Supporting Information for:

Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation

Hyuck Jin Lee,^{a,b} Richard A. Kerr,^b Kyle Korshavn,^b Jeeyeon Lee,^a Juhye Kang,^a Ayyalusamy Ramamoorthy,^{b,c,*} Brandon T. Ruotolo,^{b,*} and Mi Hee Lim^{a,*}

^a Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

^b Department of Chemistry and ^cBiophysics, University of Michigan, Ann Arbor, Michigan 48109, United States

* To whom correspondence should be addressed: <u>mhlim@unist.ac.kr</u>, <u>bruotolo@umich.edu</u>, and <u>ramamoor@umich.edu</u>.

List of Figures and Tables

Fig. S1	Interaction of quercetin, galagin or luteolin with ¹⁵ N-labeled A β_{40} , monitored by 2D-SOFAST-HMQC NMR.
Fig. S2	Mass spectrometric analysis of luteolin- and quercetin-bound $A\beta_{40}$ monomers in both the absence and presence of Cu(II).
Fig. S3	Mass spectrometric analysis of flavonoid-bound $A\beta_{40}$ dimers.
Table S1	$K_{\rm d}$ analysis of flavonoid-bound A β_{40} in the absence of Cu(II).
Table S2	Collision cross section data of all extracted ion mobility arrival times for the observed 4 ⁺ monomer species.

Fig. S1 Interaction of quercetin, galangin or luteolin with ¹⁵N-labeled A β_{40} , monitored by 2D-SOFAST-HMQC NMR. Spectra were recorded as (a) quercetin, (b) galangin, or (c) luteolin was titrated into a solution of ¹⁵N-labeled A β_{40} from 0 (red spectra) and 10 (blue spectra) equiv of flavonoids. Conditions: $[A\beta_{40}] = 80 \ \mu\text{M}$; [flavonoids] = 0-800 \ \mu\text{M}; 20 mM PO₄, pH 7.4, 50 mM NaCl; 7% D₂O (v/v); 10 °C.

Fig. S2 Mass spectrometric analysis of luteolin- and quercetin-bound $A\beta_{40}$ monomers in both the absence and presence of Cu(II). Whilst small molecules are expected to be observed in complex with both the 3⁺ and 4⁺ peptide species,^{1,2} luteolin and quercetin are shown to bind to only the 3⁺ peptide in the absence of Cu(II).^{1,2} 4⁺ species binding is indicated in the samples containing a source of Cu(II). Such differences may be explained by poor binding levels of these small molecules to A β peptides in the absence of Cu(II). The dashed lines represent the expected binding location of the noted species based on theoretical average *m/z* values.

Fig. S3 Mass spectrometric analysis of flavonoid-bound $A\beta_{40}$ dimers. Mass analysis of the dimeric metal free $A\beta_{40}$ (5⁺) in the presence of each the natural products support that whilst quercetin and luteolin are capable of binding the monomeric species, morin binds to the peptide *via* a site comprised of a surface only present in oligomeric A β . The dashed lines represent the expected binding location of the noted species based on theoretical average *m*/*z* values.

	Dissociatio	ciation Constant (µM)	
[Aβ₄₀][Luteolin]	9128.58	+/- 6526.54	
[Aβ₄₀]₂[Luteolin]	429.99	+/- 127.48	
[Aβ₄₀]₂[Morin]	360.17	+/- 146.57	
[Aβ₄₀][Quercetin]	8755.75	+/- 1368.39	
[Aβ₄₀]₂[Quercetin]	558.97	+/- 298.35	
[Aβ₄₀]₂[Quercetin]₂	385.71	+/- 195.13	

Table S1 K_d analysis of flavonoid-bound A β_{40} in the absence of Cu(II).

 $[A\beta_{40}]_2[Quercetin]_2 \qquad 385.71 + - 195.13$ Values were calculated using previously published methods.^{3,4} Conditions: $[A\beta] = 20 \ \mu M$; $[Cu(II)] = 20 \ \mu M$; [compound] = 120 \ \mu M. Errors shown represent single standard deviations.

	Conformational Species (Å ²)			
	1	2	3	
[Aβ ₄₀]	667.33 +/- 29.05	726.42* +/- 29.05	-	
[Aβ₄₀][Cu]	669.80* +/- 27.44	735.95 +/- 27.59	801.50 +/- 31.17	
[Aβ₄₀][Morin][Cu]	692.08* +/- 30.12	751.54 +/- 26.67	-	
[Aβ₄₀][Morin]₂[Cu]₂	693.51* +/- 27.15	770.23 +/- 28.03	811.85 +/- 30.47	
[Aβ₄₀][Quercetin][Cu]	675.98* +/- 31.07	768.68 +/- 29.96	812.63 +/- 27.66	
[Aβ₄₀][Quercetin][Cu]₂	681.41* +/- 32.82	745.36 +/- 29.33	779.71 +/- 34.79	

Table S2 Collision cross section data of all extracted ion mobility arrival times for the observed 4⁺ monomer species.

Collision Cross Section values calculated for 4^+ morin- and quercetin-bound A β_{40} species arrival times extracted from the full width half maximum (FWHM). Errors represent least square analysis encapsulating inherent calibrant error from drift tube measurements (3%),⁵ calibration curve error, and two times the replicate standard deviation error. The dominant conformational species for each extracted data set is denoted with the suffix *.

References

- S.-J. Hyung, A. S. DeToma, J. R. Brender, S. Lee, S. Vivekanandan, A. Kochi, J.-S. Choi, A. Ramamoorthy, B. T. Ruotolo and M. H. Lim, *Proc. Natl. Acad. Sci. U. S. A.*, 2013, **110**, 3743.
- 2 M. W. Beck, S. B. Oh, R. A. Kerr, H. J. Lee, S. H. Kim, S. Kim, M. Jang, B. T. Ruotolo, J. Y. Lee and M. H. Lim, *Chem. Sci.*, 2015, **6**, 1879.
- 3 M. T. Soper, A. S. DeToma, S.-J. Hyung, M. H. Lim and B. T. Ruotolo, *Phys. Chem. Chem. Phys.*, 2013, **15**, 8952.
- 4 W. Wang, E. N. Kitova and J. S. Klassen, *Anal. Chem.*, 2003, **75**, 4945.
- 5 M. F. Bush, Z. Hall, K. Giles, J. Hoyes, C. V. Robinson and B. T. Ruotolo, *Anal. Chem.*, 2010, **82**, 9557.