Exploring potential cooperative effects in dicopper(I)-di-

mesoionic carbene complexes: Applications in click

catalysis

Supporting information

Stephan Hohloch, Lisa Suntrup, and Biprajit Sarkar*

Table of content

¹ H and ¹³ C spectra of ligands and complexes	2 - 11
¹ H spectra of triazole reactions	12 - 36
Crystallographic Details	36 - 39
Catalysis	41 - 43

¹H and ¹³C spectra of ligands and complexes

Fig. S 1 ¹H NMR spectrum of $[H_2L^1](BF4)_2$ in DMSO-d₆.

Fig. S 2 ¹³C NMR spectrum of $[H_2L^1](BF4)_2$ in DMSO-d₆.

Fig. S 3 ¹H NMR spectrum of $[H_2L^2](BF4)_2$ in DMSO-d₆.

Fig. S 4 ¹³C NMR spectrum of $[H_2L^2](BF4)_2$ in DMSO-d₆.

Fig. S 5 ¹H NMR spectrum of 1 in CD₃CN (inlet shows benzyl splitting, impurity of dichloromethane).

Fig. S 6 ¹³C NMR spectrum of 1 in CD₃CN (small impurities of hexane and dichloromethane).

¹H and ¹³C spectra of ligands and complexes

.0

Fig. S 7 ¹H NMR spectrum of **2** in CD₃CN.

Fig. S 8 13 C NMR spectrum of **2** in CD₃CN.

¹H and ¹³C spectra of ligands and complexes

Fig. S 9 ¹H NMR spectrum of 3 in CD₃CN (inlet shows dipp-splitting, 2x CH(CH₃)₂ and 4x CH(CH₃)₂ signals, small grease impurities).

)0

Fig. S 10 13 C NMR spectrum of **3** in CD₃CN.

General Remarks to the NMR spectra:

NMR spectra of **T3**, **T5** – **T8**, **T10** - **T12**, **T14** and **T18** were recorded without purifications of the reaction to determine the conversion of the reaction. Reactions from DCM were just evaporated and the crude mixture was subjected to NMR measurements. Additionally, for **T6**, **T8** and **T11** the conversions were also determined by the use of an internal standard (1,2-dibromoethane, 0.25 mmol). **T1**, **T2**, **T4**, **T9**, **T13**, **T15** – **T17** and **T19** - **T22** are isolated products.

Fig. S 11 ¹H NMR spectrum of isolated T1 in CDCl_{3.}

Fig. S 12 ¹H NMR spectrum of isolated T2 in CDCl_{3.}

Fig. S 14 ¹H NMR spectrum of isolated T4 in CDCl_{3.}

Fig. S 15 ¹H NMR spectrum of crude T5 in CDCl₃.

0.0

Fig. S 16 ¹H NMR spectrum of crude **T6** in CDCl₃ with 1,2-dibromoethane as an internal standard. Peak at 5.3 ppm is DCM since the spectra was taken directly from the reaction mixture without any purifications.

.0

Fig. S 17 ¹H NMR spectrum of crude T7 in CDCl_{3.}

Fig. S 18 ¹H NMR spectrum of crude T8 in CDCl₃ with 1,2-dibromoethane as internal standard.

Fig. S 19 ¹H NMR spectrum of isolated T9 in CDCl_{3.}

Fig. S 20 ¹H NMR spectrum of crude T10 in CDCl₃.

Fig. S 21 ¹H NMR spectrum of crude T11 in CDCl₃ with 1,2-dibromoethane as internal standard.

Fig. S 22 ¹H NMR spectrum of crude T12 in MeCN-d_{3.}

Fig. S 23 ¹H NMR spectrum of isolated T13 in CDCl_{3.}

Fig. S 24 ¹H NMR spectrum of crude T14 in CDCl_{3.}

Fig. S 25 ¹H NMR spectrum of isolated T15 in CDCl₃.

Fig. S 26 ¹H NMR spectrum of isolated T16 in CDCl₃.

Fig. S 27 ¹H NMR spectrum of isolated T17 in CDCl_{3.}

N-Bn

N=N

.0

Fig. S 28 ¹H NMR spectrum of crude T18 in CDCl_{3.}

Fig. S 30 ¹H NMR spectrum of isolated **T20** in acetone-d₆ (NH-Peak not observed).

Fig. S 31 ¹H NMR spectrum of isolated T21 in DMSO-d₆.

Fig. S 32 ¹³C NMR spectrum of isolated T21 in DMSO-d₆.

Fig. S 33 ¹H NMR spectrum of isolated T22 in CDCl_{3.}

	$[H_2L^2](BF_4)_2$	1 • 2 DCM	3 • 1.5 DCM
Chemical formula	$C_{24}H_{30}N_6 B_2F_8$	C ₄₀ H ₄₀ N ₁₂ Cu ₂ 2(BF ₄) 2(CH ₂ Cl ₂)	$C_{120}H_{160}N_{24}Cu_4 4(BF_4) 3(CH_2Cl_2)$
$M_{ m r}$	576.16	1159.39	2794.90
Crystal system	Monoclinic	Monoclinic	Tetragonal
Space group	P2(1)/c	C2/c	P4(3)2(1)2
a (Å)	12.995(4)	21.220(4)	13.543(1)
b (Å)	8.874(3)	13.993(3)	13.543(1)
c (Å)	11.389(3)	17.774(3)	41.646(9)
α (°)	90	90	90
β (°)	91.646(7)	111.151(4)	90
γ (°)	90	90	90
V (Å ³)	1312.8(6)	4922(2)	7639(2)
Ζ	2	4	2
Densitiy (g cm ⁻³)	1.458	1.565	1.215
F(000)	596	2352	2908
Radiation Type	MoK _α	ΜοΚα	MoK _α
μ (mm ⁻¹)	0.128	1.158	0.723
Crystal size	0.20 x 0.19 x 0.04	0.41 x 0.19 x 0.12	0.35 x 0.32 x 0.27
Meas. Refl.	9409	24229	61580
Indep. Refl.	2301	5627	6766
Obsvd. $[I > 2\sigma(I)]$ refl.	1633	4796	5893
R _{int}	0.0462	0.0215	0.489
R [$F^2 > 2\sigma(F^2)$], wR(F^2), S	0.0556, 0.1892, 1.071	0.0264, 0.0673, 1.034	0.0900, 0.2475, 1.084
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.733, -0.426	0.450, -0.297	1.289, -0.583

Table S1 Crystallographic details for the structures of $[H_2L^2](BF_4)_2$, 1 and 3

Crystallographic Details

Table S2 Selected bond lengths (Å) and angles (°) and tilt angles (°) for $[H_2L^2](BF_4)_2$, 1 and 3

Atoms	$[H_2L^2](BF_4)_2$	1 • 2 DCM	3 • 1.5 DCM
Bond lengths			
Cu1-Cu1 (or Cu1-Cu2)	-	2.796(1)	2.882(2)
Cu1-C1	-	1.902(2)	1.900(9)
Cu1-C2	-	1.904(2)	-
Cu2-C2	-	-	1.859(9)
C1-C3	1.369(5)	1.396(2)	1.38(1)
C2-C4	-	1.388(2)	1.41(1)
C3-C4, (or C3-C3; C4-C4)	1.452(6)	1.458(3)	1.47(1)
		1.461(3)	
C3-N1	1.362(4)	1.366(2)	1.37(1)
N1-N3	1.313(4)	1.324(2)	1.32(1)
N3-N5	1.324(4)	1.333(2)	1.31(1)
N2-N4	-	1.320(2)	1.31(1)
N4-N6	-	1.330(2)	1.34(1)
N1-C29	1.459(4)	1.464(2)	1.46(2)
N2-C30	-	1.467(2)	1.45(2)
Angles			
C1-Cu-C2	-	175.2(1)	178.8(4)
(or C1-Cu-C1; C2-Cu-C2)			179.0(5)
N5-C1-C3	105.8(3)	101.5(1)	102.7(8)
N6-C2-C4	-	101.5(1)	102.3(8)
Dihedral Angles			
Triazole	0.0	48.0(1) / 44.5(1)	43.5(4)
Triazole-R ₁	67.1(1)	-	81.4(4)
Triazole-R ₂	-		84.3(3)

Fig. S 34 ORTEP plot of $[H_2L^2](BF4)_2$. Hydrogen atoms and counter ions are omitted for clarity. Thermal ellipsoids are shown at a probability level of 50%.

Fig. S 35 ORTEP plots of **1** (top) and **3** (bottom) from different points of view. Hydrogen atoms, solvent molecules and counter ions are omitted for clarity. In **3** the ⁱPr groups are also omitted for clarity.

Fig. S 36 Ball and stick model of 2. Hydrogen atoms, solvent molecules and counter ions are omitted for clarity.

Fig. S 37 Stacked time-dependent ¹H NMR spectra of the reaction between phenyl azide and phenylacetylene from one of the kinetic experiments in CD₃CN.

Catalysis

Fig. S 38 Crude NMR spectrum of the reaction between phenylacetylene and phenyl azide to give **T1** after 135 min. Catalyst: [Cu(MeCN)₄][BF₄] 0.5 mol%.

Fig. S 39 ¹H NMR spectra of reaction monitoring of complex **2**, phenylacetylene and benzyl azide in DCM-d₂ with 1,2-dibromoethane as internal standard.

Fig. S 40 ¹H NMR spectrum of 2 in DCM- d_2 for comparison in NMR experiment.