             |          |                              |
| 95B ->102B<br>06B >104B            | -0.1/1/0 |            |             |          |                              |
| 90D ->104D<br>07P >100P            | -0.13039 |            |             |          |                              |
| 97D -> 100D<br>98B -> 99B          | 0.78198  |            |             |          |                              |
| )0D -> ))D                         | 0.70170  |            |             |          |                              |
| Excited State 18:                  | 3.083-A  | 3.9906 eV  | 310.69 nm   | f=0.0596 | <s**2>=2.126</s**2>          |
| 96A ->101A                         | 0.11504  |            |             |          |                              |
| 93B -> 99B                         | 0.25223  |            |             |          |                              |
| 95B ->103B                         | -0.10791 |            |             |          |                              |
| 96B ->100B                         | 0.70132  |            |             |          |                              |
| 97B ->100B                         | -0.51935 |            |             |          |                              |
| 98B -> 99B                         | -0.27644 |            |             |          |                              |
| Excited State 19.                  | 3 088-A  | 4 0209 eV  | 308 35 nm   | f=0.0592 | < <b>S**</b> 2>=2 134        |
| 92B -> 99B                         | 0 10082  | 1.0209 01  | 500.55 IIII | 1 0.0092 | 5 2 2.15                     |
| 93B -> 99B                         | 0 17787  |            |             |          |                              |
| 96B ->100B                         | 0.53366  |            |             |          |                              |
| 97B -> 99B                         | -0.25861 |            |             |          |                              |
| 97B ->100B                         | 0.57231  |            |             |          |                              |
| 98B -> 99B                         | 0.38644  |            |             |          |                              |
| 98B ->100B                         | -0.21180 |            |             |          |                              |
| Evolted State 22.                  | 2 051 4  | 1 1528 N   | 270 20 nm   | £-0.2218 | ~5**2>-2 652                 |
| $03\Lambda \rightarrow 106\Lambda$ | 0.10807  | 4.4338 6 V | 278.38 IIII | 1-0.2318 | < <u>5*2</u> >= <u>5.052</u> |
| 94A =>100A                         | 0.19897  |            |             |          |                              |
| 94A => 105A<br>94A => 105A         | 0.28117  |            |             |          |                              |
| 95A =>105A                         | -0.26918 |            |             |          |                              |
| 96A = >104A                        | -0.37021 |            |             |          |                              |
| 97A ->105A                         | 0.10490  |            |             |          |                              |
| 99A ->102A                         | 0.13323  |            |             |          |                              |
| 100A ->101A                        | -0 13598 |            |             |          |                              |
| 93B ->106B                         | -0 20111 |            |             |          |                              |
| $94B \rightarrow 100B$             | -0 27552 |            |             |          |                              |
| 94B ->104B                         | -0 14116 |            |             |          |                              |
| 95B ->102B                         | 0 39435  |            |             |          |                              |
| 96B ->104B                         | 0 28601  |            |             |          |                              |
| 96B ->105B                         | -0 10813 |            |             |          |                              |
| 97B ->100B                         | -0 26804 |            |             |          |                              |
| 98B -> 99B                         | 0.16722  |            |             |          |                              |

**Table S29.** Electronic transitions computed by TD-DFT for the closed-shell singlet state of the non-derivatized  $(MV^+)_2$  in a staggered fashion, for which part of the Gaussian output is shown. Relevant MO's are shown below:



| 97 ->100          | 0.68961   |           |             |          |                         |
|-------------------|-----------|-----------|-------------|----------|-------------------------|
| 99 ->105          | -0.12360  |           |             |          |                         |
|                   |           |           |             |          |                         |
| Excited State 11: | Singlet-A | 4.6795 eV | 264.95 nm   | f=0.0243 | <s**2>=0.000</s**2>     |
| 95 ->100          | 0.69593   |           |             |          |                         |
| Excited State 26. | Singlet-A | 5 9605 eV | 208 01 nm   | f=0 2897 | <\$**2>=0.000           |
| 93 ->101          | 0 11917   | 5.9005 01 | 200.01 IIII | 1 0.2097 | ·B 2 <sup>,</sup> 0.000 |
| 94 ->101          | -0 11394  |           |             |          |                         |
| 96 ->102          | 0.64461   |           |             |          |                         |
| 97 ->103          | -0 14925  |           |             |          |                         |
| <i>yt</i> × 105   | 0.14)25   |           |             |          |                         |
| Excited State 28: | Singlet-A | 6.0344 eV | 205.46 nm   | f=0.0609 | <s**2>=0.000</s**2>     |
| 95 ->102          | -0.13384  |           |             |          |                         |
| 96 ->101          | -0.19099  |           |             |          |                         |
| 97 ->104          | -0.20762  |           |             |          |                         |
| 98 ->103          | 0.43061   |           |             |          |                         |
| 98 ->105          | -0.31712  |           |             |          |                         |
| 99 ->112          | 0.24493   |           |             |          |                         |
|                   |           |           |             |          |                         |
| Excited State 29: | Singlet-A | 6.0425 eV | 205.19 nm   | f=0.0460 | <s**2>=0.000</s**2>     |
| 94 ->101          | -0.10877  |           |             |          |                         |
| 95 ->102          | 0.16340   |           |             |          |                         |
| 96 ->101          | -0.15655  |           |             |          |                         |
| 97 ->101          | 0.10820   |           |             |          |                         |
| 97 ->104          | 0.25685   |           |             |          |                         |
| 98 ->103          | 0.35964   |           |             |          |                         |
| 98 ->105          | 0.39632   |           |             |          |                         |
| 99 ->112          | 0.14818   |           |             |          |                         |

**Table S30.** Electronic transitions computed by TD-DFT for the open-shell singlet state of the non-derivatized  $(MV^+)_2$  in an staggered fashion, for which part of the Gaussian output is shown. Relevant MO's are shown below:



MO105 α (LUMO+5)



MO101 α (LUMO+1)



MO100 α (LUMO)



MO99a (SOMO)



MO98  $\alpha$ 



MO105 β (LUMO+5)



MO101 β (LUMO+1)



MO100  $\beta$  (LUMO)



MO99 β (SOMO)



MO98 β

Excited State 2: 0.559-A 1.3991 eV 886.16 nm f=0.1209 <S\*\*2>=-0.172 99A ->100A 0.71517 99B ->100B -0.71514 99A <-100A -0.1149899B <-100B 0.11499 Excited State 3: 2.681-A 1.9982 eV 620.49 nm f=0.0329 <S\*\*2>=1.547 99A ->101A -0.62177 99A ->102A -0.3187999B ->101B 0.62188 99B ->102B 0.31903 Excited State 5: 2.199-A 2.1969 eV 564.35 nm f=0.0306 <S\*\*2>=0.959 0.29763 99A ->101A -0.54765 99A ->102A 99A ->103A 0.28440 99A ->105A 0.13912 99B ->101B -0.2974099B ->102B 0.54773 99B ->103B -0.2844799B ->105B -0.139132.4071 eV 515.07 nm f=0.2876 <S\*\*2>=0.930 Excited State 6: 2.173-A 98A ->100A 0.14914 99A ->101A 0.63940 99A ->105A -0.2438498B ->100B 0.14914 99B ->101B 0.63943 99B ->105B -0.24381 2.8243 eV 438.99 nm f=0.0253 <S\*\*2>=0.929 Excited State 10: 2.172-A 99A ->103A 0.64547 99A ->105A -0.24379 99B ->103B 0.64552 99B ->105B -0.24384 Excited State 11: 2.116-A 3.1366 eV 395.28 nm f=0.0338 <S\*\*2>=0.869 98A ->100A 0.16801 99A ->101A 0.20819 99A ->103A 0.23251 99A ->105A 0.59560 98B ->100B 0.16807 99B ->101B 0.20819 99B ->103B 0.23250 99B ->105B 0.59566 Excited State 15: 2.153-A 3.4846 eV 355.80 nm f=0.1681 <S\*\*2>=0.909 98A ->100A -0.39261 99A ->105A 0.53916 98B ->100B 0.39262 99B ->105B -0.53914 3.5840 eV 345.94 nm f=0.4461 <S\*\*2>=1.416 Excited State 16: 2.582-A 0.10548 96A ->101A

Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| 96A ->103A             | -0.11065 |           |            |           |                     |
|------------------------|----------|-----------|------------|-----------|---------------------|
| 97A ->100A             | -0.39825 |           |            |           |                     |
| 98A ->100A             | 0.47138  |           |            |           |                     |
| 99A ->101A             | -0.14740 |           |            |           |                     |
| 99A ->105A             | -0.11272 |           |            |           |                     |
| 96B ->101B             | 0.10550  |           |            |           |                     |
| 96B ->103B             | -0.11066 |           |            |           |                     |
| 97B ->100B             | -0.39832 |           |            |           |                     |
| 98B ->100B             | 0.47139  |           |            |           |                     |
| 99B ->101B             | -0.14739 |           |            |           |                     |
| 99B ->105B             | -0.11273 |           |            |           |                     |
| Excited State 18:      | 2.226-A  | 4.0654 eV | 304.98 nm  | f=0.2483  | <s**2>=0.988</s**2> |
| 93A ->100A             | -0 15966 |           | 2011901111 | 1 0.2 100 | 5 - 00000           |
| 95A ->100A             | 0 20920  |           |            |           |                     |
| 97A ->100A             | 0.49248  |           |            |           |                     |
| 98A ->100A             | 0 35229  |           |            |           |                     |
| $93B \rightarrow 100R$ | -0 15964 |           |            |           |                     |
| 95B ->100B             | 0 20957  |           |            |           |                     |
| 97B ~100B              | 0.20937  |           |            |           |                     |
| 9/D - 2100D            | 0.49313  |           |            |           |                     |
| 96D ->100D             | 0.55227  |           |            |           |                     |
| Excited State 19:      | 2.388-A  | 4.0766 eV | 304.14 nm  | f=0.1424  | <s**2>=1.176</s**2> |
| 94A ->101A             | -0.10433 |           |            |           |                     |
| 95A ->100A             | 0.35581  |           |            |           |                     |
| 96A ->100A             | 0.13967  |           |            |           |                     |
| 96A ->105A             | -0.12198 |           |            |           |                     |
| 97A ->100A             | 0.54371  |           |            |           |                     |
| 94B ->101B             | 0.10436  |           |            |           |                     |
| 95B ->100B             | -0.35561 |           |            |           |                     |
| 96B ->100B             | -0.13954 |           |            |           |                     |
| 96B ->105B             | 0.12197  |           |            |           |                     |
| 97B ->100B             | -0.54326 |           |            |           |                     |
| Excited State 23:      | 2.996-A  | 4.3887 eV | 282.51 nm  | f=0.1232  | <s**2>=1.994</s**2> |
| 93A ->100A             | 0.18272  |           |            |           |                     |
| 93A ->102A             | 0.15911  |           |            |           |                     |
| 93A ->106A             | -0.13267 |           |            |           |                     |
| 94A ->100A             | -0.11733 |           |            |           |                     |
| 94A ->102A             | 0.22809  |           |            |           |                     |
| 95A ->100A             | -0.18747 |           |            |           |                     |
| 95A ->104A             | -0.18332 |           |            |           |                     |
| 96A ->101A             | -0.13486 |           |            |           |                     |
| 96A ->103A             | 0.28294  |           |            |           |                     |
| 98A ->100A             | 0.26845  |           |            |           |                     |
| 98A ->104A             | -0.16577 |           |            |           |                     |
| 93B ->100B             | 0.18272  |           |            |           |                     |
| 93B ->102B             | 0.15910  |           |            |           |                     |
| 93B ->106B             | -0.13267 |           |            |           |                     |
| 94B ->100B             | -0.11733 |           |            |           |                     |
| 94B ->102B             | 0.22814  |           |            |           |                     |
| 95B ->100B             | -0.18748 |           |            |           |                     |
| 95B ->104B             | -0.18331 |           |            |           |                     |
| 96B ->101B             | -0.13491 |           |            |           |                     |
| 96B ->103B             | 0.28298  |           |            |           |                     |
| 98B ->100B             | 0 26842  |           |            |           |                     |
| 98B ->104B             | -0 16579 |           |            |           |                     |

| Excited State 24:           | 3.227-A            | 4.4109 eV  | 281.09 nm   | f=0.0381 | <s**2>=2.354</s**2> |
|-----------------------------|--------------------|------------|-------------|----------|---------------------|
| 93A ->103A                  | -0.11428           |            |             |          |                     |
| 93A ->104A                  | -0.19829           |            |             |          |                     |
| 94A ->102A                  | 0.12910            |            |             |          |                     |
| 94A ->103A                  | -0.18490           |            |             |          |                     |
| 94A ->104A                  | 0.12972            |            |             |          |                     |
| 95A ->106A                  | -0.19810           |            |             |          |                     |
| 96A ->101A                  | 0.11503            |            |             |          |                     |
| 96A ->102A                  | -0.36514           |            |             |          |                     |
| 96A ->103A                  | -0.16616           |            |             |          |                     |
| 97A ->100A                  | 0.10433            |            |             |          |                     |
| 97A ->104A                  | 0.15513            |            |             |          |                     |
| 97A ->106A                  | -0.11462           |            |             |          |                     |
| 98A ->100A                  | -0.17266           |            |             |          |                     |
| 93B ->103B                  | 0.11438            |            |             |          |                     |
| 93B ->104B                  | 0.19823            |            |             |          |                     |
| 94B ->102B                  | -0.12907           |            |             |          |                     |
| 94B ->103B                  | 0.18486            |            |             |          |                     |
| 94B ->104B                  | -0.12980           |            |             |          |                     |
| 95B ->106B                  | 0.19810            |            |             |          |                     |
| 96B ->101B                  | -0.11498           |            |             |          |                     |
| 96B ->102B                  | 0.36524            |            |             |          |                     |
| 96B ->103B                  | 0.16616            |            |             |          |                     |
| 97B ->100B                  | -0.10429           |            |             |          |                     |
| 97B ->104B                  | -0.15515           |            |             |          |                     |
| 97B ->106B                  | 0.11466            |            |             |          |                     |
| 98B ->100B                  | 0.17271            |            |             |          |                     |
| -                           | • • • • •          |            | • • • • •   |          |                     |
| Excited State 62:           | 2.068-A            | 5.9834 eV  | 207.21 nm   | f=0.2315 | <s**2>=0.819</s**2> |
| 96A ->102A                  | 0.64568            |            |             |          |                     |
| 97A ->104A                  | -0.11802           |            |             |          |                     |
| 96B ->102B                  | 0.64571            |            |             |          |                     |
| 97B ->104B                  | -0.11803           |            |             |          |                     |
| Evolted State 64:           | 2 121 4            | 6 02 80 aV | 205 24 nm   | £-0 1020 | ~5**3~-0 005        |
| $0/1 \times 10^{2} \Lambda$ | 2.131-A<br>0.10507 | 0.0380 ev  | 203.34 1111 | 1-0.1020 | <5**2>=0.885        |
| 96A =>101A                  | 0 22198            |            |             |          |                     |
| 90A -> 101A<br>97A -> 104A  | -0 18107           |            |             |          |                     |
| 9/A - 104A                  | -0.18197           |            |             |          |                     |
| 90A -> 104A                 | -0.38000           |            |             |          |                     |
| 0/R \100A                   | -0.14204           |            |             |          |                     |
| 940 -/1020<br>06B \101D     | 0.10390            |            |             |          |                     |
| 90D -/101D<br>07D \104D     | -0.22200           |            |             |          |                     |
| 9/D -/104D<br>08B \104D     | 0.1019/            |            |             |          |                     |
| 98B ->104D                  | 0.30000            |            |             |          |                     |
| 98B ->106B                  | 0.14205            |            |             |          |                     |

**Table S31.** Electronic transitions computed by TD-DFT for the triplet state of the non-derivatized  $(MV^+)_2$  in an staggered fashion, for which part of the Gaussian output. Relevant MO's are shown below, where MO97β-MO100β are identical to the corresponding  $\alpha$  MO's:



Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

3: 3.019-A 2.1254 eV 583.33 nm f=0.0389 <S\*\*2>=2.029 Excited State 99A ->102A -0.36471 99A ->103A 0.14728 100A ->101A 0.77764 100A ->104A -0.4457598B -> 99B 0.12795 Excited State 4: 3.022-A 2.3611 eV 525.10 nm f=0.2685 <S\*\*2>=2.033 -0.24797 99A ->101A 99A ->106A -0.18382100A ->102A 0.75994 100A ->103A 0.39560 100A ->105A -0.3024697B -> 99B -0.16827 98B ->100B -0.16809 Excited State 5: 3.035-A 2.4415 eV 507.82 nm f=0.1222 <S\*\*2>=2.053 99A ->101A -0.57325 99A ->106A 0.32424 100A ->102A 0.10707 100A ->105A 0.68686 97B -> 99B -0.13504 98B ->100B -0.12996Excited State 12: 3.058-A 3.3179 eV 373.69 nm f=0.0332 <S\*\*2>=2.087 99A ->102A -0.10219 99A ->106A 0.64788 100A ->105A -0.32779 97B ->100B -0.24475 98B -> 99B -0.57686 3.3354 eV 371.73 nm f=0.0458 <S\*\*2>=2.104 Excited State 13: 3.068-A 99A ->102A 0.10691 99A ->105A 0.10770 99A ->106A 0.60143 100A ->105A -0.30747 97B ->100B 0.26118 98B -> 99B 0.61690 3.5617 eV 348.11 nm f=0.8337 <S\*\*2>=2.276 Excited State 14: 3.178-A 99A ->101A -0.20662100A ->102A 0.14111 93B ->106B -0.11365 94B ->101B -0.11936 95B ->101B 0.11231 95B ->102B 0.10135 96B ->102B -0.11428 97B -> 99B 0.66008 98B ->100B 0.57984

| Excited State 19:                   | 3.116-A  | 4.1075 eV                   | 301.85 nm   | f=0.0674 | <s**2>=2.177</s**2> |
|-------------------------------------|----------|-----------------------------|-------------|----------|---------------------|
| 93B -> 99B                          | 0.55394  |                             |             |          |                     |
| 94B ->100B                          | 0.33119  |                             |             |          |                     |
| 95B -> 99B                          | -0.28032 |                             |             |          |                     |
| 96B -> 99B                          | 0.13523  |                             |             |          |                     |
| 96B ->100B                          | 0.41186  |                             |             |          |                     |
| 97B -> 99B                          | -0.12051 |                             |             |          |                     |
| 97B ->100B                          | -0.36832 |                             |             |          |                     |
| 98B -> 99B                          | 0.17591  |                             |             |          |                     |
| 98B ->100B                          | 0.15449  |                             |             |          |                     |
| Excited State 25:                   | 3 945-0  | 4 4969 eV                   | 275 71 nm   | f=0 1909 | <\$**2>=3 641       |
|                                     | 0.23/1/  | ч.ч <i>)</i> 0 <i>)</i> с v | 275.71 IIII | 1 0.1707 | S 22 J.041          |
| $9/\Lambda \rightarrow 100 \Lambda$ | 0.25414  |                             |             |          |                     |
| 94A => 104A                         | 0.10990  |                             |             |          |                     |
| 94A => 104A                         | -0.22840 |                             |             |          |                     |
| 95A =>102A                          | 0 13236  |                             |             |          |                     |
| 95A ->103A                          | -0 22963 |                             |             |          |                     |
| 964 ->1044                          | 0.22703  |                             |             |          |                     |
| 96A ->105A                          | 0.13856  |                             |             |          |                     |
| 974 ->103A                          | 0.13650  |                             |             |          |                     |
| 99A ->101A                          | 0.12301  |                             |             |          |                     |
| 100A ->102A                         | -0 11421 |                             |             |          |                     |
| 93B ->100R                          | -0.11277 |                             |             |          |                     |
| 93B ->106B                          | -0.23672 |                             |             |          |                     |
| 94B -> 99B                          | 0.10156  |                             |             |          |                     |
| 94B ->101B                          | -0.26123 |                             |             |          |                     |
| 94B ->101B                          | 0.11869  |                             |             |          |                     |
| 94B ->104B                          | 0 19135  |                             |             |          |                     |
| 95B ->100B                          | 0 10958  |                             |             |          |                     |
| 95B ->101B                          | 0 18113  |                             |             |          |                     |
| 95B ->102B                          | 0 18192  |                             |             |          |                     |
| 95B ->104B                          | 0.12311  |                             |             |          |                     |
| 96B ->101B                          | 0 13013  |                             |             |          |                     |
| 96B ->102B                          | -0 25076 |                             |             |          |                     |
| 96B ->103B                          | -0.10801 |                             |             |          |                     |
| 96B ->104B                          | 0 12888  |                             |             |          |                     |
| 97B -> 99B                          | -0 22013 |                             |             |          |                     |
| 97B ->101B                          | -0 10624 |                             |             |          |                     |
| 98B ->100B                          | -0.17223 |                             |             |          |                     |
| Engited State (7                    | 2 410 4  | (1772 -17                   | 200.71      | £_0.0220 | ~0**0>-0 (7)        |
| Exciled State $0/$ :                | 5.419-A  | 0.1//SeV                    | 200./1 nm   | 1-0.0329 | ~32>=2.0/3          |
| 9/A ->102A                          | -0.16440 |                             |             |          |                     |
| 9/A - 2103A                         | 0.5/539  |                             |             |          |                     |
| 90A ->104A<br>00 A \111 A           | -0.3018/ |                             |             |          |                     |
| 99A -/111A<br>100 A \112 A          | 0.30002  |                             |             |          |                     |
| 100A - 113A                         | 0.21309  |                             |             |          |                     |
| 100A - > 114A                       | -0.29140 |                             |             |          |                     |
| 91B ->100B                          | 0.12203  |                             |             |          |                     |
| 30B ->103B                          | 0.1211/  |                             |             |          |                     |

\_

**Table S32.** Electronic transitions computed by TD-DFT for the closed-shell singlet state of the Asp-based  $(MV^+)_2$  in an eclipsed fashion, for which part of the Gaussian output is shown. Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| Excited State 1:<br>151 ->152<br>151 <-152                                         | Singlet-A<br>0.73628<br>-0.21955                                  | 1.5167 eV | 817.46 nm | f=0.2421 | <s**2>=0.000</s**2> |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 3:<br>151 ->154<br>151 ->155                                         | Singlet-A<br>0.24144<br>0.66049                                   | 2.5721 eV | 482.03 nm | f=0.0405 | <s**2>=0.000</s**2> |
| Excited State 4:<br>149 ->152<br>150 ->152<br>151 ->154<br>151 ->155               | Singlet-A<br>-0.17199<br>-0.10718<br>0.62296<br>-0.24232          | 2.7512 eV | 450.65 nm | f=0.4915 | <s**2>=0.000</s**2> |
| Excited State 8:<br>149 ->152<br>150 ->152<br>151 ->154                            | Singlet-A<br>0.54340<br>0.38060<br>0.21646                        | 3.9611 eV | 313.00 nm | f=1.3062 | <s**2>=0.000</s**2> |
| Excited State 9:<br>146 ->152<br>147 ->152                                         | Singlet-A<br>0.68215<br>0.12085                                   | 4.0590 eV | 305.45 nm | f=0.0243 | <s**2>=0.000</s**2> |
| Excited State 11:<br>144 ->152<br>145 ->152                                        | Singlet-A<br>0.59955<br>0.33481                                   | 4.1638 eV | 297.76 nm | f=0.0633 | <s**2>=0.000</s**2> |
| Excited State 14:<br>141 ->152<br>144 ->152<br>145 ->152<br>147 ->152<br>150 ->152 | Singlet-A<br>0.11939<br>0.16337<br>-0.38915<br>0.52461<br>0.10204 | 4.2901 eV | 289.00 nm | f=0.0253 | <s**2>=0.000</s**2> |

**Table S33.** Electronic transitions computed by TD-DFT for the open-shell singlet state of the Asp-based  $(MV^+)_2$  given in a *slipped* fashion, for which part of the Gaussian output is shown. Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| Excited State               | 6:        | 2.251-A            | 2.3654 eV | 524.15 nm | f=0.5724 | <s**2>=1.017</s**2> |
|-----------------------------|-----------|--------------------|-----------|-----------|----------|---------------------|
| 148A ->152                  | 2A        | -0.15443           |           |           |          |                     |
| 151A ->153                  | 3A        | 0.64891            |           |           |          |                     |
| 151A ->154                  | 1A        | -0.31065           |           |           |          |                     |
| 148B ->152                  | 2B        | -0.18951           |           |           |          |                     |
| 151B ->153                  | BB        | 0.59837            |           |           |          |                     |
| 151B ->154                  | łB        | -0.11326           |           |           |          |                     |
| Excited State<br>148A ->152 | 14:<br>2A | 2.416-A<br>0.47209 | 3.4814 eV | 356.13 nm | f=0.7517 | <s**2>=1.210</s**2> |

| 149A ->152A<br>151A ->153A<br>151A ->154A<br>151A ->155A<br>151A ->156A<br>151A ->158A<br>148B ->152B<br>149B ->152B<br>151B ->153B                                                                                  | -0.29029<br>0.11148<br>-0.10509<br>0.13859<br>0.20085<br>-0.43646<br>0.49162<br>0.19191<br>0.13503                                                            |           |           |          |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 15:<br>148A ->152A<br>149A ->152A<br>151A ->155A<br>151A ->156A<br>151A ->156A<br>148B ->152B<br>151B ->155B<br>151B ->156B<br>151B ->158B                                                             | 2.326-A<br>0.31135<br>-0.19102<br>-0.19881<br>-0.30939<br>0.65594<br>0.15717<br>-0.11857<br>0.14989<br>0.40311                                                | 3.5034 eV | 353.90 nm | f=0.1876 | <s**2>=1.103</s**2> |
| Excited State 16:<br>148A ->152A<br>151A ->156A<br>151A ->158A<br>148B ->152B<br>151B ->155B<br>151B ->156B<br>151B ->158B                                                                                           | 2.221-A<br>-0.13184<br>0.13376<br>-0.35071<br>-0.16483<br>-0.19506<br>0.27009<br>0.80546                                                                      | 3.5304 eV | 351.19 nm | f=0.0786 | <s**2>=0.983</s**2> |
| Excited State 20:<br>139A ->152A<br>140A ->152A<br>141A ->152A<br>143A ->152A<br>143A ->152A<br>143A ->152A<br>144A ->152A<br>145A ->152A<br>146A ->152A<br>146A ->152A<br>149A ->152A<br>140B ->152B<br>146B ->152B | 2.355-A<br>-0.12124<br>-0.11400<br>0.18760<br>0.62350<br>-0.11328<br>-0.25811<br>-0.33598<br>0.33980<br>0.27925<br>-0.16608<br>-0.15492<br>0.17523<br>0.11147 | 4.0356 eV | 307.23 nm | f=0.0294 | <s**2>=1.137</s**2> |
| Excited State 21:<br>140A ->153A<br>146A ->152A<br>139B ->152B<br>143B ->152B<br>143B ->152B<br>143B ->157B<br>144B ->152B<br>146B ->152B                                                                            | 2.350-A<br>-0.15434<br>-0.15684<br>0.10461<br>0.86768<br>-0.15566<br>0.26402<br>-0.14558                                                                      | 4.0777 eV | 304.05 nm | f=0.0404 | <s**2>=1.130</s**2> |
| Excited State 31:<br>139A ->156A                                                                                                                                                                                     | 3.087-A<br>-0.19163                                                                                                                                           | 4.4550 eV | 278.30 nm | f=0.0267 | <s**2>=2.133</s**2> |

| 140A ->153A       | 0.10829  |           |           |          |                     |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 140A ->154A       | 0.25539  |           |           |          |                     |
| 140A ->155A       | 0.15404  |           |           |          |                     |
| 141A ->155A       | 0.10494  |           |           |          |                     |
| 143A ->155A       | 0.11307  |           |           |          |                     |
| 144A ->152A       | -0.19527 |           |           |          |                     |
| 145A ->152A       | 0.24119  |           |           |          |                     |
| 146A ->154A       | 0.12625  |           |           |          |                     |
| 146A ->158A       | -0 12908 |           |           |          |                     |
| 147A ->152A       | 0 19876  |           |           |          |                     |
| 148A ->152A       | 0 12697  |           |           |          |                     |
| 139B ->156B       | -0 14569 |           |           |          |                     |
| 140B ->154B       | 0 13960  |           |           |          |                     |
| 141B ->152B       | -0 17776 |           |           |          |                     |
| 143B ->154B       | 0 18126  |           |           |          |                     |
| 143B ->155B       | 0.27680  |           |           |          |                     |
| 143B ->158B       | -0 15032 |           |           |          |                     |
| 145B ->152B       | 0 17825  |           |           |          |                     |
| 146B ->152B       | -0.16421 |           |           |          |                     |
| 146B ->154B       | 0 14908  |           |           |          |                     |
| 146B ->158B       | 0 14320  |           |           |          |                     |
| 147B ->152B       | 0 25323  |           |           |          |                     |
| 148B ->152B       | 0.25161  |           |           |          |                     |
| 150B ->152B       | -0 12385 |           |           |          |                     |
| 1000 1020         | 0.12000  |           |           |          |                     |
| Excited State 34: | 2.601-A  | 4.5029 eV | 275.34 nm | f=0.0240 | <s**2>=1.441</s**2> |
| 138A ->152A       | 0.19455  |           |           |          |                     |
| 141A ->152A       | 0.10397  |           |           |          |                     |
| 144A ->152A       | -0.39649 |           |           |          |                     |
| 145A ->152A       | 0.53149  |           |           |          |                     |
| 146A ->152A       | -0.10045 |           |           |          |                     |
| 146A ->156A       | -0.10388 |           |           |          |                     |
| 147A ->152A       | 0.13785  |           |           |          |                     |
| 148A ->157A       | 0.12586  |           |           |          |                     |
| 140B ->154B       | -0.12855 |           |           |          |                     |
| 141B ->152B       | 0.15840  |           |           |          |                     |
| 141B ->153B       | -0.10617 |           |           |          |                     |
| 145B ->152B       | -0.17745 |           |           |          |                     |
| 146B ->152B       | 0.16247  |           |           |          |                     |
| 146B ->156B       | 0.10065  |           |           |          |                     |
| 147B ->152B       | -0.31615 |           |           |          |                     |
|                   |          |           |           |          |                     |
| Excited State 35: | 2.806-A  | 4.5258 eV | 273.95 nm | f=0.1071 | <s**2>=1.719</s**2> |
| 139A ->156A       | 0.14931  |           |           |          |                     |
| 140A ->154A       | -0.17910 |           |           |          |                     |
| 140A ->155A       | -0.10432 |           |           |          |                     |
| 144A ->152A       | -0.10086 |           |           |          |                     |
| 145A ->152A       | 0.17559  |           |           |          |                     |
| 145A ->153A       | -0.10508 |           |           |          |                     |
| 146A ->154A       | -0.12273 |           |           |          |                     |
| 146A ->158A       | 0.11195  |           |           |          |                     |
| 147A ->152A       | 0.21815  |           |           |          |                     |
| 151A ->164A       | 0.11440  |           |           |          |                     |
| 138B ->152B       | -0.18276 |           |           |          |                     |
| 139B ->156B       | 0.12755  |           |           |          |                     |
| 140B ->154B       | -0.12331 |           |           |          |                     |
| 141B ->152B       | -0.16715 |           |           |          |                     |
|                   |          |           |           |          |                     |

| 142B ->132B<br>143B ->154B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.11105<br>-0.10046                                                                                                                                                                                                                                                                                 |                        |                        |                      |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------|---------------------------------------------|
| 143B ->155B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.17412                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 144B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10623                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 145B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13920                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 146B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.23839                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 146B ->154B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.13300                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 146B ->158B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11684                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 147B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55710                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 148B ->157B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12735                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 150B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.13395                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| Excited State 36:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.625-A                                                                                                                                                                                                                                                                                              | 4.5747 eV              | 271.02 nm              | f=0.0252             | <s**2>=1.473</s**2>                         |
| 138A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.20517                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 141A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10808                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 142A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13597                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 144A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11395                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 144A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11941                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 145A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.17691                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 147A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.25085                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 148A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10102                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 148A ->157A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.12524                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 151A ->164A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16185                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 138B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.35062                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 141B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19867                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 141B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10811                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 142B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1025/                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 143B -> 152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12061                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
| 144B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40296                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 143D - 132D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.38399                                                                                                                                                                                                                                                                                             |                        |                        |                      |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 20635                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| 148B ->15/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20635                                                                                                                                                                                                                                                                                              |                        |                        |                      |                                             |
| Excited State 38:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20635<br>2.533-A                                                                                                                                                                                                                                                                                   | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20635<br>2.533-A<br>0.30048                                                                                                                                                                                                                                                                        | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20635<br>2.533-A<br>0.30048<br>-0.10772                                                                                                                                                                                                                                                            | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624                                                                                                                                                                                                                                                | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.155680                                                                                                                                                                                                                         | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>147A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.22325                                                                                                                                                                                                               | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>147A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>0.10867                                                                                                                                                                                                    | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>0.10076                                                                                                                                                                                        | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->153A<br>148A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631                                                                                                                                                                            | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->157A<br>138B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451                                                                                                                                                                | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->153A<br>148A ->152B<br>141B ->152B<br>141B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873                                                                                                                                                    | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>146A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->157A<br>138B ->152B<br>141B ->153B<br>144B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946                                                                                                                                         | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->157A<br>138B ->152B<br>141B ->153B<br>144B ->152B<br>144B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131                                                                                                                             | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087                                                                                                                 | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->152B<br>145B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152                                                                                                      | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->152B<br>148B ->153B<br>148B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230                                                                                           | 4.6394 eV              | 267.24 nm              | f=0.0496             | <s**2>=1.354</s**2>                         |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->153B<br>148B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230                                                                                           | 4.6394 eV              | 267.24 nm              | f=0.0496             | <\$**2>=1.354                               |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->152B<br>148B ->153B<br>148B ->153B<br>148B ->153B<br>148B ->153B<br>148B ->153B<br>148B ->153B<br>148B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A                                                                                | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <\$**2>=1.354<br><\$**2>=1.344              |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->152B<br>145B ->153B<br>148B ->153B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A<br>0.11002                                                                     | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <s**2>=1.354<br/><s**2>=1.344</s**2></s**2> |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>141A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->153A<br>148A ->153B<br>141B ->153B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->153B<br>145B ->153B<br>148B ->153B<br>148B ->153B<br>148A ->153A<br>147A ->153A | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A<br>0.11002<br>0.10494<br>0.10045                                               | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <s**2>=1.354<br/><s**2>=1.344</s**2></s**2> |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->153A<br>148A ->153B<br>141B ->153B<br>144B ->152B<br>144B ->153B<br>145B ->152B<br>145B ->152B<br>145B ->153B<br>145B ->153B<br>148B ->153B<br>148A ->153A<br>148A ->153A<br>144A ->153A<br>144A ->153A<br>144A ->153A<br>146A ->154A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14451<br>-0.14451<br>-0.14473<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A<br>0.11002<br>0.10494<br>0.10945<br>0.16012            | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <s**2>=1.354<br/><s**2>=1.344</s**2></s**2> |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->153A<br>148A ->153B<br>144B ->153B<br>144B ->153B<br>145B ->152B<br>145B ->152B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153A<br>144A ->153A<br>144A ->153A<br>144A ->153A<br>144A ->153A<br>146A ->154A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14451<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A<br>0.11002<br>0.10494<br>0.10945<br>0.16913<br>0.42626 | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <\$**2>=1.354<br><\$**2>=1.344              |
| Excited State 38:<br>138A ->152A<br>141A ->152A<br>142A ->152A<br>142A ->152A<br>144A ->152A<br>146A ->152A<br>146A ->152A<br>147A ->152A<br>148A ->152A<br>148A ->152A<br>148A ->152B<br>141B ->153B<br>144B ->152B<br>144B ->152B<br>144B ->152B<br>145B ->152B<br>145B ->152B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153B<br>145B ->153A<br>146A ->153A<br>144A ->153A<br>146A ->154A<br>147A ->154A<br>147A ->155A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20635<br>2.533-A<br>0.30048<br>-0.10772<br>-0.26624<br>0.56680<br>0.15689<br>0.23325<br>-0.10867<br>-0.10076<br>0.16631<br>-0.14451<br>-0.14451<br>-0.14873<br>0.21946<br>-0.10131<br>-0.23087<br>0.13152<br>0.15230<br>2.525-A<br>0.11002<br>0.10494<br>0.10945<br>0.16913<br>0.42636<br>-0.10367 | 4.6394 eV<br>6.1338 eV | 267.24 nm<br>202.13 nm | f=0.0496<br>f=0.0270 | <\$**2>=1.354<br><\$**2>=1.344              |

| 148A ->157A | 0.11530  |
|-------------|----------|
| 150A ->154A | 0.10603  |
| 143B ->153B | -0.15503 |
| 145B ->153B | -0.23972 |
| 146B ->154B | -0.21292 |
| 147B ->154B | 0.13108  |
| 148B ->156B | -0.10665 |
| 151B ->164B | 0.13355  |
| 151B ->166B | 0.37027  |
| 151B ->168B | 0.32757  |
| 151B ->169B | 0.25933  |

**Table S34.** Electronic transitions computed by TD-DFT for the triplet state of the Asp-based  $(MV^{+})_2$  given in a *slipped* fashion, for which part of the Gaussian output is shown.

```
Excitation energies and oscillator strengths (\lambda > 200 nm, f > 0.02 only):
```

| Excited State 4:  | 3.016-A  | 2.3705 eV | 523.03 nm | f=0.5117 | <s**2>=2.025</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 151A ->153A       | -0.18963 |           |           |          |                     |
| 151A ->154A       | 0.64309  |           |           |          |                     |
| 152A ->153A       | -0.55179 |           |           |          |                     |
| 152A ->154A       | -0.16964 |           |           |          |                     |
| 152A ->155A       | 0.30873  |           |           |          |                     |
| 150B ->151B       | 0.21958  |           |           |          |                     |
| 150B ->152B       | -0.10524 |           |           |          |                     |
| Excited State 14: | 3.137-A  | 3.4405 eV | 360.36 nm | f=1.0228 | <s**2>=2.210</s**2> |
| 151A ->154A       | -0.15293 |           |           |          |                     |
| 152A ->153A       | 0.15631  |           |           |          |                     |
| 142B ->153B       | 0.14058  |           |           |          |                     |
| 143B ->152B       | 0.14960  |           |           |          |                     |
| 144B ->152B       | -0.15849 |           |           |          |                     |
| 145B ->154B       | 0.12596  |           |           |          |                     |
| 146B ->151B       | -0.12559 |           |           |          |                     |
| 146B ->152B       | -0.12379 |           |           |          |                     |
| 147B ->151B       | 0.14936  |           |           |          |                     |
| 147B ->152B       | 0.11677  |           |           |          |                     |
| 150B ->151B       | 0.74272  |           |           |          |                     |
| 150B ->152B       | -0.34325 |           |           |          |                     |
| Excited State 16: | 3.088-A  | 3.9391 eV | 314.75 nm | f=0.0234 | <s**2>=2.133</s**2> |
| 143A ->154A       | -0.10939 |           |           |          |                     |
| 139B ->151B       | 0.16566  |           |           |          |                     |
| 139B ->152B       | -0.17682 |           |           |          |                     |
| 140B ->152B       | 0.19336  |           |           |          |                     |
| 142B ->151B       | -0.26359 |           |           |          |                     |
| 142B ->152B       | 0.21822  |           |           |          |                     |
| 143B ->152B       | -0.13409 |           |           |          |                     |
| 145B ->152B       | 0.79639  |           |           |          |                     |
| 145B ->156B       | -0.10576 |           |           |          |                     |
| 146B ->152B       | 0.14594  |           |           |          |                     |
| Excited State 17: | 3.068-A  | 4.0026 eV | 309.76 nm | f=0.0206 | <s**2>=2.103</s**2> |
| 139B ->151B       | 0.15661  |           |           |          |                     |
| 140B ->151B       | -0.43042 |           |           |          |                     |

| 140B ->152B<br>142B ->151B<br>142B ->152B<br>144B ->151B<br>145B ->151B<br>145B ->152B<br>146B ->151B<br>147B ->151B<br>147B ->151B<br>147B ->152B<br>149B ->151B<br>150B ->151B                                                                   | -0.18542<br>0.42613<br>0.12794<br>0.10406<br>0.24727<br>0.18453<br>-0.19886<br>0.44932<br>0.11939<br>-0.18110<br>-0.24698<br>-0.13164                                   |           |           |          |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 19:<br>140B ->152B<br>142B ->151B<br>142B ->152B<br>143B ->152B<br>143B ->152B<br>143B ->152B<br>144B ->151B<br>145B ->152B<br>146B ->152B<br>146B ->152B<br>147B ->151B<br>147B ->152B<br>149B ->151B<br>150B ->151B<br>150B ->152B | 3.078-A<br>-0.28139<br>0.34206<br>-0.28844<br>-0.22000<br>-0.13367<br>0.36256<br>0.20637<br>0.25516<br>0.14017<br>-0.30812<br>-0.16292<br>0.10302<br>0.35896<br>0.14018 | 4.0317 eV | 307.52 nm | f=0.0455 | <s**2>=2.119</s**2> |
| Excited State 21:<br>143B ->152B<br>144B ->151B<br>144B ->152B<br>145B ->152B<br>146B ->152B<br>146B ->152B<br>147B ->151B<br>147B ->152B<br>149B ->151B<br>150B ->152B                                                                            | 3.092-A<br>0.22007<br>0.11978<br>-0.37675<br>0.20139<br>-0.40135<br>-0.16592<br>0.50833<br>0.25774<br>-0.17742<br>0.31970                                               | 4.1126 eV | 301.47 nm | f=0.0300 | <s**2>=2.140</s**2> |
| Excited State 31:<br>139A ->158A<br>140A ->156A<br>140A ->157A<br>141A ->155A                                                                                                                                                                      | 3.451-A<br>-0.11999<br>0.12359<br>-0.15302<br>-0.17034                                                                                                                  | 4.4156 eV | 280.79 nm | f=0.0721 | <s**2>=2.728</s**2> |

| 145B ->154B       | 0.11859  |           |           |          |                     |  |
|-------------------|----------|-----------|-----------|----------|---------------------|--|
| 145B ->155B       | 0.12232  |           |           |          |                     |  |
| 146B ->151B       | 0.42204  |           |           |          |                     |  |
| 146B ->152B       | 0.19152  |           |           |          |                     |  |
|                   |          |           |           |          |                     |  |
| Excited State 34: | 3.457-A  | 4.4885 eV | 276.23 nm | f=0.1380 | <s**2>=2.738</s**2> |  |
| 139A ->158A       | 0.12441  |           |           |          |                     |  |
| 140A ->156A       | -0.13228 |           |           |          |                     |  |
| 140A ->157A       | 0.15263  |           |           |          |                     |  |
| 141A ->153A       | 0.14156  |           |           |          |                     |  |
| 141A ->155A       | 0.16443  |           |           |          |                     |  |
| 142A ->155A       | 0.11336  |           |           |          |                     |  |
| 143A ->156A       | 0.14957  |           |           |          |                     |  |
| 143A ->157A       | 0.12689  |           |           |          |                     |  |
| 151A ->160A       | 0.28017  |           |           |          |                     |  |
| 152A ->160A       | 0.12421  |           |           |          |                     |  |
| 138B ->151B       | 0.12162  |           |           |          |                     |  |
| 139B ->151B       | -0.26030 |           |           |          |                     |  |
| 139B ->158B       | -0.12129 |           |           |          |                     |  |
| 140B ->152B       | 0.14149  |           |           |          |                     |  |
| 140B ->154B       | -0.11504 |           |           |          |                     |  |
| 140B ->155B       | 0.15426  |           |           |          |                     |  |
| 142B ->151B       | 0.35952  |           |           |          |                     |  |
| 142B ->153B       | -0.24076 |           |           |          |                     |  |
| 143B ->152B       | 0.11099  |           |           |          |                     |  |
| 144B ->151B       | -0.33248 |           |           |          |                     |  |
| 144B ->152B       | -0.29440 |           |           |          |                     |  |
| 145B ->152B       | 0.11250  |           |           |          |                     |  |
| 145B ->154B       | -0.12272 |           |           |          |                     |  |
| 145B ->155B       | -0.11833 |           |           |          |                     |  |

**Table S35.** Electronic transitions computed by TD-DFT for the closed-shell singlet state of the Asp-based  $(MV^+)_2$  in a staggered fashion, for which part of the Gaussian output is shown.

| Excited State 1:<br>151 ->152<br>151 <-152                                                                                             | Singlet-A<br>0.74138<br>-0.22934                                                                      | 1.4423 eV | 859.64 nm | f=0.1800 | <s**2>=0.000</s**2> |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 3:<br>151 ->153<br>151 ->155<br>151 ->156                                                                                | Singlet-A<br>0.59315<br>-0.15961<br>-0.33832                                                          | 2.4416 eV | 507.80 nm | f=0.1358 | <s**2>=0.000</s**2> |
| Excited State 5:<br>149 ->152<br>150 ->152<br>151 ->153<br>151 ->155<br>151 ->156                                                      | Singlet-A<br>-0.11118<br>-0.12324<br>0.35161<br>0.22853<br>0.54320                                    | 2.9190 eV | 424.75 nm | f=0.3158 | <s**2>=0.000</s**2> |
| Excited State 7:<br>151 ->154<br>151 ->157                                                                                             | Singlet-A<br>-0.10572<br>0.68099                                                                      | 3.3072 eV | 374.89 nm | f=0.1575 | <s**2>=0.000</s**2> |
| Excited State 9:<br>149 ->152<br>150 ->152<br>151 ->153                                                                                | Singlet-A<br>0.43663<br>0.51134<br>0.14684                                                            | 4.0143 eV | 308.86 nm | f=0.8444 | <s**2>=0.000</s**2> |
| Excited State 10:<br>147 ->152<br>148 ->152<br>149 ->152<br>150 ->152                                                                  | Singlet-A<br>0.54848<br>0.11453<br>0.29770<br>-0.26153                                                | 4.1373 eV | 299.68 nm | f=0.1382 | <s**2>=0.000</s**2> |
| Excited State 12:<br>143 ->152<br>144 ->152<br>145 ->152<br>146 ->152<br>149 ->152<br>150 ->152<br>151 ->160                           | Singlet-A<br>0.16187<br>0.21698<br>0.40921<br>-0.14703<br>0.18229<br>-0.18815<br>0.38570              | 4.2864 eV | 289.25 nm | f=0.0440 | <s**2>=0.000</s**2> |
| Excited State 13:<br>143 ->152<br>144 ->152<br>145 ->152<br>146 ->152<br>147 ->152<br>148 ->152<br>148 ->152<br>149 ->152<br>151 ->160 | Singlet-A<br>-0.10554<br>-0.12925<br>-0.26011<br>0.10432<br>0.10833<br>0.10793<br>-0.12258<br>0.57852 | 4.3113 eV | 287.58 nm | f=0.0523 | <s**2>=0.000</s**2> |
| Excited State 17:                                                                                                                      | Singlet-A                                                                                             | 4.6689 eV | 265.55 nm | f=0.0248 | <s**2>=0.000</s**2> |

Excitation energies and oscillator strengths ( $\lambda > 200$  nm, f > 0.02 only):

| 141 ->152         | 0.57694   |           |           |          |                     |
|-------------------|-----------|-----------|-----------|----------|---------------------|
| 143 ->152         | 0.35545   |           |           |          |                     |
| 144 ->152         | -0.14650  |           |           |          |                     |
| Excited State 41: | Singlet-A | 5.9168 eV | 209.55 nm | f=0.1650 | <s**2>=0.000</s**2> |
| 145 ->154         | 0.26744   |           |           |          |                     |
| 147 ->154         | 0.34652   |           |           |          |                     |
| 148 ->154         | -0.12675  |           |           |          |                     |
| 149 ->154         | -0.32589  |           |           |          |                     |
| 149 ->156         | 0.12010   |           |           |          |                     |
| 150 ->154         | 0.29962   |           |           |          |                     |
| Excited State 42: | Singlet-A | 5.9812 eV | 207.29 nm | f=0.1200 | <s**2>=0.000</s**2> |
| 140 ->153         | 0.11566   |           |           |          |                     |
| 143 ->154         | 0.15623   |           |           |          |                     |
| 144 ->154         | 0.24230   |           |           |          |                     |
| 145 ->154         | 0.37777   |           |           |          |                     |
| 146 ->153         | -0.13675  |           |           |          |                     |
| 146 ->154         | -0.13066  |           |           |          |                     |
| 147 ->154         | 0.11707   |           |           |          |                     |
| 149 ->154         | 0.24017   |           |           |          |                     |
| 150 ->154         | -0.20671  |           |           |          |                     |
| 151 ->168         | 0.15340   |           |           |          |                     |
| Excited State 43: | Singlet-A | 6.0012 eV | 206.60 nm | f=0.0290 | <s**2>=0.000</s**2> |
| 142 ->153         | -0.11867  |           |           |          |                     |
| 143 ->153         | 0.10252   |           |           |          |                     |
| 144 ->153         | -0.16824  |           |           |          |                     |
| 145 ->153         | 0.29505   |           |           |          |                     |
| 146 ->153         | 0.43710   |           |           |          |                     |
| 147 ->156         | -0 12009  |           |           |          |                     |
| 150 ->154         | -0 10372  |           |           |          |                     |
| 150 ->156         | 0 14268   |           |           |          |                     |
| 151 ->168         | 0.16005   |           |           |          |                     |
| Excited State 44: | Singlet-A | 6.0038 eV | 206.51 nm | f=0.0507 | <s**2>=0.000</s**2> |
| 141 ->154         | 0.13983   |           |           |          |                     |
| 147 ->153         | -0.14754  |           |           |          |                     |
| 147 ->156         | -0.16085  |           |           |          |                     |
| 149 ->154         | -0.13481  |           |           |          |                     |
| 149 ->155         | 0.24685   |           |           |          |                     |
| 149 ->156         | -0.20975  |           |           |          |                     |
| 149 ->157         | 0.21015   |           |           |          |                     |
| 150 ->155         | 0.29479   |           |           |          |                     |
| 150 ->156         | -0.14710  |           |           |          |                     |
| 150 ->157         | 0.24087   |           |           |          |                     |
| Excited State 46: | Singlet-A | 6.0420 eV | 205.21 nm | f=0.0348 | <s**2>=0.000</s**2> |
| 135 ->152         | -0.17494  |           |           |          |                     |
| 140 ->153         | -0.10682  |           |           |          |                     |
| 141 ->154         | -0.11284  |           |           |          |                     |
| 145 ->153         | -0.11614  |           |           |          |                     |
| 146 ->153         | 0.19790   |           |           |          |                     |
| 147 ->155         | 0.17944   |           |           |          |                     |
| 147 ->156         | 0.11367   |           |           |          |                     |
| 149 ->155         | 0.25240   |           |           |          |                     |
| 149 ->157         | -0.21225  |           |           |          |                     |
|                   |           |           |           |          |                     |

| 150 ->155<br>150 ->157 | 0.25991   |           |           |          |                     |
|------------------------|-----------|-----------|-----------|----------|---------------------|
| 151 ->168              | 0.16661   |           |           |          |                     |
| Excited State 52:      | Singlet-A | 6.1438 eV | 201.81 nm | f=0.0230 | <s**2>=0.000</s**2> |
| 141 ->153              | -0.30300  |           |           |          |                     |
| 143 ->153              | -0.26482  |           |           |          |                     |
| 149 ->156              | 0.15785   |           |           |          |                     |
| 151 ->168              | -0.12780  |           |           |          |                     |
| 151 ->169              | 0.13407   |           |           |          |                     |
| 151 ->170              | 0.37763   |           |           |          |                     |
| 151 ->172              | 0.16197   |           |           |          |                     |

**Table S36.** Electronic transitions computed by TD-DFT for the open-shell singlet state of the Asp-based  $(MV^+)_2$  in a staggered fashion, for which part of the Gaussian output is shown.

| Excitation energies and oscill | ator strengths ( $\lambda >$ | 200 nm, f > | 0.02 only): |
|--------------------------------|------------------------------|-------------|-------------|
|--------------------------------|------------------------------|-------------|-------------|

| Excited State 2:<br>151A ->152A<br>151B ->152B<br>151A <-152A<br>151B <-152B                                                             | 0.571-A<br>-0.70755<br>0.72007<br>0.10814<br>-0.10580                                              | 1.3689 eV | 905.69 nm | f=0.1081 | <s**2>=-0.169</s**2> |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------|-----------|----------|----------------------|
| Excited State 3:<br>151A ->153A<br>151A ->154A<br>151B ->153B<br>151B ->154B                                                             | 2.666-A<br>-0.63167<br>-0.28896<br>0.63433<br>-0.30284                                             | 2.0005 eV | 619.77 nm | f=0.0336 | <\$**2>=1.527        |
| Excited State 5:<br>151A ->153A<br>151A ->154A<br>151A ->155A<br>151A ->155A<br>151B ->153B<br>151B ->154B<br>151B ->155B<br>151B ->157B | 2.208-A<br>-0.25105<br>0.63763<br>0.32073<br>-0.15723<br>0.29173<br>0.46906<br>0.23492<br>-0.11885 | 2.2026 eV | 562.91 nm | f=0.0266 | <s**2>=0.969</s**2>  |
| Excited State 6:<br>150A ->152A<br>151A ->153A<br>151A ->157A<br>150B ->152B<br>151B ->153B<br>151B ->157B                               | 2.177-A<br>-0.13382<br>0.65072<br>-0.22780<br>-0.12317<br>0.63241<br>0.22997                       | 2.3971 eV | 517.22 nm | f=0.3465 | <s**2>=0.935</s**2>  |
| Excited State 10:<br>151A ->155A<br>151A ->157A<br>151B ->153B<br>151B ->154B<br>151B ->155B                                             | 2.195-A<br>-0.42584<br>-0.24182<br>-0.11323<br>-0.14089<br>0.78279                                 | 2.8525 eV | 434.64 nm | f=0.0236 | <s**2>=0.955</s**2>  |

| 151B ->156B<br>151B ->157B | 0.23125<br>0.21415 |           |                             |          |                     |
|----------------------------|--------------------|-----------|-----------------------------|----------|---------------------|
| Excited State 11:          | 2.148-A            | 3.1397 eV | 394.89 nm                   | f=0.0304 | <8**2>=0.903        |
| 150A ->152A                | 0 13900            | 5.1037 0  | <i>by</i> 1.0 <i>y</i> 1.11 | 1 0.0001 | 5 - 0.905           |
| 151A ->153A                | -0 20124           |           |                             |          |                     |
| 151A ->154A                | -0.10231           |           |                             |          |                     |
| 151A ->155A                | 0 19071            |           |                             |          |                     |
| 151A ->157A                | -0 60044           |           |                             |          |                     |
| 150B ->152B                | 0.13515            |           |                             |          |                     |
| 151B ->153B                | -0.19756           |           |                             |          |                     |
| 151B ->155B                | -0.24262           |           |                             |          |                     |
| 151B ->157B                | 0.60323            |           |                             |          |                     |
| Excited State 15:          | 2.156-A            | 3.4686 eV | 357.45 nm                   | f=0.1433 | <s**2>=0.912</s**2> |
| 149A ->152A                | -0.17353           |           |                             |          |                     |
| 150A ->152A                | 0.33539            |           |                             |          |                     |
| 151A ->157A                | 0.52636            |           |                             |          |                     |
| 149B ->152B                | -0.22698           |           |                             |          |                     |
| 150B ->152B                | -0.33042           |           |                             |          |                     |
| 151B ->157B                | 0.53915            |           |                             |          |                     |
| 151B ->158B                | 0.14653            |           |                             |          |                     |
| Excited State 16:          | 2.550-A            | 3.5801 eV | 346.32 nm                   | f=0.5488 | <s**2>=1.376</s**2> |
| 144A ->152A                | 0.10528            |           |                             |          |                     |
| 145A ->152A                | 0.19945            |           |                             |          |                     |
| 146A ->152A                | 0.12514            |           |                             |          |                     |
| 147A ->152A                | -0.25729           |           |                             |          |                     |
| 149A ->152A                | -0.14581           |           |                             |          |                     |
| 150A ->152A                | 0.46400            |           |                             |          |                     |
| 151A ->153A                | 0.14686            |           |                             |          |                     |
| 151A ->157A                | 0.12323            |           |                             |          |                     |
| 144B ->152B                | -0.1195/           |           |                             |          |                     |
| 145B ->152B                | -0.14648           |           |                             |          |                     |
| 14/B ->152B                | 0.301/9            |           |                             |          |                     |
| 149B ->152B                | 0.21932            |           |                             |          |                     |
| 150B ->152B                | 0.41885            |           |                             |          |                     |
| 151D ->155B                | 0.14038            |           |                             |          |                     |
| Excited State 19:          | 2.231-A            | 4.0188 eV | 308.51 nm                   | f=0.1304 | <s**2>=0.995</s**2> |
| 139A ->152A                | 0.16212            |           |                             |          |                     |
| 144A ->152A                | 0.17932            |           |                             |          |                     |
| 145A ->152A                | 0.23111            |           |                             |          |                     |
| 146A ->152A                | -0.28450           |           |                             |          |                     |
| 149A ->152A                | 0.14556            |           |                             |          |                     |
| 150A ->152A                | -0.19047           |           |                             |          |                     |
| 139B ->152B                | -0.14530           |           |                             |          |                     |
| 141B ->152B                | 0.18217            |           |                             |          |                     |
| 142B ->152B                | 0.18462            |           |                             |          |                     |
| 144B ->152B                | -0.19730           |           |                             |          |                     |
| 145B ->152B                | -0.10590           |           |                             |          |                     |
| 146B ->152B                | 0.13579            |           |                             |          |                     |
| 147B ->152B                | 0.56402            |           |                             |          |                     |
| 149B ->152B                | -0.17307           |           |                             |          |                     |
| 150B ->152B                | -0.18178           |           |                             |          |                     |
| 131R ->13AR                | -0.24518           |           |                             |          |                     |

| Excited State 21:                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.338-A                                                                                                                                                                                                                                                                                            | 4.0619 eV | 305.23 nm | f=0.1675 | <s**2>=1.117</s**2> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| 141A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30289                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 142A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.31186                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 143A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20015                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 145A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42272                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 146A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 36723                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 147A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0 39854                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 148A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0 13254                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 1494 ->1524                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 25739                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 140R ->152R                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12939                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 140B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13952                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 140D -> 153D<br>147B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10080                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 14/D ->152D                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10783                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 149D ->152D                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10785                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 130D ->132D                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.18140                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| Engited State 22.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2 2 0 1                                                                                                                                                                                                                                                                                          | 4 0 0 0   | 202.00    | £-0.0440 | < <u></u>           |
| Excited State 22:                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.329-A                                                                                                                                                                                                                                                                                            | 4.0800 eV | 303.88 nm | 1=0.0440 | <\$**2>=1.106       |
| 140A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.25437                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 140A ->153A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.12471                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 144A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.16642                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 145A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.27849                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 146A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.29893                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 150A ->152A                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11549                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 140B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.19986                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 141B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.24455                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 142B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.12802                                                                                                                                                                                                                                                                                           |           |           |          |                     |
| 143B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14618                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 144B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46887                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 145B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44726                                                                                                                                                                                                                                                                                            |           |           |          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •••••=•                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 149B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 10125                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 149B ->152B                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10125                                                                                                                                                                                                                                                                                            |           |           |          |                     |
| 149B ->152B<br>Excited State 27 <sup>.</sup>                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10125<br>2.867-A                                                                                                                                                                                                                                                                                 | 4 3755 eV | 283 36 nm | f=0.1382 | <s**2>=1 805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10125<br>2.867-A<br>0.22760                                                                                                                                                                                                                                                                      | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A                                                                                                                                                                                                                                                                                                                                                                                        | 0.10125<br>2.867-A<br>0.22760<br>-0.11833                                                                                                                                                                                                                                                          | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A                                                                                                                                                                                                                                                                                                                                                                         | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204                                                                                                                                                                                                                                              | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A                                                                                                                                                                                                                                                                                                                                                          | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891                                                                                                                                                                                                                                   | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A                                                                                                                                                                                                                                                                                                                                           | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005                                                                                                                                                                                                                        | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A >152A                                                                                                                                                                                                                                                                                                                             | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>0.22044                                                                                                                                                                                                             | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A                                                                                                                                                                                                                                                                                                                            | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>0.11522                                                                                                                                                                                                 | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>144A ->155A                                                                                                                                                                                                                                                                                                             | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>0.15548                                                                                                                                                                                     | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>145A ->155A                                                                                                                                                                                                                                                                                                             | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.10230                                                                                                                                                                         | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>145A ->155A<br>145A ->155A<br>146A ->155A                                                                                                                                                                                                                                                                               | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338                                                                                                                                                                         | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>147A ->152A                                                                                                                                                                                                                                                                | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531                                                                                                                                                              | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A                                                                                                                                                                                                                                                 | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601                                                                                                                                                  | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>144A ->155A<br>146A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A<br>150A ->152A                                                                                                                                                                                                                                  | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252                                                                                                                                       | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A<br>150A ->152A<br>150A ->156A                                                                                                                                                                                                                   | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544                                                                                                                           | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A                                                                                                                                                                                                    | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229                                                                                                                           | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B                                                                                                                                                                                     | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836                                                                                                               | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>149A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B                                                                                                                                                                      | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013                                                                                         | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>149A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->152B<br>139B ->152B<br>139B ->158B                                                                                                                                                                      | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645                                                                              | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>145A ->155A<br>146A ->155A<br>149A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->152B<br>139B ->152B<br>139B ->158B<br>140B ->154B                                                                                                                                                       | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029                                                                   | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->155A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>145A ->155A<br>146A ->155A<br>147A ->152A<br>149A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>140B ->154B<br>141B ->152B                                                                                                          | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029                                                        | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>145A ->155A<br>145A ->155A<br>147A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>140B ->154B<br>141B ->152B<br>141B ->156B                                                                                           | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192                                             | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->152A<br>140A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>139B ->154B<br>141B ->156B<br>142B ->152B                                                                                           | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192<br>0.16034                                  | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>146A ->152A<br>140A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>139B ->154B<br>141B ->156B<br>142B ->152B<br>144B ->152B                                                                                           | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192<br>0.16034<br>0.15169                       | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->156A<br>142A ->155A<br>145A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>146A ->152A<br>140A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>139B ->154B<br>141B ->156B<br>142B ->152B<br>144B ->155B<br>145B ->155B                                                             | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192<br>0.16034<br>0.15169<br>0.15404            | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>146A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>139B ->154B<br>141B ->152B<br>141B ->152B<br>144B ->155B<br>145B ->155B<br>145B ->155B                                              | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.19338<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192<br>0.16034<br>0.15169<br>0.15404<br>0.12968 | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |
| 149B ->152B<br>Excited State 27:<br>139A ->152A<br>139A ->158A<br>140A ->154A<br>141A ->152A<br>141A ->152A<br>141A ->156A<br>142A ->152A<br>144A ->155A<br>145A ->155A<br>146A ->155A<br>146A ->155A<br>147A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->152A<br>150A ->156A<br>151A ->160A<br>139B ->152B<br>139B ->154B<br>139B ->154B<br>140B ->154B<br>141B ->156B<br>142B ->152B<br>144B ->155B<br>145B ->155B<br>147B ->155B<br>147B ->155B | 0.10125<br>2.867-A<br>0.22760<br>-0.11833<br>-0.23204<br>0.12891<br>0.15005<br>-0.22944<br>-0.11532<br>-0.10548<br>0.12531<br>-0.20601<br>0.23252<br>-0.11544<br>0.12229<br>-0.17836<br>0.12013<br>0.10645<br>0.22029<br>0.13029<br>0.13192<br>0.16034<br>0.15169<br>0.15404<br>0.12968<br>0.11499 | 4.3755 eV | 283.36 nm | f=0.1382 | <s**2>=1.805</s**2> |

| 150B ->156B                 | -0.11229           |            |             |          |                            |
|-----------------------------|--------------------|------------|-------------|----------|----------------------------|
| Evolted State 20:           | 2 165 1            | 4 4110 oV  | 201 00 nm   | £0 0220  | ~5**1>-2 251               |
| Exclicu State $29$ .        | 0.16060            | 4.4110 6 V | 201.00 1111 | 1-0.0229 | <5.2/=2.234                |
| 139A -> 150A                | -0.10909           |            |             |          |                            |
| 140A - 154A                 | -0.10973           |            |             |          |                            |
| 140A ->155A                 | -0.10481           |            |             |          |                            |
| 141A ->158A                 | 0.15155            |            |             |          |                            |
| 144A ->154A                 | -0.1443/           |            |             |          |                            |
| 145A ->154A                 | -0.14442           |            |             |          |                            |
| 146A ->154A                 | 0.24866            |            |             |          |                            |
| 146A ->155A                 | -0.10096           |            |             |          |                            |
| 149A ->152A                 | 0.13379            |            |             |          |                            |
| 150A ->152A                 | -0.117/6           |            |             |          |                            |
| 151A ->160A                 | 0.33/32            |            |             |          |                            |
| 139B ->156B                 | -0.19109           |            |             |          |                            |
| 140B ->154B                 | -0.13959           |            |             |          |                            |
| 140B ->155B                 | -0.17935           |            |             |          |                            |
| 141B ->158B                 | -0.15000           |            |             |          |                            |
| 144B ->154B                 | -0.13815           |            |             |          |                            |
| 145B ->154B                 | -0.17878           |            |             |          |                            |
| 145B ->155B                 | 0.10559            |            |             |          |                            |
| 147B ->153B                 | -0.10603           |            |             |          |                            |
| 147B ->154B                 | -0.20059           |            |             |          |                            |
| 147B ->156B                 | 0.14884            |            |             |          |                            |
| 147B ->158B                 | -0.10283           |            |             |          |                            |
| 149B ->152B                 | 0.11401            |            |             |          |                            |
| 151B ->160B                 | 0.22975            |            |             |          |                            |
| Evolted State 02:           | 2 207 1            | 5 0002 aV  | 210.12 mm   | £0 0228  | ~\$**2>-1 710              |
| Exclicu State $92$ .        | 2.00/-A<br>0.12020 | 5.9002 ev  | 210.15 IIII | 1-0.0228 | <b>S</b> <sup>-2</sup> /19 |
| 134A - >132A<br>125A > 152A | -0.13929           |            |             |          |                            |
| 133A - 2132A                | 0.1013/            |            |             |          |                            |
| 140A -> 154A                | 0.10139            |            |             |          |                            |
| 14/A - >154A                | -0.19080           |            |             |          |                            |
| 149A ->154A                 | 0.14009            |            |             |          |                            |
| 150A ->154A                 | 0.101/8            |            |             |          |                            |
| 150A -> 155A                | 0.13300            |            |             |          |                            |
| 144B ->154B                 | -0.1439/           |            |             |          |                            |
| 143D - 2134D<br>14(D > 152D | 0.14000            |            |             |          |                            |
| 140B ->155B                 | -0.10154           |            |             |          |                            |
| 14/B ->154B                 | 0.19505            |            |             |          |                            |
| 148B -> 155B                | -0.10320           |            |             |          |                            |
| 148B -> 154B                | -0.2/041           |            |             |          |                            |
| 149B ->154B                 | 0.56169            |            |             |          |                            |
| 149B ->15/B                 | -0.10292           |            |             |          |                            |
| 150B ->153B                 | -0.10153           |            |             |          |                            |
| 150B ->154B                 | -0.31805           |            |             |          |                            |
| Excited State 93.           | 2 539-A            | 5 9327 eV  | 208 98 nm   | f=0 0494 | <s**2>=1 361</s**2>        |
| 141A ->153A                 | -0 10112           | 5.7527 01  | 200.90 IIII | 1 0.0171 | 5 2 1.501                  |
| 144A ->154A                 | 0 12373            |            |             |          |                            |
| 145A = 154A                 | 0.25432            |            |             |          |                            |
| 147A ->154A                 | -0 10309           |            |             |          |                            |
| 148A ->154A                 | -0 14618           |            |             |          |                            |
| 149A ->154A                 | 0 45228            |            |             |          |                            |
| 149A ->155A                 | -0 12710           |            |             |          |                            |
| 150A =>154A                 | 0 30574            |            |             |          |                            |
| 150A => 154A                | 0.30374            |            |             |          |                            |
| 130A -> 133A                | 0.15090            |            |             |          |                            |

| 150A ->157A       | -0.12347 |           |           |          |                     |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 151A ->168A       | -0.12013 |           |           |          |                     |
| 146B ->154B       | -0.11164 |           |           |          |                     |
| 147B ->154B       | -0.38901 |           |           |          |                     |
| 149B ->154B       | -0.16831 |           |           |          |                     |
| 150B ->155B       | -0.14942 |           |           |          |                     |
| Excited State 97: | 2.793-A  | 5.9903 eV | 206.97 nm | f=0.0334 | <s**2>=1.700</s**2> |
| 142A ->153A       | -0.11663 |           |           |          | ~                   |
| 143A ->154A       | -0.11273 |           |           |          |                     |
| 144A ->153A       | 0.11623  |           |           |          |                     |
| 146A ->154A       | -0.25896 |           |           |          |                     |
| 147A ->154A       | 0.30652  |           |           |          |                     |
| 148A ->153A       | -0.10783 |           |           |          |                     |
| 148A ->154A       | -0.12957 |           |           |          |                     |
| 149A ->154A       | 0.43934  |           |           |          |                     |
| 150A ->154A       | 0.17591  |           |           |          |                     |
| 150A ->155A       | -0.25385 |           |           |          |                     |
| 151A ->168A       | 0.14116  |           |           |          |                     |
| 141B ->153B       | 0.12256  |           |           |          |                     |
| 141B ->154B       | -0.10818 |           |           |          |                     |
| 142B ->153B       | 0.12024  |           |           |          |                     |
| 144B ->153B       | -0.13295 |           |           |          |                     |
| 144B ->154B       | -0.16453 |           |           |          |                     |
| 145B ->153B       | 0.10867  |           |           |          |                     |
| 145B ->154B       | -0.20059 |           |           |          |                     |
| 146B ->153B       | 0.15515  |           |           |          |                     |
| 147B ->156B       | 0.11404  |           |           |          |                     |
| 147B ->157B       | -0.12389 |           |           |          |                     |
| 149B ->154B       | 0.17664  |           |           |          |                     |
| 150B ->155B       | 0.12085  |           |           |          |                     |
| 151B ->168B       | 0.10224  |           |           |          |                     |
| Excited State 98: | 2.401-A  | 6.0069 eV | 206.40 nm | f=0.0764 | <s**2>=1.192</s**2> |
| 141A ->154A       | -0.11508 |           |           |          |                     |
| 144A ->154A       | 0.15747  |           |           |          |                     |
| 145A ->154A       | 0.15740  |           |           |          |                     |
| 146A ->154A       | -0.19736 |           |           |          |                     |
| 147A ->155A       | -0.10045 |           |           |          |                     |
| 149A ->154A       | -0.20287 |           |           |          |                     |
| 150A ->154A       | -0.10343 |           |           |          |                     |
| 150A ->156A       | -0.10344 |           |           |          |                     |
| 150A ->157A       | 0.14685  |           |           |          |                     |
| 141B ->153B       | -0.12089 |           |           |          |                     |
| 141B ->154B       | 0.10805  |           |           |          |                     |
| 144B ->153B       | -0.13471 |           |           |          |                     |
| 144B ->154B       | -0.27513 |           |           |          |                     |
| 145B ->154B       | -0.25658 |           |           |          |                     |
| 146B ->153B       | 0.39541  |           |           |          |                     |
| 147B ->153B       | -0.14867 |           |           |          |                     |
| 147B ->154B       | -0.13229 |           |           |          |                     |
| 14/B ->155B       | -0.12054 |           |           |          |                     |
| 149B ->154B       | 0.10420  |           |           |          |                     |
| 149B ->15/B       | -0.16906 |           |           |          |                     |
| 150B ->155B       | -0.10212 |           |           |          |                     |
| 150B -> 15/B      | -0.2/023 |           |           |          |                     |
| 131B ->103B       | 0.12369  |           |           |          |                     |

| 151B ->168B                  | 0.11887  |           |           |          |                     |
|------------------------------|----------|-----------|-----------|----------|---------------------|
| Excited State 99:            | 2.558-A  | 6.0172 eV | 206.05 nm | f=0.0372 | <s**2>=1.385</s**2> |
| 140A ->153A                  | 0.16267  |           |           |          |                     |
| 142A ->153A                  | -0.11075 |           |           |          |                     |
| 143A ->154A                  | -0.15832 |           |           |          |                     |
| 145A ->153A                  | 0.16202  |           |           |          |                     |
| 145A ->154A                  | -0.22693 |           |           |          |                     |
| 146A ->153A                  | 0.20517  |           |           |          |                     |
| 146A ->154A                  | 0.17632  |           |           |          |                     |
| 147A ->153A                  | 0.25718  |           |           |          |                     |
| 149A ->154A                  | 0.32285  |           |           |          |                     |
| 149A ->157A                  | -0.17378 |           |           |          |                     |
| 150A ->156A                  | -0.15364 |           |           |          |                     |
| 150A ->157A                  | 0.33479  |           |           |          |                     |
| 141B ->153B                  | -0.11526 |           |           |          |                     |
| 141B ->154B                  | 0.12302  |           |           |          |                     |
| 142B ->153B                  | -0.12759 |           |           |          |                     |
| 144B ->154B                  | 0.12713  |           |           |          |                     |
| 145B ->153B                  | -0.12702 |           |           |          |                     |
| 145B ->154B                  | 0.22622  |           |           |          |                     |
| 145B ->156B                  | 0.10097  |           |           |          |                     |
| 146B ->153B                  | 0.24053  |           |           |          |                     |
| 149B ->154B                  | -0.15135 |           |           |          |                     |
| 150B ->154B                  | 0.11952  |           |           |          |                     |
| Excited State 102:           | 2.438-A  | 6.0424 eV | 205.19 nm | f=0.0393 | <s**2>=1.236</s**2> |
| 140A ->154A                  | -0.11164 |           |           |          |                     |
| 141A ->153A                  | 0.14771  |           |           |          |                     |
| 142A ->153A                  | -0.11588 |           |           |          |                     |
| 145A ->153A                  | -0.13943 |           |           |          |                     |
| 146A ->154A                  | -0.15635 |           |           |          |                     |
| 14/A ->153A                  | -0.14/64 |           |           |          |                     |
| 149A ->156A                  | -0.15453 |           |           |          |                     |
| 150A ->156A                  | 0.25412  |           |           |          |                     |
| 150A ->15/A<br>140D >152D    | 0.14270  |           |           |          |                     |
| 140D ->133D<br>141B >153B    | -0.13077 |           |           |          |                     |
| 141B ->153B                  | -0.12095 |           |           |          |                     |
| 142B -> 153B<br>144B -> 153B | 0.19703  |           |           |          |                     |
| 145B ->153B                  | -0 19800 |           |           |          |                     |
| 146B ->153B                  | 0 23935  |           |           |          |                     |
| 147B ->156B                  | 0.18074  |           |           |          |                     |
| 148B ->153B                  | -0 15865 |           |           |          |                     |
| 149B ->156B                  | -0 19863 |           |           |          |                     |
| 150B ->155B                  | 0.14516  |           |           |          |                     |
| 150B ->156B                  | -0.22322 |           |           |          |                     |
| 150B ->157B                  | 0.12693  |           |           |          |                     |
| 151B ->165B                  | -0.10044 |           |           |          |                     |
| 151B ->167B                  | -0.20644 |           |           |          |                     |
| Excited State 108:           | 2.268-A  | 6.1089 eV | 202.96 nm | f=0.0332 | <s**2>=1.036</s**2> |
| 140A ->153A                  | 0.39723  |           |           |          |                     |
| 141A ->153A                  | 0.15376  |           |           |          |                     |
| 145A ->154A                  | 0.10898  |           |           |          |                     |
| 145A ->156A                  | -0.15857 |           |           |          |                     |
| 146A ->153A                  | 0.19763  |           |           |          |                     |

| 146A ->156A | -0.12041 |
|-------------|----------|
| 147A ->156A | 0.16651  |
| 148A ->154A | -0.19244 |
| 150A ->158A | 0.14417  |
| 140B ->153B | 0.42999  |
| 141B ->153B | 0.16035  |
| 141B ->154B | -0.10573 |
| 145B ->153B | -0.19634 |
| 147B ->154B | -0.17409 |
| 147B ->156B | -0.24195 |
| 150B ->156B | -0.21817 |
| 151B ->167B | -0.10420 |
| 151B ->168B | 0.15459  |

**Table S37.** Electronic transitions computed by TD-DFT for the triplet state of the Asp-based  $(MV^{+})_{2}$  in a staggered fashion, for which part of the Gaussian output is shown.

| Excitation energies an | d oscillator | strengths ( $\lambda >$ | · 200 nm, f > | • 0.02 only): |
|------------------------|--------------|-------------------------|---------------|---------------|
|------------------------|--------------|-------------------------|---------------|---------------|

| Excited State 3:<br>151A ->153A<br>151A ->154A<br>151A ->156A<br>152A ->153A<br>152A ->155A<br>152A ->155A<br>149B ->152B<br>150B ->151B | 3.018-A<br>0.35413<br>0.25166<br>-0.14515<br>0.69279<br>-0.47384<br>-0.16256<br>-0.10282<br>-0.11820 | 2.2209 eV | 558.27 nm | f=0.0720 | <s**2>=2.028</s**2> |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 4:                                                                                                                         | 3.016-A                                                                                              | 2.3508 eV | 527.41 nm | f=0.3555 | <s**2>=2.024</s**2> |
| 151A ->153A                                                                                                                              | 0.18541                                                                                              |           |           |          |                     |
| 151A ->154A                                                                                                                              | -0.25730                                                                                             |           |           |          |                     |
| 151A ->155A                                                                                                                              | -0.20093                                                                                             |           |           |          |                     |
| 152A ->153A                                                                                                                              | 0.48684                                                                                              |           |           |          |                     |
| 152A ->154A                                                                                                                              | 0.69074                                                                                              |           |           |          |                     |
| 152A ->156A                                                                                                                              | -0.19056                                                                                             |           |           |          |                     |
| 149B ->151B                                                                                                                              | -0.14688                                                                                             |           |           |          |                     |
| 150B ->152B                                                                                                                              | -0.17466                                                                                             |           |           |          |                     |
| Excited State 5:                                                                                                                         | 3.026-A                                                                                              | 2.4751 eV | 500.93 nm | f=0.0344 | <s**2>=2.039</s**2> |
| 151A ->153A                                                                                                                              | 0.71638                                                                                              |           |           |          |                     |
| 151A ->154A                                                                                                                              | 0.18216                                                                                              |           |           |          |                     |
| 151A ->157A                                                                                                                              | 0.16558                                                                                              |           |           |          |                     |
| 151A ->158A                                                                                                                              | -0.25823                                                                                             |           |           |          |                     |
| 152A ->153A                                                                                                                              | -0.36312                                                                                             |           |           |          |                     |
| 152A ->156A                                                                                                                              | -0.10646                                                                                             |           |           |          |                     |
| 152A ->157A                                                                                                                              | 0.20008                                                                                              |           |           |          |                     |
| 152A ->158A                                                                                                                              | 0.36323                                                                                              |           |           |          |                     |
| Excited State 6:                                                                                                                         | 3.037-A                                                                                              | 2.5007 eV | 495.79 nm | f=0.0393 | <s**2>=2.056</s**2> |
| 151A ->153A                                                                                                                              | -0.31002                                                                                             |           |           |          |                     |
| 151A ->154A                                                                                                                              | 0.56014                                                                                              |           |           |          |                     |
| 151A ->157A                                                                                                                              | 0.46906                                                                                              |           |           |          |                     |
| 152A ->154A                                                                                                                              | 0.17127                                                                                              |           |           |          |                     |

| 152A ->155A                  | -0.12334           |            |             |          |                     |
|------------------------------|--------------------|------------|-------------|----------|---------------------|
| 152A ->157A                  | 0.51011            |            |             |          |                     |
| 152A ->158A                  | -0.13227           |            |             |          |                     |
|                              |                    |            |             |          |                     |
| Excited State 12:            | 3.030-A            | 3.3274 eV  | 372.62 nm   | f=0.0213 | <s**2>=2.045</s**2> |
| 151A ->158A                  | 0.71291            |            |             |          |                     |
| 152A ->158A                  | 0.49728            |            |             |          |                     |
| 148B ->152B                  | 0.11863            |            |             |          |                     |
| 149B ->152B                  | -0.17524           |            |             |          |                     |
| 150B ->151B                  | -0.35097           |            |             |          |                     |
| 150B ->152B                  | 0.12441            |            |             |          |                     |
| Excited State 12.            | 3 000 4            | 2 2716 N   | 367 /1 nm   | £-0.0867 | ~\$**7>-7 128       |
| $151 \wedge 150 \wedge$      | 0.26020            | 5.5740 C V | 507.41 IIII | 1-0.0807 | -5 2>-2.156         |
| 151A - 2150A                 | 0.30930            |            |             |          |                     |
| 152A ->158A                  | 0.26/15            |            |             |          |                     |
| 148B ->152B                  | -0.18502           |            |             |          |                     |
| 149B ->151B                  | 0.30/40            |            |             |          |                     |
| 149B ->152B                  | 0.33761            |            |             |          |                     |
| 150B ->151B                  | 0.63401            |            |             |          |                     |
| Excited State 14:            | 3.151-A            | 3.4621 eV  | 358.12 nm   | f=0.7833 | <s**2>=2.233</s**2> |
| 151A ->153A                  | 0.14491            |            |             |          |                     |
| 151A ->154A                  | -0.10624           |            |             |          |                     |
| 151A ->158A                  | -0 10458           |            |             |          |                     |
| 152A ->154A                  | 0 13371            |            |             |          |                     |
| 142B ->154B                  | 0 10907            |            |             |          |                     |
| 148B ->151B                  | -0 34405           |            |             |          |                     |
| 140B > 151B<br>1/0B > 151B   | 0.59996            |            |             |          |                     |
| 149D -> 151D<br>150B >151B   | 0.59990            |            |             |          |                     |
| 150B -> 151B<br>150B -> 152B | 0.13073            |            |             |          |                     |
| 150 <b>D</b> -> 152 <b>D</b> | 0.50510            |            |             |          |                     |
| Excited State 15:            | 3.069-A            | 3.7732 eV  | 328.59 nm   | f=0.0557 | <s**2>=2.104</s**2> |
| 142B ->151B                  | 0.27691            |            |             |          |                     |
| 142B ->152B                  | -0.20450           |            |             |          |                     |
| 144B ->151B                  | -0.16485           |            |             |          |                     |
| 145B ->151B                  | 0.14252            |            |             |          |                     |
| 148B ->151B                  | 0.20193            |            |             |          |                     |
| 148B ->152B                  | -0.17069           |            |             |          |                     |
| 149B ->151B                  | -0.37358           |            |             |          |                     |
| 149B ->152B                  | 0 53902            |            |             |          |                     |
| 150B ->151B                  | -0 12965           |            |             |          |                     |
| 150B ->152B                  | 0.46553            |            |             |          |                     |
| Excited State 16.            | 3 063 4            | 2 8116 N   | 225 02 mm   | f=0.0229 | ~5**7>-7 004        |
| 140D \151D                   | J.003-A<br>0 22205 | 5.0140 eV  | 525.05 IIII | 1-0.0338 | ~5~2/-2.090         |
| 140D - 151D                  | -0.22383           |            |             |          |                     |
| 140B - >152B                 | -0.12322           |            |             |          |                     |
| 141B ->151B                  | -0.10/89           |            |             |          |                     |
| 142B ->151B                  | -0.12143           |            |             |          |                     |
| 143B ->151B                  | 0.11506            |            |             |          |                     |
| 144B ->151B                  | -0.24622           |            |             |          |                     |
| 144B ->152B                  | -0.13782           |            |             |          |                     |
| 146B ->151B                  | 0.11367            |            |             |          |                     |
| 148B ->151B                  | 0.22069            |            |             |          |                     |
| 148B ->152B                  | 0.32833            |            |             |          |                     |
| 149B ->151B                  | -0.14477           |            |             |          |                     |
| 149B ->152B                  | -0.38257           |            |             |          |                     |
| 150B ->151B                  | 0.44884            |            |             |          |                     |

| 150B ->152B                | 0.43837  |           |           |          |                     |
|----------------------------|----------|-----------|-----------|----------|---------------------|
| Excited State 18:          | 3.083-A  | 3.9891 eV | 310.81 nm | f=0.0304 | <s**2>=2.126</s**2> |
| 141B ->151B                | 0.31945  |           |           |          |                     |
| 141B ->152B                | 0.29881  |           |           |          |                     |
| 142B ->152B                | -0.11886 |           |           |          |                     |
| 143B ->151B                | -0.18616 |           |           |          |                     |
| 144D ->151D<br>145B ->151B | 0.42400  |           |           |          |                     |
| 145B ->151B                | -0.40317 |           |           |          |                     |
| 146B ->151B                | -0.11704 |           |           |          |                     |
| 147B ->151B                | -0.14264 |           |           |          |                     |
| 148B ->151B                | -0.12748 |           |           |          |                     |
| 149B ->151B                | -0.25688 |           |           |          |                     |
| 150B ->151B                | 0.22803  |           |           |          |                     |
| 150B ->152B                | 0.28041  |           |           |          |                     |
| Excited State 19:          | 3.090-A  | 4.0281 eV | 307.80 nm | f=0.0344 | <s**2>=2.137</s**2> |
| 141A ->154A                | 0.10794  |           |           |          |                     |
| 139B ->151B                | -0.13956 |           |           |          |                     |
| 140B ->152B                | 0.29993  |           |           |          |                     |
| 141B ->157B                | -0.37070 |           |           |          |                     |
| 142B ->152B                | 0.26577  |           |           |          |                     |
| 142B ->152B                | -0.13839 |           |           |          |                     |
| 143B ->151B                | -0.30317 |           |           |          |                     |
| 143B ->152B                | 0.19559  |           |           |          |                     |
| 144B ->151B                | 0.39480  |           |           |          |                     |
| 144B ->152B                | -0.32490 |           |           |          |                     |
| 145B ->152B                | 0.22196  |           |           |          |                     |
| 146B ->151B                | -0.18657 |           |           |          |                     |
| 146B ->152B                | 0.10621  |           |           |          |                     |
| 14/B ->151B                | 0.10208  |           |           |          |                     |
| 140D ->152D                | 0.12323  |           |           |          |                     |
| Excited State 21:          | 3.131-A  | 4.1276 eV | 300.38 nm | f=0.0447 | <s**2>=2.201</s**2> |
| 151A ->159A                | -0.26270 |           |           |          |                     |
| 139B ->151B                | -0.15313 |           |           |          |                     |
| 139B ->152B                | -0.10059 |           |           |          |                     |
| 140B ->151B<br>141B ->151B | -0.22022 |           |           |          |                     |
| 141B ->151B                | -0.19035 |           |           |          |                     |
| 142B ->151B                | -0.19449 |           |           |          |                     |
| 142B ->152B                | 0.23052  |           |           |          |                     |
| 143B ->152B                | -0.28730 |           |           |          |                     |
| 144B ->151B                | 0.22769  |           |           |          |                     |
| 144B ->152B                | 0.38913  |           |           |          |                     |
| 146B ->151B                | -0.12833 |           |           |          |                     |
| 146B ->152B                | -0.14788 |           |           |          |                     |
| 148B ->151B                | 0.11638  |           |           |          |                     |
| 149B ->151B<br>150B \151D  | -0.10529 |           |           |          |                     |
| 150B ->151B<br>150R ->157R | 0.10349  |           |           |          |                     |
| 1500 -/ 1520               | 0.10///  |           |           |          |                     |
| Excited State 27:          | 3.574-A  | 4.3845 eV | 282.78 nm | f=0.0229 | <s**2>=2.944</s**2> |
| 139A ->158A                | 0.11260  |           |           |          |                     |
| 140A ->155A                | -0.12809 |           |           |          |                     |

| 141A ->156A                  | -0.18480 |            |           |          |                     |  |
|------------------------------|----------|------------|-----------|----------|---------------------|--|
| 142A ->155A                  | -0.16308 |            |           |          |                     |  |
| 142A ->158A                  | -0.10972 |            |           |          |                     |  |
| 152A ->160A                  | 0.13978  |            |           |          |                     |  |
| 139B ->152B                  | 0.10133  |            |           |          |                     |  |
| 140B ->151B                  | 0.18459  |            |           |          |                     |  |
| 140B -> 154B                 | 0 13623  |            |           |          |                     |  |
| 140B ->158B                  | 0.12361  |            |           |          |                     |  |
| 140D -> 150D                 | 0.12501  |            |           |          |                     |  |
| 141D - 151D                  | 0.24442  |            |           |          |                     |  |
| 141D - 152D                  | 0.13449  |            |           |          |                     |  |
| 141B ->153B                  | 0.14326  |            |           |          |                     |  |
| 141B ->15/B                  | 0.10640  |            |           |          |                     |  |
| 142B ->151B                  | 0.15785  |            |           |          |                     |  |
| 142B ->152B                  | 0.19041  |            |           |          |                     |  |
| 142B ->153B                  | 0.11931  |            |           |          |                     |  |
| 142B ->154B                  | -0.21207 |            |           |          |                     |  |
| 144B ->152B                  | -0.10511 |            |           |          |                     |  |
| 144B ->153B                  | 0.12625  |            |           |          |                     |  |
| 147B ->151B                  | 0.36457  |            |           |          |                     |  |
| 148B ->152B                  | 0.27675  |            |           |          |                     |  |
|                              |          |            |           |          |                     |  |
| Excited State 30:            | 3.760-A  | 4.4548 eV  | 278.32 nm | f=0.1037 | <s**2>=3.284</s**2> |  |
| 139A ->157A                  | 0.16175  |            |           |          |                     |  |
| 140A ->156A                  | 0 13087  |            |           |          |                     |  |
| 140A ->157A                  | -0 15570 |            |           |          |                     |  |
| 141A ->155A                  | 0 17679  |            |           |          |                     |  |
| 141A ->157A                  | -0 10746 |            |           |          |                     |  |
| 147A = 157A                  | 0 14204  |            |           |          |                     |  |
| 142A = 155A<br>142A = >156A  | 0.17142  |            |           |          |                     |  |
| 142A = 150A<br>146A = >155A  | 0.17142  |            |           |          |                     |  |
| 140A = 150A                  | 0.12887  |            |           |          |                     |  |
| 132A - 100A<br>140D $> 151D$ | 0.23497  |            |           |          |                     |  |
| 140D - 151D                  | 0.13146  |            |           |          |                     |  |
| 140D - 152D                  | -0.14109 |            |           |          |                     |  |
| 140B -> 155B                 | -0.10893 |            |           |          |                     |  |
| 140B ->15/B                  | 0.1689/  |            |           |          |                     |  |
| 141B ->152B                  | -0.11978 |            |           |          |                     |  |
| 141B ->153B                  | -0.16683 |            |           |          |                     |  |
| 141B ->154B                  | -0.11457 |            |           |          |                     |  |
| 141B ->156B                  | -0.11702 |            |           |          |                     |  |
| 141B ->157B                  | -0.13869 |            |           |          |                     |  |
| 142B ->153B                  | 0.12390  |            |           |          |                     |  |
| 142B ->154B                  | -0.14932 |            |           |          |                     |  |
| 144B ->153B                  | -0.14689 |            |           |          |                     |  |
| 144B ->154B                  | -0.11321 |            |           |          |                     |  |
| 145B ->152B                  | 0.10962  |            |           |          |                     |  |
| 145B ->153B                  | 0.15133  |            |           |          |                     |  |
| 146B ->151B                  | 0.16569  |            |           |          |                     |  |
| 147B ->152B                  | 0.10864  |            |           |          |                     |  |
| 148B ->151B                  | -0.15372 |            |           |          |                     |  |
| 148B ->153B                  | 0 11391  |            |           |          |                     |  |
| 149B ->151B                  | 0 11450  |            |           |          |                     |  |
| 149B ->153B                  | -0 11036 |            |           |          |                     |  |
| 150B ->152B                  | 0 17964  |            |           |          |                     |  |
| 1000 - 1020                  | 0.17904  |            |           |          |                     |  |
| Excited State 31.            | 3 298-4  | 4 4981 eV  | 275 63 nm | f=0 0444 | <s**7>=7 460</s**7> |  |
| 1414 _>1554                  | _0 10866 | 1.7701 6 1 | 273.03 mm | 1 0.0444 | 5 2 2.TU            |  |
| 151A ->160A                  | 0 13873  |            |           |          |                     |  |
| 101A -> 100A                 | 0.150/5  |            |           |          |                     |  |

| 152A ->160A                            | 0.11278            |           |             |          |                     |
|----------------------------------------|--------------------|-----------|-------------|----------|---------------------|
| 137B ->152B                            | 0.10890            |           |             |          |                     |
| 138B ->151B                            | 0.13793            |           |             |          |                     |
| 138B ->152B                            | -0.10243           |           |             |          |                     |
| 139B ->151B                            | -0.14053           |           |             |          |                     |
| 141B ->152B                            | -0.19696           |           |             |          |                     |
| 142B ->154B                            | 0.11358            |           |             |          |                     |
| 143B ->151B                            | -0 18425           |           |             |          |                     |
| 145B ->151B                            | -0 27078           |           |             |          |                     |
| 145B ->152B                            | 0 11941            |           |             |          |                     |
| 146B ->151B                            | 0.56139            |           |             |          |                     |
| 147B ->157B                            | 0.28564            |           |             |          |                     |
| 148B ->152B                            | 0.12476            |           |             |          |                     |
| 1100 1020                              | 0.12170            |           |             |          |                     |
| Excited State 34.                      | 3 165-A            | 4 5564 eV | 272 11 nm   | f=0.0235 | <s**2>=2 255</s**2> |
| 148A ->154A                            | -0 12208           | 1.550101  | 2,2.11 1111 | 1 0.0255 | 5 2 2.200           |
| 151A ->160A                            | -0 16948           |           |             |          |                     |
| 137B ->151B                            | 0 12982            |           |             |          |                     |
| $137B \rightarrow 151B$<br>138B ->152B | 0.12902            |           |             |          |                     |
| 130D > 152D<br>140B > 151B             | -0.16128           |           |             |          |                     |
| 140B ~157B                             | 0.10128            |           |             |          |                     |
| 140D -> 152D                           | 0.30348            |           |             |          |                     |
| 141D ->132D<br>142D >151D              | 0.17003            |           |             |          |                     |
| 142D - 2131D                           | 0.10031            |           |             |          |                     |
| $142B \rightarrow 152B$                | 0.19044            |           |             |          |                     |
| 143B -> 152B                           | -0.14314           |           |             |          |                     |
| 144B ->152B                            | 0.17840            |           |             |          |                     |
| 145B ->151B                            | 0.12075            |           |             |          |                     |
| 146B ->151B                            | 0.50170            |           |             |          |                     |
| 146B ->152B                            | 0.19091            |           |             |          |                     |
| 147B ->151B                            | -0.11416           |           |             |          |                     |
| 147B ->152B                            | 0.31902            |           |             |          |                     |
| 150B ->156B                            | 0.10887            |           |             |          |                     |
| Engited State 01.                      | 2 2 2 7 1          | 5 9215 aV | 212 (1      | £_0.0211 | ~ [**] - ] 522      |
| Exclued State $\delta I$ .             | 3.33/-A<br>0.12192 | 5.8515 eV | 212.01 IIII | 1-0.0211 | <52>=2.333          |
| 139A - > 153A                          | 0.12183            |           |             |          |                     |
| 140A ->153A                            | -0.16658           |           |             |          |                     |
| 141A ->153A                            | -0.18267           |           |             |          |                     |
| 145A ->155A                            | 0.10523            |           |             |          |                     |
| 146A ->155A                            | -0.22651           |           |             |          |                     |
| 14/A ->160A                            | 0.10142            |           |             |          |                     |
| 148A ->155A                            | 0.16500            |           |             |          |                     |
| 149A ->159A                            | 0.10878            |           |             |          |                     |
| 149A ->160A                            | 0.12020            |           |             |          |                     |
| 150A ->153A                            | -0.18313           |           |             |          |                     |
| 150A ->154A                            | 0.15057            |           |             |          |                     |
| 150A ->155A                            | 0.10690            |           |             |          |                     |
| 151A ->162A                            | 0.11063            |           |             |          |                     |
| 151A ->164A                            | 0.12990            |           |             |          |                     |
| 151A ->166A                            | -0.12867           |           |             |          |                     |
| 152A ->166A                            | -0.11442           |           |             |          |                     |
| 152A ->167A                            | 0.35767            |           |             |          |                     |
| 137B ->151B                            | 0.14296            |           |             |          |                     |
| 141B ->155B                            | 0.11781            |           |             |          |                     |
| 146B ->159B                            | 0.10058            |           |             |          |                     |
| 146B ->160B                            | 0.14483            |           |             |          |                     |
| 147B ->159B                            | 0.11889            |           |             |          |                     |
| 147B ->160B                            | 0.12485            |           |             |          |                     |

| 148B ->153B                 | 0.12238            |           |             |          |                      |
|-----------------------------|--------------------|-----------|-------------|----------|----------------------|
| 149B ->153B                 | -0.18332           |           |             |          |                      |
| 149B ->154B                 | 0.22261            |           |             |          |                      |
| 150B ->154B                 | 0.15753            |           |             |          |                      |
| 150B ->158B                 | -0.11999           |           |             |          |                      |
|                             |                    |           |             |          |                      |
| Excited State 93:           | 3.318-A            | 5.9788 eV | 207.37 nm   | f=0.0211 | <s**2>=2.503</s**2>  |
| 139A ->155A                 | 0.11312            |           |             |          |                      |
| 141A ->156A                 | -0.11741           |           |             |          |                      |
| 142A ->155A                 | -0.17755           |           |             |          |                      |
| 146A ->153A                 | -0.11668           |           |             |          |                      |
| 146A ->154A                 | 0.18027            |           |             |          |                      |
| 146A ->155A                 | 0.18176            |           |             |          |                      |
| 146A ->156A                 | 0.13105            |           |             |          |                      |
| 147A ->154A                 | -0.11646           |           |             |          |                      |
| 147A ->155A                 | -0.13731           |           |             |          |                      |
| 148A ->154A                 | 0.22170            |           |             |          |                      |
| 148A ->155A                 | 0.22781            |           |             |          |                      |
| 150A ->155A                 | -0 15909           |           |             |          |                      |
| 151A ->166A                 | 0 15982            |           |             |          |                      |
| 151A ->167A                 | -0 16510           |           |             |          |                      |
| 152A ->166A                 | -0 14699           |           |             |          |                      |
| 152A ->167A                 | 0.15296            |           |             |          |                      |
| 132R > 10/R<br>137B ->151B  | 0.1525             |           |             |          |                      |
| 137B ->151B                 | 0.13363            |           |             |          |                      |
| 137D = 152D<br>144B = >154B | 0.13303            |           |             |          |                      |
| 148B ->153B                 | _0 13118           |           |             |          |                      |
| 148B ->156B                 | 0.15245            |           |             |          |                      |
| 140B ->156B                 | -0.23185           |           |             |          |                      |
| 149D ->150D                 | -0.23185           |           |             |          |                      |
| 150D ->156D                 | 0.15059            |           |             |          |                      |
| 150B ->150B                 | 0.20001            |           |             |          |                      |
| 130B ->12/B                 | -0.14311           |           |             |          |                      |
| Empited State 05.           | 2 (22 )            | ( 00(7 aV | 206.41      | £-0.0226 | <s**2> -2 040</s**2> |
| Exclued State $95$ .        | 3.033-A<br>0.12560 | 0.000/ev  | 200.41 IIII | 1-0.0230 | <52>=5.049           |
| 140A > 150A                 | -0.12309           |           |             |          |                      |
| 149A ->154A                 | 0.12/14            |           |             |          |                      |
| 130A ->135A<br>127D > 152D  | -0.11302           |           |             |          |                      |
| 13/B -> 152B                | 0.18529            |           |             |          |                      |
| 145B -> 155B                | -0.12348           |           |             |          |                      |
| 145B -> 153B                | 0.10189            |           |             |          |                      |
| 14/B ->153B                 | 0.24282            |           |             |          |                      |
| 148B ->153B                 | 0.69013            |           |             |          |                      |
| 148B ->156B                 | 0.10/52            |           |             |          |                      |
| 149B ->153B                 | 0.32930            |           |             |          |                      |
| 150B ->153B                 | -0.12399           |           |             |          |                      |
| 150B ->155B                 | 0.12517            |           |             |          |                      |
| 150B ->157B                 | -0.12224           |           |             |          |                      |
|                             |                    |           |             |          |                      |
| Excited State 104:          | 3.515-A            | 6.1280 eV | 202.32 nm   | t=0.0247 | <s**2>=2.839</s**2>  |
| 140A ->153A                 | 0.11749            |           |             |          |                      |
| 142A ->153A                 | -0.22305           |           |             |          |                      |
| 143A ->153A                 | -0.18033           |           |             |          |                      |
| 145A ->153A                 | 0.20143            |           |             |          |                      |
| 145A ->154A                 | -0.11610           |           |             |          |                      |
| 146A ->154A                 | 0.14923            |           |             |          |                      |
| 146A ->155A                 | 0.13327            |           |             |          |                      |
| 146A ->156A                 | -0.16406           |           |             |          |                      |
|                             |                    |           |             |          |                      |

| 146A ->157A | -0.14900 |
|-------------|----------|
| 147A ->153A | -0.16408 |
| 148A ->154A | 0.23842  |
| 148A ->156A | 0.13903  |
| 152A ->169A | 0.10379  |
| 137B ->151B | -0.12707 |
| 148B ->155B | 0.24639  |
| 149B ->155B | -0.28596 |
| 149B ->157B | 0.15603  |
| 150B ->155B | 0.39255  |
| 150B ->156B | -0.21943 |
| 150B ->158B | -0.19197 |

**Table S38.** Electronic transitions computed by TD-DFT for the double state of non-derivatized  $MV^+$  radical, for which part of the Gaussian output is shown.

| Excitation energies and oscillator strengths ( $\lambda > 200$ nm, f > 0.02 only):                   |                                                                            |           |           |          |                     |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State 2:<br>50A -> 51A<br>49B -> 50B                                                         | 2.018-A<br>0.95473<br>-0.27746                                             | 2.3588 eV | 525.62 nm | f=0.3056 | <s**2>=0.768</s**2> |
| Excited State 4:<br>50A -> 51A<br>46B -> 52B<br>47B -> 53B<br>48B -> 51B<br>49B -> 50B               | 2.201-A<br>0.23039<br>0.12216<br>0.15804<br>-0.20886<br>0.90902            | 3.5208 eV | 352.14 nm | f=0.5794 | <s**2>=0.961</s**2> |
| Excited State 6:<br>48A -> 51A<br>49A -> 53A<br>47B -> 50B<br>48B -> 52B                             | 2.151-A<br>-0.19678<br>-0.10003<br>0.95098<br>-0.18229                     | 4.1236 eV | 300.67 nm | f=0.0595 | <s**2>=0.906</s**2> |
| Excited State 8:<br>47A -> 53A<br>48A -> 52A<br>50A -> 51A<br>47B -> 53B<br>48B -> 51B<br>49B -> 50B | 3.334-A<br>0.38447<br>0.51083<br>0.16279<br>-0.41051<br>0.53915<br>0.25656 | 4.5449 eV | 272.80 nm | f=0.0962 | <s**2>=2.529</s**2> |
| Atom | X         | Y         | Z         |
|------|-----------|-----------|-----------|
| N1   | -3.032149 | -1.791117 | -1.535145 |
| N2   | -3.033500 | 1.791135  | 1.534022  |
| N3   | 3.033496  | 1.794841  | -1.530607 |
| N4   | 3.032124  | -1.794842 | 1.531676  |
| C5   | -0.658843 | -1.784942 | -1.496521 |
| C6   | -3.030456 | -0.432548 | -1.561547 |
| C7   | -0.611233 | -0.361769 | -1.518810 |
| C8   | -1.842859 | -2.448214 | -1.490071 |
| C9   | -1.874695 | 0.280111  | -1.565664 |
| C10  | 0.612580  | 0.365546  | -1.518138 |
| C11  | 1.876024  | -0.276285 | -1.565424 |
| C12  | 0.660180  | 1.788671  | -1.493510 |
| C13  | 1.844235  | 2.451906  | -1.485313 |
| C14  | 3.031804  | 0.436321  | -1.559494 |
| C15  | 4.297657  | 2.508338  | -1.418999 |
| C16  | -4.296160 | -2.504992 | -1.424522 |
| C17  | -1.876085 | -0.280095 | 1.565257  |
| C18  | -1.844195 | 2.448232  | 1.489535  |
| C19  | -0.612616 | 0.361779  | 1.518883  |
| C20  | -3.031841 | 0.432582  | 1.560563  |
| C21  | -0.660184 | 1.784940  | 1.496526  |
| C22  | 0.611197  | -0.365546 | 1.518375  |
| C23  | 1.874632  | 0.276286  | 1.566024  |
| C24  | 0.658814  | -1.788685 | 1.493760  |
| C25  | 1.842866  | -2.451905 | 1.485929  |
| C26  | 3.030415  | -0.436312 | 1.560492  |
| C27  | 4.296210  | -2.508398 | 1.419770  |
| C28  | -4.297519 | 2.504987  | 1.423175  |
| H29  | -1.898689 | -3.529721 | -1.463139 |
| H30  | -1.960412 | 1.358844  | -1.608182 |
| H31  | -4.004559 | 0.043466  | -1.593941 |
| H32  | -0.240663 | 2.388503  | -1.485650 |
| H33  | 1.900094  | 3.533360  | -1.456600 |
| H34  | 4.005927  | -0.039645 | -1.592204 |
| H35  | 4.137209  | 3.564472  | -1.629013 |
| H36  | 5.012137  | 2.104905  | -2.137472 |
| H37  | -4.697263 | -2.400515 | -0.412161 |
| H38  | -4.136532 | -3.559903 | -1.641287 |
| H39  | -5.012232 | -2.097103 | -2.138851 |
| H40  | -1.961824 | -1.358827 | 1.607799  |
| H41  | -4.005968 | -0.043409 | 1.592532  |
| H42  | -1.900012 | 3.529737  | 1.462594  |
| H43  | -0.242011 | -2.388532 | 1.485581  |
| H44  | 1.898738  | -3.533361 | 1.457187  |
| H45  | 4.004515  | 0.039674  | 1.593508  |
| H46  | 4.698360  | -2.400124 | 0.408229  |

**Table S39.** Geometry optimized for the staggered  $\pi$ -dimer of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its closed-shell singlet state. Optimized at the M06/6-311+G(2d,p) level under water solvated model (PCM, polarizable continuum model).<sup>*a*</sup>

| H47 | 4.136253  | -3.564105 | 1.632335  |
|-----|-----------|-----------|-----------|
| H48 | -4.699053 | 2.399430  | 0.411104  |
| H49 | -4.137698 | 3.560120  | 1.638690  |
| H50 | -5.013328 | 2.097947  | 2.138257  |
| H51 | 1.961727  | -1.354963 | -1.609476 |
| H52 | 0.242031  | -2.384729 | -1.488937 |
| H53 | 0.240727  | 2.384688  | 1.489638  |
| H54 | 1.960327  | 1.354962  | 1.610076  |
| H55 | 5.011607  | -2.103278 | 2.136361  |
| H56 | 4.701246  | 2.397946  | -0.408270 |

<sup>*a*</sup>Part of the Gaussian output file:

| SCF Done:   | E(RM06) = | -1149.51126094 | A.U. afte | er 9 cycles |         |
|-------------|-----------|----------------|-----------|-------------|---------|
|             |           | 1              | 2         |             | 3       |
|             |           | А              | А         |             | А       |
| Frequencies | 34.32     | 69             | 40.6756   |             | 62.6214 |
| Red. masses | s 4.43    | 354            | 4.8726    |             | 2.9089  |

| Zero-point correction=                       | 0.476157 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.502301                    |
| Thermal correction to Enthalpy=              | 0.503245                    |
| Thermal correction to Gibbs Free Energy=     | 0.421145                    |
| Sum of electronic and zero-point Energies=   | -1149.035103                |
| Sum of electronic and thermal Energies=      | -1149.008960                |
| Sum of electronic and thermal Enthalpies=    | -1149.008016                |
| Sum of electronic and thermal Free Energies= | -1149.090116                |
|                                              |                             |

| Item          |       | Value    | Threshold | Converged? |
|---------------|-------|----------|-----------|------------|
| Maximum Force |       | 0.000006 | 0.000450  | ) YES      |
| RMS           | Force | 0.000001 | 0.000300  | 0 YES      |

**Table S40.** Electronic transitions computed by TD-DFT for the closed-shell singlet state of the non-derivatized  $(MV^+)_2$  in a staggered fashion using the M06/6-311+G(2d,p) level under water solvated model (PCM):

| Excitation energies and oscillator strengths ( $\lambda > 200$ nm, f > 0.02 only): |                                  |           |           |          |                     |  |
|------------------------------------------------------------------------------------|----------------------------------|-----------|-----------|----------|---------------------|--|
| Excited State 1:<br>99 ->100<br>99 <-100                                           | Singlet-A<br>0.73833<br>-0.21892 | 1.3748 eV | 901.82 nm | f=0.1774 | <s**2>=0.000</s**2> |  |
| Excited State 3:<br>99 ->101                                                       | Singlet-A<br>0.60748             | 2.2553 eV | 549.74 nm | f=0.0844 | <s**2>=0.000</s**2> |  |

| 99 ->103                                 | 0.35550               |           |           |          |                     |
|------------------------------------------|-----------------------|-----------|-----------|----------|---------------------|
| Excited State 5:<br>98 ->100<br>99 ->101 | Singlet-A<br>-0.14961 | 2.7883 eV | 444.67 nm | f=0.3109 | <s**2>=0.000</s**2> |
| 99 ->103                                 | 0.60167               |           |           |          |                     |
| Excited State 7:                         | Singlet-A             | 3.0777 eV | 402.85 nm | f=0.1280 | <s**2>=0.000</s**2> |
| 99 ->102                                 | -0.11994              |           |           |          |                     |
| 99 ->106                                 | 0.68886               |           |           |          |                     |
| Excited State 10:                        | Singlet-A             | 3.2538 eV | 381.04 nm | f=0.0212 | <s**2>=0.000</s**2> |
| <i>yy</i> -> 108                         | 0.70109               |           |           |          |                     |
| Excited State 15:                        | Singlet-A             | 3.8763 eV | 319.85 nm | f=0.0897 | <s**2>=0.000</s**2> |
| 98 ->100                                 | -0.35975              |           |           |          |                     |
| 99 ->114                                 | 0.58465               |           |           |          |                     |
| Excited State 18:                        | Singlet-A             | 4.0119 eV | 309.04 nm | f=0.6017 | <s**2>=0.000</s**2> |
| 98 ->100                                 | 0.56420               |           |           |          |                     |
| 99 ->101                                 | -0.10459              |           |           |          |                     |
| 99 ->114                                 | 0.38121               |           |           |          |                     |
| Excited State 20:                        | Singlet-A             | 4.0717 eV | 304.50 nm | f=0.0289 | <s**2>=0.000</s**2> |
| 99 ->118                                 | 0.69529               |           |           |          |                     |
| Excited State 22:                        | Singlet-A             | 4.1723 eV | 297.16 nm | f=0.2802 | <s**2>=0.000</s**2> |
| 97 ->100                                 | 0.67336               |           |           |          |                     |
| 99 ->113                                 | -0.15878              |           |           |          |                     |
| Excited State 30:                        | Singlet-A             | 4.6346 eV | 267.52 nm | f=0.0207 | <s**2>=0.000</s**2> |
| 95 ->100                                 | 0.69466               |           |           |          |                     |
| Excited State 47:                        | Singlet-A             | 5.5923 eV | 221.70 nm | f=0.0221 | <s**2>=0.000</s**2> |
| 94 ->100                                 | 0.12823               |           |           |          |                     |
| 97 ->102                                 | 0.55935               |           |           |          |                     |
| 98 ->103                                 | -0.24789              |           |           |          |                     |
| 99 ->138                                 | 0.12542               |           |           |          |                     |
| 99 ->141                                 | 0.24234               |           |           |          |                     |
| Excited State 54:                        | Singlet-A             | 5.7966 eV | 213.89 nm | f=0.2969 | <s**2>=0.000</s**2> |
| 94 ->101                                 | -0.13022              |           |           |          |                     |
| 96 ->102                                 | 0.66660               |           |           |          |                     |
| 97 ->104                                 | -0.10319              |           |           |          |                     |
| Excited State 56:                        | Singlet-A             | 5.8899 eV | 210.50 nm | f=0.0669 | <s**2>=0.000</s**2> |
| 96 ->101                                 | $0.\bar{2}2882$       |           |           |          |                     |
| 98 ->104                                 | 0.61153               |           |           |          |                     |
| 98 ->105                                 | -0.18693              |           |           |          |                     |
| Excited State 68:                        | Singlet-A             | 6.1007 eV | 203.23 nm | f=0.1833 | <s**2>=0.000</s**2> |
| 96 ->103                                 | 0.60705               |           |           |          |                     |
| 98 ->105                                 | 0.29565               |           |           |          |                     |



**Figure S19.** Geometries of non-derivatized  $(MV^+)_2$  (closed-shell singlet) optimized using the M06/6-31G\*\*/PCM and M06/6-311+G(2d,p)/PCM level of DFT are superimposed in a stereo mode.



**Figure S20.** Calculated absorption spectra of the staggered  $\pi$ -dimers of non-derivatized MV<sup>+</sup>, i.e., (MV<sup>+</sup>)<sub>2</sub>, in its closed-shell singlet state, optimized using (a) M06/6-31G\*\* or (b) M06/6-311+G(2d,p) level under water solvated model (PCM, polarizable continuum model). (c) Comparison of calculated absorption spectra.



**Figure S21.** Linear relationship between the rate of  $H_2$  evolution shown in Fig. 9A and the rate of electron charging shown in Fig. 5.



**Figure S22.** Spectral changes during the photolysis of an aqueous acetate buffer solution (0.03 M CH<sub>3</sub>COOH, 0.07 M CH<sub>3</sub>COONa; pH = 5.0) containing 30 mM EDTA and PVP-protected colloidal Pt (0.1 mM on the basis of the net Pt atom concentration) in the presence of (a) 0.04 mM  $[Ru(4,4'-MV4)_3](PF_6)_{26}$  and (b) 0.04 mM  $[Ru(5,5'-MV4)_3](PF_6)_{26}$  at 20 °C under Ar atmosphere.



**Figure S23.** Photochemical H<sub>2</sub> evolution from an aqueous acetate buffer solution (0.1 M, pH = 5.0) containing TEOA (30 mM) and PVP-protected colloidal Pt (0.1 mM on the basis of the net Pt atom concentration) in the presence of (a) 0.04 mM [Ru(4,4'-MV4)<sub>3</sub>](PF<sub>6</sub>)<sub>26</sub>, (b) 0.04 mM [Ru(bpy)<sub>2</sub>(5,5'-MV4)](PF<sub>6</sub>)<sub>10</sub>, or (c) 0.04 mM [Ru(bpy)<sub>3</sub>](NO<sub>3</sub>)<sub>2</sub> and 2 mM MV(NO<sub>3</sub>)<sub>2</sub>, under Ar atmosphere at 20 °C under visible light irradiation (300 W Xe;  $\lambda > 400$  nm).

## Supplementary References

- 1. K. Kitamoto and K. Sakai, Angew. Chem. Int. Ed., 2014, 53, 4618.
- 2. M. Ogawa, B. Balan, G. Ajayakumar, S. Masaoka, H.-B. Kraatz, M. Muramatsu, S. Ito, Y.
- Nagasawa, H. Miyasaka and K. Sakai, Dalton Trans., 2010, 39, 4421.
- 3. A. R. Oki and R. J. Morgan, Synth. Commun. 1995, 25, 4093.
- 4. H. Ishida, M. Kyakuno and S. Oishi, Biopolymers, 2004, 76, 69.
- 5. I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 9, 204.
- 6. K. Sakai, Y. Kizaki, T. Tsubomura and K. Matumoto, J. Mol. Catal., 1993, 79, 141.
- 7. M. Kobayashi, S. Masaoka and K. Sakai, Dalton Trans., 2012, 41, 4903.
- 8. H. Goto and E. Osawa, J. Chem. Soc., Perkin Trans. 2, 1993, 2, 187.
- 9. N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127.
- 10. N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc., 1989, 111, 8551.
- 11. J. P. Bowen and J.-Y. Shim, J. Comp. Chem., 1998, 19, 1370.
- 12. M. J. Frisch, et al. Gaussian 09 Revision C.01 (Gaussian Inc., Wallingford CT, 2009).
- 13. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 14. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2008, 112, 1095.
- 15. Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157.
- 16. V. Barone, M. Cossi and J. Tomasi, J. Comp. Chem., 1998, 19, 404.
- 17. M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43.
- 18. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.
- 19. M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439.
- 20. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218.
- 21. R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.
- 22. GaussView, Version 5, R. Dennington, T. Keith, and J. Millam, *Semichem Inc.*, Shawnee Mission, KS, 2009.
- 23. A. Juris and V. Balzani, Coord. Chem. Rev., 1988, 84, 85.
- 24. M. Ogawa, G. Ajayakumar, S. Masaoka, H.-B. Kraatz and K. Sakai, *Chem.–Eur. J.*, 2011, **17**, 1148.
- 25. J. W. Park, N. H. Choi and J. H. Kim, J. Phys. Chem., 1996, 100, 769.