Electronic Supplementary Information:

Assembled 3D Electrocatalysts for Efficient Hydrogen Evolution:

WSe₂ Layers Anchored on Graphene Sheets

Zhengqing Liu, Hongyang Zhao, Na Li, Yi Zhang, Xinyu Zhang and Yaping Du*

Contents
Fig. S1
Fig. S2
Fig. S3
Fig. S4
Fig. S5
Fig. S6
Fig. S7
Table S1

Fig.S1 (a) SEM and (b) TEM image of GO nanosheets fabricated by the modified Hummers method.

Fig. S2 (a) The SEM image of WSe₂ layers. (b) TEM image of WSe₂/rGO hybrid with no free WSe₂ can be observed. (c) Energy-dispersive X-ray analysis (EDS) spectrum of WSe₂ layers, the atomic ratio of W/Se = 1:2 The Au signals come from the WSe₂ sample treated by gold spraying to improve its electrical conductivity.

Fig. S3 TEM images of the WSe₂ products obtained from the reaction of 0.2 mmol $(NH_4)_2WO_4$ and 0.6 mmol Se in different surfactant composition (OM/OA) at 280 °C for 1 h: (a) OM (10 mmol)/OA (10 mmol) = 1/1, (b) pure OA (20 mmol). (c) XRD patterns of the (a) and (b) products, indicating the WO₃ is present in as-harvested WSe₂ products. Where, WSe₂ space group: P63/mmc, a = b = 0.329 nm, c = 1.298 nm, JCPDS: 38-1388; WO₃ space group: P6/mmm, a = b = 7.298, c = 3.899 nm, JCPDS: 33-1387.

Fig. S4 (a) TEM image of the WSe₂ products obtained from the reaction of 0.2 mmol $(NH_4)_2WO_4$ and 0.4 mmol Se in pure OM at 280 °C for 1 h. (b) Magnified TEM image of the selected area showing in (a).

Fig. S5 Polarization curves recorded on glassy carbon electrodes with catalysts of (a) pure WSe₂ layers, WSe₂+rGO (0.2 mmol WSe₂ layers physically mixed with 20 mg rGO) and WSe₂/rGO hybrid, and (b) different content of rGO in WSe₂/rGO hybrid. The loading concentration is 0.285 mg cm⁻², potential scan rate is 2 mV s⁻¹, and electrode rotating rate is 1600 rpm.

Fig. S6 XPS spectra of (a) W and (b) Se after 48 h continuous HER process, showing no obvious change of the chemical states, demonstrating the superior stability of the 3D WSe₂/rGO hybrid.

Fig. S7 Durability tests by continuous HER recorded on WSe₂-modified CFP electrode at a static overpotential of -0.7 V vs SCE. The catalysts were deposited on CFP with loading of 1 mg cm⁻². All the measurements were performed in N₂ saturated 0.5 M H₂SO₄ electrolyte. The WSe₂ layers catalyst exhibited fluctuation in HER activity, indicating the inferior stability of WSe₂ layers than the WSe₂/rGO hybrid catalyst.

Fig. S8 The equivalent circuit used for data fitting, where Rs is the solution (uncompensated) resistance, CPE is the electrode double-layer capacitance and Rct is the charge-transfer resistance.

Catalysts	Production Method	Onset Potential (mV vs. RHE)	Overpotential (mV vs. RHE) at 10 mA cm ⁻²	Tafel Slope (mV/dec)	Ref.
WSe ₂ /rGO hybrid	Solvothermal	-100	180	64	Present Work
WSe ₂ nanotube on carbon fiber paper	Selenylation	-	350	99	S1
Vertically WSe ₂ Aligned Layers on carbon fiber paper	CVD	-	300	77.4	S2
2D WSe ₂ sheets	Chemical exfoliation	-130	800	120	S 3
WSe ₂ sheets on W foils	Chemical-vapor transport (CVT)	-300	350	-	S4
3D dendritic WSe ₂ on carbon nanofiber	CVD method	-150	228	80	85

Table S1 Comparison the present obtained WSe₂/rGO hybrid and other previously reported WSe₂-based catalysts for HER performance.

References

- S1 K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang, Z. Cheng, M. Safdar and J. He, ACS Nano, 2014, 8, 8468.
- S2 H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu and Y. Cui, *Nano Lett.*, 2013, 13, 3426.
- S3 A. Y. S. Eng, A. Ambrosi, Z. Sofer, P. Simek and M. Pumera, *ACS Nano*, 2014, **8**, 12185.
- S4 J. M. Velazquez, F. H. Saadi, A. P. Pieterick, J. M. Spurgeon, M. P. Soriaga, B. S. Brunschwig and N. S. Lewis, *J. Electroanal. Chem.*, 2014, **716**, 45.
- S5 M. L. Zou, J. F. Zhang, H. Zhu, M. L. Du, Q. F. Wang, M. Zhang and X. W. Zhang, J. Mater. Chem. A, 2015, 3, 12149.