Electronic Supplementary Information for

Cobalt Nitrides as a class of Metallic Electrocatalysts for the Oxygen

Evolution Reaction

Pengzuo Chen,^{§a} Kun Xu,^{§a} Yun Tong,^a Xiuling Li,^{a,c} Shi Tao,^b Zhiwei Fang,^a Wangsheng Chu,^b Xiaojun Wu^{a,c} and Changzheng Wu^{*a}

^a Hefei National Laboratory for Physical Sciences at Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, P. R. China.

^c National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, PR China

^c CAS Key Laboratory of Materials for Energy Conversion and Department of Material Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China

To whom correspondence should be addressed. E-mail: czwu@ustc.edu.cn

Table of contents

Table S1 Information of crystal structures for the serial cobalt nitrides
S2. The calculated density of states (DOS) of serial cobalt nitrides4
S3. XRD patterns and SEM images of the α -Co(OH) ₂ and β -Co(OH) ₂ precursors5
S4. EELS spectrum and element mapping images of obtained Co ₂ N product6
S5. EELS spectrum and element mapping images of obtained Co ₃ N product7
S6. N ₂ adsorption/desorption isotherms of serial cobalt nitrides8
S7. Polarization curves of metallic Co ₄ N catalyst with different loading weight8
S8. IR-corrected polarization curves for all of the catalysts after the BET surface area
normalization9
S9. XPS spectrum of all catalysts after the prolonged electrocatalysis9
S10. XRD patterns of all catalysts after prolonged electrocatalysis10
Table S2. Comparison of OER catalytic performance of bulk Co ₄ N to recently reported
state of the art Co-based OER catalysts11
Reference12

Table 3	S1 Inf	ormation	of crvs	tal stru	ctures fo	or the	serial	cobalt	nitrides
I HOIC		ormation	or crys	un su u	ctui 05 10		Serier	cobuit	menues

Phase	Crystal system	Space group	Unit cell
Co2N	Orthorhombic	Pnnm (58)	
Co3N	Hexagonal	P63/mmm (182)	
Co4N	Cubic	P m-3m (221)	

S2. The calculated density of states (DOS) of serial cobalt nitrides

Figure S2 DOS diagrams of a) Co₂N and b) Co₃N catalysts.

S3. XRD patterns and SEM images of the α-Co(OH)₂ and β-Co(OH)₂ precursors

Figure S3 Characterizations of the α -Co(OH)₂ and β -Co(OH)₂ precursors. a, b) XRD patterns and c, d) SEM images. Inset: photographs of α -Co(OH)₂ (green) and β -Co(OH)₂ (pink).

As shown by XRD patterns in Figure S3a, b, the obtained intermediate precursors $(\alpha$ -Co(OH)₂ and β -Co(OH)₂) were all pure phases, exhibiting highly c-axis orientation. TEM images of the α -Co(OH)₂ and β -Co(OH)₂ in Figure S3c, d shows hexagonal nanosheets morphology with several micrometers. The inset photographs of α -Co(OH)₂ and β -Co(OH)₂ precursors display the obvious different colour. (α -Co(OH)₂ was green and β -Co(OH)₂ was pink).

S4. EELS spectrum and element mapping images of obtained Co₂N product

Figure S4 a) Electron energy loss spectroscopy (EELS) of obtained Co_2N product, b) EELS line scanning profiles of Co_2N , c) The typical HAADF-STEM and d-f) EELS element mapping images of Co_2N , where the elements of Co (indicated by green color) and N (indicated by red color) were homogenously spatial distributions, illustrated the successful synthesis of Co_2N .

S5. EELS spectrum and element mapping images of obtained Co₃N product

Figure S5 a) Electron energy loss spectroscopy (EELS) of obtained Co_3N product, b) EELS line scanning profiles of Co_3N , c) The typical HAADF-STEM and d-f) EELS element mapping images of Co_3N , where the elements of Co (indicated by green color) and N (indicated by red color) were homogenously spatial distributions, illustrated the successful synthesis of Co_3N .

Figure S6 N₂ adsorption/desorption isotherms of (a) Co₂N, (b) Co₃N and (c) Co₄N samples.

S7. Polarization curves of metallic Co₄N catalyst with different loading weight

Figure S7 Polarization curves of metallic Co₄N catalyst with different loading weight in 1 M KOH solution.

S8. IR-corrected polarization curves for all of the catalysts after the BET surface area normalization

Figure S8 (a) IR-corrected polarization curves for Co_2N , Co_3N and Co_4N in a 0.1 M KOH medium. The current densities of all catalysts have been normalized by BET surface area.

S9. XPS spectrum of all catalysts after the prolonged electrocatalysis

Figure S9 XPS spectrum of Co₂N, Co₃N and Co₄N catalysts after the prolonged electrocatalysis.

As well known, X-ray photoelectron spectroscopy (XPS) is very powerful for surface characterization. First of all, "post-mortem" XPS analysis has been performed to comprehend the surface change after prolonged CV tests. Figure S9 shows almost unanimous Co 2p spectrum of Co_2N , Co_3N and Co_4N catalysts after the prolonged electrocatalysis. The peaks located at 778.2 eV can be assigned to Co $2p_{3/2}$ of Co⁰ in cobalt nitrides, which is identical with previous reports. Meanwhile, the peaks located at binding energy of 779.3 eV and 794.5 eV are consistent with Co^{2+} and Co^{3+} , demonstrating the existence of surface oxidation in cobalt nitrides catalysts after a long period of OER tests.

S10. XRD patterns of all catalysts after prolonged electrocatalysis

Figure S10 X-ray diffraction (XRD) patterns of a) Co_2N , b) Co_3N and c) Co_4N catalysts after the electrocatalysis

The XRD patterns in Figure S10 confirm all XRD curves of each compound after prolonged electrocatalytical measurement can be well indexed to the standard XRD profiles, indicating their excellent stability and phase stability after prolonged electrocatalysis process. Therefore, after prolonged OER tests, there is only a part of surface oxidation occurred in as-obtained cobalt nitrides as active phases, but it's still cobalt nitrides in bulk state, giving solid evidence that the major phase was always cobalt nitrides.

Table S2. Comparison of OER catalytic performance of bulk Co4N to recentlyreported state of the art Co-based OER catalysts

Catalysts	Overpotential @ 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Electrolyte	Substrate	Reference
Bulk Co ₄ N	330	58	1 М КОН	Glassy carbon	This work
Ni-Co oxides amorphous laye	ers 325	39	1 M NaOH	Glassy carbon	[1]
NiCo2(OH)6 nanotubes	460	65	0.1 M KOH	Self-support	[2]
Fe-Co ₃ O ₄	486	1	0.1 M KOH	Glassy carbon	[3]
NG-CoSe2 belt	366	40	0.1 M KOH	Glassy carbon	[4]
NiCo-LDH nanosheets	334	41	1 М КОН	Glassy carbon	[5]
CoSe ₂ ultrathin nanosheets	320	44	0.1 M KOH	Glassy carbon	[6]
CoMn-LDH nanosheets	324	43	1 M KOH	Glassy carbon	n [7]
N-graphene-CoO	340	71	1 M KOH	Glassy carbon	n [8]
Co ₃ O ₄ /N-rmGO	310	67	1 M KOH	Glassy carbon	n [9]
RuO ₂	366	69	0.1 M KOH	Glassy carbo	n [10]
IrO ₂ /C	310	1	0.1 M KOH	Glassy carbo	n [11]

Reference

- [1] Y. Yang, H. Fei, G. Ruan, C. Xiang and J. M. Tour, ACS Nano 2014, 8, 9518.
- [2] Z. Zhao, H. Wu, H. He, X. Xu and Y. Jin, Adv. Funct. Mater. 2014, 24, 4698.
- [3] T. Grewe, X. Deng and H. Tüysüz, Chem. Mater. 2014, 26, 3162.
- [4] M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang and S.-H. Yu, ACS Nano 2014, 8, 3970.
- [5] F. Song and X. Hu, Nat Commun 2014, 5.
- [6] Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye
- and Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- [7] F. Song and X. Hu, J. Am. Chem. Soc. 2014. 136, 16481.
- [8] S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci. 2014, 7, 609.
- [9] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat Mater 2011, 10, 780.
- [10] M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang and S.-H. Yu, ACS Nano, 2014, 8, 3970.
- [11] T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925.