Electronic Supporting Information

Synthesis and photophysical properties of *multi*-Ru²⁺ terpyridine complexes: from *di*-nuclear linear to star-shaped *hexa*-nuclear architectures

Jie Yuan, Zhilong Jiang, Die Liu, Yiming Li and Pingshan Wang

General Procedures

Solvents are used in the experimental processes were purified prior to use. All materials were directly purchased through J & K Chemical Technology and used without farther purification. 4-(dodecyloxy)benzaldehyde, 2-acetyridine, bromobenzaldehyde, 1,4-dibromobenzene, hexabromobenzene and RuCl₃·3H₂O were also purchased through J & K Chemical Technology. Analytical thin layer chromatography (TLC) was performed on aluminum-backed sheets precoated with Al₂O₃ 150 F254 adsorbent (0.25 mm thick; Merck, Germany). Column chromatography was conducted using neutral Al₂O₃ (200-300 mesh) from Sinopharm Chemical Reagent Co. The ¹H NMR spectra were recorded at 25 °C on a Bruker spectrometer operating at 301, 400, 500 MHz for ¹Hor ¹³C NMR, respectively. Chemical shifts were reported in parts per million (ppm) referenced to the residual solvent peak for ¹H and solvent peak for ¹³C NMR, respectively. Mass spectra were obtained on a Bruker Quadrupole-time of flight mass spectrometry (Q-TOF-MS). Electronic absorption spectra were recorded with a VARIAN Cary-50 UV-visible spectrophotometer and were corrected for the background spectrum of the solvent. Cyclic voltammetry measurements were performed on a Metrohm Autolab PGSTAT30 potentiost at with a standard three electrode configuration using a glass-carbon working electrode, a platinum-rod auxiliary electrode, and a saturated calomel electrode reference electrode. CV experiments measurements in MeCN and 0.1 M [(n-Bu)₄N][PF₆].

Figure S2. ¹H NMR spectrum of g2.

Figure S6. ¹³C NMR spectrum of T.

Figure S8. ¹H NMR spectrum of G1.

Figure S10. COSY spectrum of G1.

Figure S14. ¹³C NMR spectrum of G2.

Figure S16. NOESY spectrum of G2.

Figure S18. ¹H NMR spectrum of G3.

Figure S20. COSY spectrum of G3.

Figure S21. NOESY spectrum of G3.

Figure S24. ¹³C NMR spectrum of G4.

Figure S25. COSY spectrum of G4.

Figure S26. NOESY spectrum of G4.

Figure S27. Q-TOF-MS spectrum of G4.