Enhancing the Photoluminescence Quantum Yields of

Blue-Emitting Cationic Iridium(III) Complexes Bearing

Bisphosphine Ligands

Diego Rota Martir,^a Ashu K. Bansal,^b Vincent Di Mascio,^a David B. Cordes,^a Adam F. Henwood,^a

Alexandra M. Z. Slawin,^a Paul C. J. Kamer,^a Laura Martínez-Sarti,^c Antonio Pertegás,^c Henk J.

Bolink,^c Ifor D.W. Samuel,^b and Eli Zysman-Colman^a*

^aOrganic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST, Fax: +44-1334 463808; Tel: +44-1334 463826; E-mail: <u>eli.zysman-colman@st-andrews.ac.uk</u>;

URL: http://www.zysman-colman.com

^b Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, KY16 9SS, UK; E-mail: idws@st-andrews.ac.uk

[°] Instituto de Ciencia Molecular, Universidad de Valencia, C/ Catedrático J. Beltrán, ES-46980 Paterna, Valencia, Spain. E-mail: henk.bolink@uv.es

SUPPORTING INFORMATION

Table of contents:

	Pages
Characterization of precursors and ligands	S2
Characterization of iridium dimers $D1 - D4$	S7
Characterization of $[Ir(C^N)_2(P^P)]PF_6$ complexes, 1 - 4	S10
Crystal structure data of complexes 2a, 4c and 1e	S38
Supplementary optoelectronic data for complexes $1 - 4$	S39
Electroluminescent devices (LEECs)	S52

Figure S1. ¹H NMR spectra of 2-Chloro-4-(2,4,6-trimethylphenyl)pyridine (A) in CD₃Cl

Figure S2.¹H NMR spectrum of 2-(2,4-difluorophenyl)pyridine (dFppy) in CDCl₃.

Figure S3.¹³C NMR spectrum of 2-(2,4-difluorophenyl)pyridine (dFppy) in CDCl₃.

Figure S4.¹⁹F {¹H} NMR spectrum of 2-(2,4-difluorophenyl)pyridine (dFppy) in CDCl₃.

Figure S5. ¹H NMR spectra of 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine (mesppy) in CDCl₃.

Figure S6. ¹³C NMR spectra of 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine (mesppy) in CDCl₃

Figure S7. FT-MS spectra of 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine (mesppy)

Figure S8.¹H NMR spectrum of 2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridine (dFmesppy) in CDCl₃.

Figure S9. ¹⁹F NMR spectrum of 2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridine (dFmesppy) in CDCl₃.

Figure S10.¹³C NMR spectrum of 2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridine (dFmesppy) in CDCl₃.

Characterization of Iridium dimers

Figure S11. ¹H NMR spectrum of tetrakis[2-(4',6'-difluorophenyl)-pyridinato- $N,C^{2'}$]-bis(μ -chloro)diiridium(III), [Ir(dFppy)₂(μ -Cl)]₂ (D2) in CD₂Cl₂.

Figure S12. ¹⁹F NMR spectrum of tetrakis[2-(4',6'-difluorophenyl)-pyridinato- $N_{2}C^{2'}$]-bis(μ -chloro)diiridium(III), [Ir(dFppy)₂(μ -Cl)]₂ (D2) in CD₂Cl₂.

Figure S13. ¹H NMR spectrum of tetrakis[2-(phenyl)-4-(2,4,6-trimethylphenyl)pyridinato- $N_{s}C^{2'}$]-bis(μ -chloro)diiridium(III), [Ir(mesppy)₂(μ -Cl)]₂ (D3) in CD₂Cl₂.

Figure S14. ¹H NMR spectrum of tetrakis[2-(4',6'-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridinato- $N_{*}C^{2'}$]bis(μ -chloro)diiridium(III), [Ir(dFmesppy)₂(μ -Cl)]₂ (D4) in CD₂Cl₂.

Figure S15. ¹⁹F NMR spectrum of tetrakis[2-(4',6'-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridinato- $N,C^{2'}$]bis(μ -chloro)diiridium(III), [Ir(dFmesppy)₂(μ -Cl)]₂ (D4) in CD₂Cl₂.

Characterization of $[Ir(C^N)_2(P^P)]PF_6$ complexes

Iridium(III)bis[2-phenylpyridinato]-4,5-bis(diphenylphosphino)-9,9-

 $dimethyl xan then ehex a fluor ophosphate, [Ir(ppy)_2(xan tphos)] PF_6\,(1a)$

Figure S16. ¹H NMR spectrum of [Ir(ppy)₂(xantphos)]PF₆ (1a) in CD₂Cl₂.

Figure S17. ³¹P NMR spectrum of [Ir(ppy)₂(xantphos)]PF₆ (1a) in CD₂Cl₂.

Figure S18. ¹³C NMR spectrum of [Ir(ppy)₂(xantphos)]PF₆ (1a) in CD₂Cl₂.

Figure S19. HR-MS spectrum of [Ir(ppy)₂(xantphos)]PF₆ (1a).

Iridium (III) bis[2-phenyl-4-(2,4,6-trimethylphenyl)pyridine]- 4,5-Bis(diphenylphosphino)-9,9dimethylxanthene hexafluorophosphate, [Ir(mesppy)₂(xantphos)](PF₆) (2a)

Figure S20. ¹H NMR spectrum of [Ir(mesppy)₂(xantphos)]PF₆ (2a) in CD₂Cl₂.

Figure S21. ³¹P NMR spectrum of [Ir(mesppy)₂(xantphos)]PF₆ (2a) in CD₂Cl₂.

Figure S22. ¹³C NMR spectrum of [Ir(mesppy)₂(xantphos)]PF₆ (2a) in CD₂Cl₂.

Figure S23. HR-MS spectrum of [Ir(mesppy)₂(xantphos)]PF₆ (2a).

Iridium(III)bis[2-(2,4-difluoro)-phenyl-4-(2,4,6-trimethylphenyl)pyridinato]-4,5bis(diphenylphosphino)-9,9-dimethylxanthene hexafluorophosphate,

[Ir(dFmesppy)₂(xantphos)](PF₆) (4a)

Figure S24. ¹H NMR spectrum of [Ir(dFmesppy)₂(xantphos)]PF₆ (4a) in CD₂Cl₂.

Figure S25. ³¹P NMR spectrum of [Ir(dFmesppy)₂(xantphos)]PF₆ (4a) in CD₂Cl₂.

Figure S26. ¹⁹F NMR spectrum of [Ir(dFmesppy)₂(xantphos)]PF₆ (4a) in CD₂Cl₂.

Figure S27. ¹³C NMR spectrum of [Ir(dFmesppy)₂(xantphos)]PF₆ (4a) in CD₂Cl₂.

Figure S28. FT-MS spectrum of [Ir(dFmesppy)₂(xantphos)]PF₆ (4a).

$Iridium (III) bis \cite[2-phenylpyridinato]-bis \cite[(2-diphenylphosphino)phenyl] methane \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)phenylphosphino) \cite[(2-diphenylphosphino)pheny$

hexafluorophosphate, [Ir(ppy)₂(dpephos)](PF₆) (1b)

Figure S29. ¹H NMR spectrum of [Ir(ppy)₂(dpephos)]PF₆ (1b) in CD₂Cl₂.

Figure S30. ³¹P NMR spectrum of [Ir(ppy)₂(dpephos)]PF₆ (1b) in CD₂Cl₂.

Figure S31. ¹³C NMR spectrum of [Ir(ppy)₂(dpephos)](PF₆) (1b) in CD₂Cl₂.

Figure S32. FT-MS spectrum of [Ir(ppy)₂(dpephos)]PF₆ (1b) in CD₂Cl₂.

Iridium(III)bis[2-phenyl-4-(2,4,6-trimethylphenyl)pyridinato]-bis[(2-

diphenylphosphino)phenyl]methane hexafluorophosphate, [Ir(ppymes)₂(dpephos)](PF₆) (2b)

Figure S33. ¹H NMR spectrum of [Ir(mesppy)₂(dpephos)]PF₆ (2b) in CD₂Cl₂.

Figure S34. ³¹P NMR spectrum of $[Ir(mesppy)_2(dpephos)]PF_6 (2b)$ in CD_2Cl_2 .

Figure S35. ¹³C NMR spectrum of [Ir(mesppy)₂(dpephos)](PF₆) (2b) in CD₂Cl₂.

Figure S36. FT-MS spectrum of [Ir(mesppy)₂(dpephos)]PF₆ (2b).

Iridium(III)bis[2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridinato]-bis[(2-

diphenylphosphino)phenyl]methane hexafluorophosphate, [Ir(dFmesppy)₂(dpephos)]PF₆ (4b)

Figure S37. ¹H NMR spectrum of [Ir(dFmesppy)₂(dpephos)]PF₆ (4b) in CD₂Cl₂.

Figure S38. ³¹P NMR spectrum of [Ir(dFmesppy)₂(dpephos)]PF₆ (4b) in CD₂Cl₂.

Figure S39. ¹⁹F NMR spectrum of [Ir(dFmesppy)₂(dpephos)]PF₆ (4b) in CD₂Cl₂.

Figure S40. ¹³C NMR spectrum of [Ir(dFmesppy)₂(dpephos)]PF₆ (4b) in CD₂Cl₂.

Figure S41. FT-MS spectrum of [Ir(dFppymes)₂(dpephos)]PF₆ (4b) in CD₂Cl₂.

Iridium(III)bis[2-phenylpyridinato]-bis[1,2-bis(diphenylphosphino)ethene] hexafluorophosphate, [Ir(ppy)₂(dppe)](PF₆) (1c).

Figure S42. ¹H NMR spectrum of [Ir(ppy)₂(dppe)]PF₆ (1c) in CD₂Cl₂.

Figure S43. ³¹P NMR spectrum of [Ir(ppy)₂(dppe)]PF₆ (1c) in CD₂Cl₂.

Figure S44. ¹³C NMR spectrum of [Ir(ppy)₂(dppe)]PF₆ (1c) in CD₂Cl₂.

Figure S45. FT-MS spectrum of [Ir(ppy)₂(dppe)]PF₆ (1c).

Iridium(III)bis[2-phenyl-4-(2,4,6-trimethylphenyl)pyridinato]-bis[1,2-

bis(diphenylphosphino)ethene] hexafluorophosphate, [Ir(mesppy)2(dppe)](PF6) (2c)

Figure S46. ¹H NMR spectrum of [Ir(mesppy)₂(dppe)](PF₆) (2c) in CD₂Cl₂.

Figure S47. ³¹P NMR spectrum of [Ir(mesppy)₂(dppe)]PF₆ (2c) in CD₂Cl₂.

Figure S48. ¹³C NMR spectrum of [Ir(mesppy)₂(dppe)]PF₆ (2c) in CD₂Cl₂.

Figure S49. FT-MS spectrum of [Ir(mesppy)₂(dppe)](PF₆) (2c).

Iridium(III)bis[2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridinato]-bis[1,2bis(diphenylphosphino)ethene] hexafluorophosphate, [Ir(dFmesppy)₂(dppe)](PF₆) (4c)

Figure S50. ¹H NMR spectrum of [Ir(dFmesppy)₂(dppe)]PF₆ (4c) in CD₂Cl₂.

Figure S51. ³¹P NMR spectrum of [Ir(dFmesppy)₂(dppe)](PF₆) (4c) in CD₂Cl₂.

Figure S52. ¹⁹F NMR spectrum of [Ir(dFmesppy)₂(dppe)]PF₆ (4c) in CD₂Cl₂.

Figure S53. ¹³C NMR spectrum of $[Ir(dFmesppy)_2I(dppe)]PF_6$ (4c) in CD_2Cl_2 .

Figure S54. FT-MS spectrum of [Ir(dFmesppy)₂(dppe)]PF₆ (4c) in CD₂Cl₂.

Iridium(III)bis[2-(2,4-difluorophenyl)pyridinato]-bis[1,2-bis(diphenylphosphino)ethene] hexafluorophosphate, [Ir(dFppy)₂(dppe)](PF₆) (3c)

Figure S55. ¹H NMR spectrum of [Ir(dFppy)₂(dppe)]PF₆ (3c) in CD₂Cl₂.

Figure S56. ³¹P NMR spectrum of [Ir(dFppy)₂(dppe)](PF₆) (3c) in CD₂Cl₂.

Figure **S57.**¹⁹F NMR spectrum of [**Ir**(**dFppy**)₂(**dppe**)]**PF**₆ (**3c**) in CD₂Cl₂.

Figure S58. ¹³C NMR spectrum of [Ir(dFppy)₂(dppe)]PF₆ (3c) in CD₂Cl₂.

Figure **S59**. FT-MS spectrum of [**Ir**(**dFppy**)₂(**dppe**)]**PF**₆ (3c).

Iridium(III)bis[2-phenylpyridinato]-bis[1,2-bis(diphenylphosphino)ethane]

hexafluorophosphate, [Ir(ppy)2(Dppe)](PF6) (1d)

Figure S60. ¹H NMR spectrum of [Ir(ppy)₂(Dppe)]PF₆ (1d) in CD₂Cl₂.

Figure S61. ³¹P NMR spectrum of [Ir(ppy)₂(Dppe)]PF₆ (1d) in CD₂Cl₂.

Figure S62. ¹³C NMR spectrum of $[Ir(ppy)_2(Dppe)]PF_6$ (1d) in CD_2Cl_2 .

Figure S63. FT-MS spectrum of [Ir(ppy)₂(Dppe)]PF₆ (1d).

Iridium(III)bis[2-phenylpyridinato]-4,5-bis(diphenylphosphino)-9-isopropylxanthene hexafluorophosphate, [Ir(ppy)₂(isopropxantphos)](PF₆) (1f)

Figure S64. ¹H NMR spectrum of [Ir(ppy)₂(isopropxantphos)]PF₆ (1f) in CD₂Cl₂.

Figure S65. ³¹P NMR spectrum of [Ir(ppy)₂(isopropxantphos)]PF₆ (1f) in CD₂Cl₂.

Figure S66. ¹³C NMR spectrum of [Ir(ppy)₂(isopropxantphos)]PF₆ (1f) in CD₂Cl₂.

Figure S67. FT-MS spectrum of [Ir(ppy)₂(isopropxantphos)]PF₆ (1f).

Iridium(III)bis[2-phenylpyridinato]-4,6-bis(diphenylphosphino)phenoxazine

hexafluorophosphate, [Ir(ppy)₂(nixantphos)](PF₆) (1e)

Figure S68. ¹H NMR spectrum of [Ir(ppy)₂(nixantphos)]PF₆ (1e) in CD₂Cl₂.

Figure **S69**. ³¹P NMR spectrum of [**Ir**(**ppy**)₂(**nixantphos**)]**PF**₆ (**1d**) in CD₂Cl₂.

Figure S70. ¹³C NMR spectrum of [Ir(ppy)₂(nixantphos)]PF₆ (1e) in CD₂Cl₂.

Figure S71. FT-MS spectrum of [Ir(ppy)₂(nixantphos)]PF₆ (1e).

Crystal Structures

Figure **S72**. Crystal structure of (**a**) **1e**, (**b**) **2a** and (**c**) **3c**. Hydrogen atoms, PF_6^- counterions, solvent molecules, minor components of disordered molecules and additional independent molecules are omitted for clarity. Selected bond lengths (Å) and angles (°): (**1e**) Ir₁–N₁ 2.082(9), Ir₁–N₁₃ 2.077(9), Ir₁–C₈ 2.049(11), Ir₁–C₂₀ 2.051(10), Ir₁–P₁ 2.526(3), Ir₁–P₂ 2.483(3), Ir₇₁–N₇₁ 2.093(9), Ir₇₁–N₈₃ 2.062(10), Ir₇₁–C₇₈ 2.036(11), Ir₇₁–C₉₀ 2.056(12), Ir₇₁–P₇₁ 2.529(3), Ir₇₁–P₇₂ 2.510(3), P₁–Ir₁-P₂: 102.10(9), P₇₁–Ir₇₁–P₇₂ 102.14(10); (**2a**) Ir₁–N₁ 2.071(6), Ir₁–N₂₂ 2.051(7), Ir₁–C₈ 2.081(7), Ir₁–C₂₉ 2.065(7), Ir₁–P₁ 2.525(2), Ir₁–P₂ 2.477(2), P₁–Ir₁-P₂: 100.32(7); (**3c**) Ir₁–N₁ : 2.0665(15), Ir₁–N₁₃ 2.0649(16), Ir₁–C₈ 2.0526(19), Ir₁–C₂₀ 2.0543(19), Ir₁–P₁ 2.3673(5), Ir₁–P₂ 2.3687(5), P₁–Ir₁-P₂: 83.623(18).

Supplementary Optoelectronic Characterization

Figure **S73**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(ppy)_2(xantphos)]PF_6$ (1a).

Figure S74. Lifetime decays of $[Ir(ppy)_2(xantphos)](PF_6)$ (1a) after excitation at 379 nm; left) in degassed acetonitrile at 298 K; right) dip-coating deposition on pristine quartz substrate.

Figure **S75**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(mesppy)_2(xantphos)]PF_6$ (2a).

Figure S76. Lifetime decays of $[Ir(mesppy)_2(xantphos)](PF_6)$ (2a) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure S77. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(dFmesppy)_2(xantphos)]PF_6$ (4a).

Figure S78. Lifetime decays of $[Ir(dFmesppy)_2(xantphos)]PF_6$ (4a) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S79**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(ppy)_2(dpephos)]PF_6$ (1b).

Figure **S80**. Lifetime decays of $[Ir(ppy)_2(dpephos)]PF_6$ (1b) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S81**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(mesppy)_2(dpephos)]PF_6$ (2b).

Figure S82. Lifetime decays of $[Ir(mesppy)_2(dpephos)]PF_6$ (2b) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S83**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(dFmesppy)_2(dpephos)]PF_6$ (4b).

Figure **S84**. Lifetime decays of $[Ir(dFmesppy)_2(dpephos)]PF_6$ (4b) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S85**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(ppy)_2(dppe)]PF_6$ (1c).

Figure S86. Lifetime decays of [Ir(ppy)₂(dppe)](PF₆) (1c) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S87**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(mesppy)_2(dppe)]PF_6(2c)$.

Figure **S88**. Lifetime decays of $[Ir(mesppy)_2(dppe)]PF_6$ (2c) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S89**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(dFmesppy)_2(dppe)]PF_6$ (4c).

Figure **S90**. Lifetime decays of $[Ir(dFmesppy)_2(dppe)]PF_6$ (4c) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S91**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(dFppy)_2(dppe)]PF_6$ (3c).

Figure **S92**. Lifetime decays of $[Ir(dFppy)_2(dppe)]PF_6$ (3c) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S93**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(ppy)_2(Dppe)]PF_6$ (1d).

Figure S94. Lifetime decays of $[Ir(ppy)_2(Dppe)]PF_6$ (1d) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Figure **S95**. UV-Vis (in blue, in acetonitrile at 298 K), excitation (in red) and emission spectra (in orange, excitation wavelength: 360 nm, in degassed acetonitrile at 298 K) and solid state emission spectrum (in green, excitation wavelength: 360 nm, dip-coating deposition on pristine quartz substrate) of $[Ir(ppy)_2(isopropxantphos)]PF_6$ (1f).

Figure **S96**. Lifetime decays of $[Ir(ppy)_2(isopropxantphos)]PF_6$ (1f) after excitation at 379 nm; left) in degassed acetonitrile at 298 K, right) dip-coating deposition on pristine quartz substrate.

Table S1. Supplementary Optoelectronic Characterization

	****	1		E CL C
complex	UV-Vis (nm)	K _r	K _{nr}	E-Chem ^e
	$[\epsilon(\times 10^3 \text{ M}^{-1} \text{ cm}^{-1})]^{a}$	$(x10^5 s^{-1})^b$	$(x10^7 s^{-1})^b$	$E_{pa}(V)$
1a	262 [25.4], 308	1.5	5.0	1.38
	[9.5], 358 [5.1]			
2a	276 [31.2], 316	2.1	3.6	1.40
	[13.6], 368 [3.8]			
4 a	261 [32.5], 318	1.9	2.8	1.68
	[1.7], 359 [4.7]			
1b	293 [13.1],318	2.2	3.7	1.39
	[8.3], 358 [4.2]			
2b	269 [33.5], 317	3.2	3.5	1.41
	[13.5], 365 [4.3]			
4b	266 [24.4], 313	1.0	1.1	1.69
	[12.8], 350 [4.9]			
1c	260 [28.7], 308	0.38	0.087	1.42
	[10.5], 358 [6.3]			
2c	260 [32.8], 307	0.28	0.061	1.43
	[15], 357 [6.3]			
4c	266 [23.1], 313	0.39	0.0035	1.72
	[12.1], 350 [4.6]			
3c	276 [28.3], 309	0.19	0.0090	1.72
	[19.9], 342 [8.8]			
1d	260 [23.3], 306	0.32	0.20	1.44
	[8.4], 356 [4.5]			
1f	260 [19.9], 312	2.3	3.8	1.39
	[6.8], 357 [4.3]			
1e	270 [19.9], 320	-	-	1.42
	[9.9]			

^a Measurements in acetonitrile at 298 K. ^b Crude calculations assuming emission only from the longest lived state. ^c Measurements performed at 50 mV s⁻¹ in degassed acetonitrile solution using Fc/Fc⁺ as an internal standard, and are referenced with respect to SCE (Fc/Fc⁺ = 0.38 V in MeCN).

Figure **S98**. Oxidation processes of complexes **1** - **4** in MeCN with 0.1 M TBAPF₆ as the supporting electrolyte. Scan rate: $0.1V \text{ sec}^{-1}$

Electroluminescent devices (LEECs)

Figure **S99**. Luminance (solid blue line) and average voltage (open red squares) versus time for ITO/PEDOT:PSS/ **1b**:[Bmim][PF₆] 4:1/Al under a constant pulsed current (1000Hz, 50% duty cycle and block wave) of 765 A m⁻² (average current density). [Bmim][PF₆] = 1-butyl-3-methylimidazolium hexafluorophosphate.

Figure **S100**. Luminance (solid blue line) and average voltage (open red squares) versus time for ITO/PEDOT:PSS/ **4a**:[Bmim][PF₆] 4:1/Al under a constant pulsed current (1000Hz, 50% duty cycle and block wave) of 765 A m-2 (average current density). [Bmim][PF₆] = 1-butyl-3-methylimidazolium hexafluorophosphate.

Figure **S101**. Luminance (solid blue line) and average voltage (open red squares) versus time for ITO/PEDOT:PSS/ **4b**:[Bmim][PF₆] 4:1/Al under a constant pulsed current (1000Hz, 50% duty cycle and block wave) of 765 A m-2 (average current density). [Bmim][PF₆] = 1-butyl-3-methylimidazolium hexafluorophosphate.

Figure **S102**. Luminance (solid blue line) and average voltage (open red squares) versus time for ITO/PEDOT:PSS/ **4c**:[Bmim][PF₆] 4:1/Al under a constant pulsed current (1000Hz, 50% duty cycle and block wave) of 765 A m-2 (average current density). [Bmim][PF₆] = 1-butyl-3-methylimidazolium hexafluorophosphate.