Year	Events	Reference
1877	The term "enzyme" was coined by Wilhelm Kuhne.	
1926	The enzyme urease was crystallized and determined to be a protein by James B. Sumner.	1, 2
1946	James B. Sumner won Nobel Prize in Chemistry "for his discovery that enzymes can be crystallized".	
1965	Cyclodextrin inclusion compounds were used to imitate enzymes.	3, 4
1967-1968	The idea of an RNA molecule with enzymatic properties was proposed by Carl R. Woese, Francis H. C. Crick and Leslie E. Orgel.	5-7
1970	The term "artificial enzyme" was coined by Ronald Breslow.	8
1971	Polymer with enzyme-like activity (synzyme) was reported by Irving M. Klotz.	9
1972	Molecularly imprinted polymers were invented by Günter Wulff and Irving M. Klotz.	10, 11
1982	The term "ribozyme" was coined by Thomas R. Cech.	12
1982-1983	The ribozymes were discovered by Sidney Altman and Thomas R. Cech.	12, 13
1986	Catalytic antibodies were invented by Peter G. Schultz and Richard A. Lerner.	14, 15
1989	Sidney Altman and Thomas R. Cech won Nobel Prize in Chemistry "for their discovery of catalytic properties of RNA".	
1992	The first artificial RNAzyme was selected.	16
1993	DNA cleavage induced by fullerene derivatives.	17
1994	The first DNAzyme was selected.	18
1996-1997	Fullerene derivatives as superoxide dismutase (SOD) mimic.	19, 20
2004	Nano gold as RNase mimic. The term "nanozyme" was coined.	21
2004	Nano gold as oxidase mimic	22
2005	Nano ceria as SOD mimic.	23
2007-2008	Ferromagnetic nanoparticles as peroxidise mimic.	24, 25
2009-2010	Nano ceria as catalase and oxidase mimic.	26
2011	Nano V_2O_5 as haloperoxidase mimic	27
2012	Nano magnetoferritin as peroxidase mimic for tumor targeting.	28
2012	Hemin-graphene as NO synthase mimic.	29
2014	Integrated nanozymes for living organisms.	30
2014	Metal organic framework as protease mimic.	31
2014	Nano V_2O_5 as GSH-peroxidase mimic.	32
2014	Nano MoO_3 as sulfite oxidase mimic.	33

Table S1. Timeline for the develop	ment of natural and artific	al enzymes.
------------------------------------	-----------------------------	-------------

2015	Allosteric regulation of nano gold-based nanozyme.	34
2015	Nanozyme strip for Ebola virus detection.	35

Note:

The protein crystal image was adopted with permission from reference 2. Copyright (1926) American Society for Biochemistry and Molecular Biology.

The cyclodextrin inclusion complex was adopted with permission from reference 4. Copyright (1965) American Chemical Society.

The ribozyme structure was adopted with permission from reference 36. Copyright (2009) American Chemical Society.

The fullerene derivative was adopted with permission from reference 20. Copyright (1997) National Academy of Sciences of the United States of America.

The nano magnetoferritin was adopted with permission from reference 28. Copyright (2012) Nature Publishing Group.

The allosteric regulation of nano gold-based nanozyme was adopted with permission from reference 37. Copyright (2015) Nature Publishing Group.

The nanozyme strip was adopted with permission from reference 35. Copyright (2015) Elsevier.

Nanozymes	Meth	Linear range	LOD	Comments	Ref
Fe ₃ O ₄ MNPs	Color.	5-100 μM	3 μΜ	Substrate: ABTS	25
Fe ₃ O ₄ MNPs	Color.	0.5-150.0 μM	0.25 μM	Substrate: DPD	38
				H_2O_2 in rainwater, honey, and milk was tested.	
Fe ₃ O ₄ MNPs	Color.	1-100 µM	0.5 µM	Substrate: TMB	39
				Fe ₃ O ₄ was encapsulated in mesoporous silica.	
Fe ₃ O ₄ graphene oxide composites	Color.	1-50 μΜ	0.32 μM	Substrate: TMB	40
Fe-substituted SBA- 15 microparticles	Color.	0.4-15 μΜ	0.2 µM	Substrate: TMB	41
Iron phosphate microflowers	Color.	10-50 μM	10 nM	Substrate: TMB	
[Fe ^{III} (biuret-amide)] on mesoporous silica	Color.	0.1-5 mM	10 µM	Substrate: TMB	43
FeTe nanorods	Color.	0.1-5 μM	55 nM	Substrate: ABTS	
Fe(III)-based coordination polymer	Color.	1-50 μM	0.4 µM	Substrate: TMB	45
Fe ₃ O ₄	Color.	5-80 µM	1.07 µM	Substrate: TMB	46
nanocomposites				Fe ₃ O ₄ was functionalized by H ₂ TCPP.	
Fe ₃ O ₄	Color.	0.5-200 μM	0.2 µM	Substrate: TMB	47
nanocomposites				Fe ₃ O ₄ was functionalized by Casein.	
GOx/Fe ₃ O ₄ /GO magnetic nanocomposites	Color.	0.1-10 μM	0.04 μΜ	M Substrate: DPD	
Fe ₃ H ₉ (PO ₄) ₆ 6H ₂ O crystals	Color.	57.4-525.8 μM	1 μM	Substrate: TMB	49
MIL-53(Fe)	Color.	0.95-19 μM	0.13 µM Substrate: TMB		50
				MIL-53(Fe) is a metal-organic framework.	
CuO NPs	Color.	0.01-1mM	N/A	Substrate: 4-AAP and phenol	51
AuNPs	Color.	18-1100 μM	4 μΜ	Substrate: TMB	52
				Cysteamine was the ligand for AuNPs.	
AuNC@BSA	Color.	0.5-20 μM	20 nM	Substrate: TMB	53
Au@Pt core/shell nanorods	Color.	45-1000 μΜ	45 μΜ	Substrate: OPD	54
NiTe thorny nanowires	Color.	0.1-0.5 μΜ	25 nM	Substrate: ABTS	55
Graphene oxide	Color.	0.05-100 μM	50 nM	Substrate: TMB	56
Hemin-graphene hybrid nanosheets	Color.	0.05-500 μΜ	20 nM	Substrate: TMB	57
Carbon nanodots	Color.	1-100 µM	0.2 µM	Substrate: TMB	58
Carbon nitride dots	Color.	1-100 µM	0.4 µM	Substrate: TMB	59
Tungsten carbide nanorods	Color.	0.2-80 μΜ	60 nM	Substrate: TMB	60
CoFe LDH nanoplates	Color.	1-20 μM	0.4 µM	Substrate: TMB	61
Co _x Fe _{3-x} O ₄ nanocubes	Color.	1-60 μM	0.36 µM	Substrate: TMB	62
Porphyrin functionalized Co ₃ O ₄ nanostructures	Color.	1-75 μΜ	0.4 μM	Substrate: TMB	63

Table S2. H_2O_2 detection with peroxidase mimics.

Carboxyl functionalized mesoporous polymer	Color.	1-8 μM	0.4 μΜ	Substrate: TMB	
PtPd nanodendrites on graphene	Color.	0.5-150 μΜ	0.1 μΜ	Substrate: TMB	65
Pt-DNA complexes	Color.	0.979-17.6 mM	0.392 mM	Substrate: TMB 3.92 μM was detected with PVDF membrane.	66
MnSe NPs	Color.	0.17-10 μM	0.085 µM	Substrate: TMB	67
Prussian blue nanoparticles	Color.	0.05-50 μΜ	0.031 µM	Substrate: ABTS	68
MWCNTs-Prussian blue nanoparticles	Color.	Ior. I μM -1.5 mM 100 nM Substrate: TMB Carbon nanotubes were filled with Prussian blue nanoparticles.		Substrate: TMB Carbon nanotubes were filled with Prussian blue nanoparticles.	69
Polypyrrole nanoparticles	Color.	5-100 μM		Substrate: TMB PPy has been used to quantitatively monitor macrophages-generated H ₂ O ₂ .	70
Polyoxometalate	Color.	1-20 μM	0.4 µM	Substrate: TMB	71
Polyoxometalate	Color.	0.134-67 μM	0.134 μM	Substrate: TMB	72
Fe ₃ O ₄ MNPs	Fluor.	10-200 nM	5.8 nM	Substrate: Rhodamine B Fluorescence of Rhodamine B was quenched.	73
BiFeO ₃ NPs	Fluor.	20 nM-20 μM	4.5 nM	Substrate: BA Oxidation of BA gave fluorescence. H ₂ O ₂ in rainwater was tested.	74
Fe ₃ O ₄ MNPs	Fluor.	0.18-900 μM	0.18 µM	Fluorescence of CdTe QD was quenched.	75
Fe ₃ O ₄ MNPs	Fluor.	0.04-8 μM	0.008 μΜ	Substrate: BA Oxidation of BA gave fluorescence.	76
CuO NPs	Fluor.	5-200 μM 0.34 μM Substrate: terephthalic acid Terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product		77	
Fe ^{III} -TAML	CL	0.06-1 μM	0.05 µM		78
CoFe ₂ O ₄ NPs	CL	0.1-4 μM	0.02 µM	CoFe ₂ O ₄ NPs form complexes with beta-CD.	79
CoFe ₂ O ₄ NPs	CL	0.1-10 μM	10 nM	H_2O_2 in natural water was tested.	
CoFe ₂ O ₄ NPs with chitosan coating	CL	1 nM-4 μM	0.5 nM	$CoFe_2O_4$ NPs was coated with chitosan. H_2O_2 in natural water was tested.	81
Fe ₃ O ₄ MNPs	E-chem	4.2-800 μM	1.4 µM		82
Fe ₃ O ₄ microspheres- AgNP hybrids	E-chem	1.2-3500 μM	1.2 μM	H ₂ O ₂ in disinfected FBS samples was tested.	83
Fe ₃ O ₄ MNPs	E-chem	0-16 nM	1.6 nM	Fe ₃ O ₄ was loaded on CNT.	84
Fe ₃ O ₄ MNPs	E-chem	1-10 mM	N/A	Fe ₃ O ₄ was entrapped in mesoporous carbon foam, and the composite was used to construc a carbon paste electrode. Not a linear response.	
Fe ₃ O ₄ MNPs	E-chem	20-6250 μM	2.5 μΜ	Fe_3O_4 MNPs and PDDA-graphene formed multilayer via layer-by-layer assembly. H_2O_2 in toothpaste was tested.	86
Fe ₃ O ₄ nanofilms on TiN substrate	E-chem	1-700 μM	1 μΜ	H ₂ O ₂ in Walgreens antiseptic/oral debriding agent, Crest whitening mouthwash solution, Diet coke, and Gatorade was tested.	87
Fe ₃ O ₄ MNPs	E-chem	0.2 mM-2 mM	0.01 mM		88
Fe ₃ O ₄ MNPs	E-chem	0.1-6 mM	3.2 µM	Fe ₃ O ₄ was on reduced graphene oxide.	89
Fe ₂ O ₃ NPs	E-chem	20-140 µM	11 µM		90

Fe ₂ O ₃ NPs	E-chem	20-300 μM	7 μΜ	Fe ₂ O ₃ was modified with Prussian blue.	90
Iron oxide NPs/CNT	E-chem	0.099-6.54 mM	53.6 µM		91
Fe ₃ O ₄ /self-reduced graphene nanocomposites	E-chem	0.001-20 mM	0.17 μΜ	CdTe QDs stimulated extracellular H_2O_2 release from HeLa cells was detected.	92
FeS nano-sheet	E-chem	0.5-150 μM	92 nM		93
FeS needle	E-chem	5-140 μM	4.3 μM		94
FeSe NPs	E-chem	5-100 μM	3.0 µM		94
FeS	E-chem	10-130 μM	4.03 µM		95
Co ₃ O ₄ NPs	E-chem	0.05-25 mM	0.01 mM		96
Hemin-graphene hybrid nanosheets	E-chem	0.5-400 μΜ	0.2 μM		57
LDH-hemin nanocomposite	E-chem	1-240 μM	0.3 μM		97
Helical CNT	E-chem	0.5-115 μM	0.12 µM		98
LDH nanoflakes	E-chem	12-254 μM	2.3 μM		99
Calcined LDH	E-chem	1-100 µM	0.5 μM		100
CdS	E-chem	1-1900 μM	0.28 µM		101

Nanozymes	Meth	Linear range	LOD	Comments	Ref
Glucose					
Fe ₃ O ₄ MNPs	Color.	50-1000 μM	30 µM	Substrate: ABTS Selectivity against sugars: fructose, lactose, and maltose.	25
Fe ₃ O ₄ MNPs with PDDA coating	Color.	39-100 μM	30 µM	Substrate: ABTS GOx was electrostatically assembled onto the Fe_3O_4 @PDDA. Glucose in serum samples was tested. Compared with glucometer. Selectivity against sugars: galactose, lactose, mannose, maltose, arabinose, cellobiose, raffinose, and xylose.	
Fe ₃ O ₄ MNPs	Color.	30-1000 μM	3 μΜ	Substrate: TMB Fe_3O_4 was encapsulated in mesoporous silica with GOx. Showing the recycle capability. Comparison between free MNPs vs encapsulated MNPs.	39
Fe ₃ O ₄ /GO composites	Color.	2-200 μΜ	0.74 μM	Substrate: TMB Glucose in urine was tested.	40
Fe ₃ O ₄ nanocomposites	Color.	5-25 μM	2.21 μM	Substrate: TMB Fe_3O_4 was functionalized by H_2TCPP .	46
Fe ₃ O ₄ and GOx nanocomposites	Color.	3-1000 μM	1.0 μM	Substrate: TMB Fe ₃ O ₄ was functionalized by Casein.	47
GOx/Fe ₃ O ₄ /GO magnetic nanocomposite	Color.	0.5-600 μΜ	0.2 μΜ	Substrate: DPD	
γ -Fe ₂ O ₃ nanoparticles	Color.	1-80 µM	0.21 μM	Substrate: TMB Glucose in blood and urine was tested.	103
Graphite-like carbon nitrides	Color.	5-100 μM	0.1 µM	Substrate: TMB Glucose in serum was tested.	104
Iron oxide NPs	Color.	31.2-250 μM	8.5 μΜ	Substrate: ABTS Iron oxide NPs was coated with glycine. More robust than HRP towards NaN ₃ inhibition	
Iron oxide NPs	Color.	31.2-250 μM	15.8 μΜ	M Substrate: ABTS Iron oxide NPs was coated with heparin. More robust than HRP towards NaN ₃ inhibition.	
Iron oxide NPs	Color.	0.12-4 μM	0.5 μΜ	Substrate: ABTS Iron oxide NPs was coated with APTES and MPTES	106
ZnFe ₂ O ₄	Color.	1.25-18.75 μM	0.3 μM	Substrate: TMB Glucose in urine was tested.	107
[Fe ^{III} (biuret-amide)] on mesoporous silica	Color.	20-300 μM	10 µM	Substrate: TMB Glucose in mice blood plasma was tested.	43
FeTe nanorods	Color.	1-100 μM	0.38 μM	Substrate: ABTS Glucose in spiked blood was tested.	44
Fe(III)-based coordination polymer	Color.	2-20 μM	1 μM	Substrate: TMB Glucose in serum was tested.	45
Mesoporous Fe ₂ O ₃ - graphene nanostructures	Color.	0.5-10 µM	0.5 μM	Substrate: TMB Glucose in serum was tested.	108
CuO NPs	Color.	0.1-8 mM	N/A	Substrate: 4-AAP and phenol	51
V ₂ O ₅ nanowires and gold nanoparticles	Color.	0-10 μΜ	0.5 μM	Substrate: ABTS	109

 Table S3. Targets detection combining oxidases and peroxidase mimics.

nanocomposite		1			1
AuNPs	Color.	2.0-200 µM	0.5 uM	Substrate: TMB	52
		P	one parts	Cysteamine was the ligand for AuNPs.	
Au@Pt core/shell	Color.	45-400 μM	45 μM	Substrate: OPD	54
nanorods		•			
NiTe thorny	Color.	1-50 µM	0.42 µM	Substrate: ABTS	
nanowires					
MnSe NPs	Color.	8-50 μM	1.6 µM	Substrate: TMB	67
Graphene oxide	Color.	1-20 μM	1 μM	Substrate: TMB	56
				Glucose in blood and fruit juice was tested.	
Graphene oxide	Color.	2.5-5 mM	0.5 μM	Substrate: TMB	110
				Graphene oxide was functionalized by	
TT ' 1	0.1	0.05.500 M	20.14	chitosan.	57
Hemin-graphene	Color.	0.05-500 μM	30 nM	Substrate: IMB	57
Carbon nanodots	Color	1_500 µM	1 uM	Substrate: TMB	58
Carbon nanodots	C0101.	1-500 µlvi	1 μινι	Glucose in serum was tested	50
Carbon nitride dots	Color.	1-5 µM	0.5 µM	Substrate: TMB	59
MWCNTs-Prussian	Color.	1 uM - 1 mM	200 nM	Substrate: TMB	69
blue nanoparticles	001011	1 part 1 min	200 1111	Carbon nanotubes were filled with Prussian	0,
1				blue nanoparticles.	
CoFe LDH	Color.	1-10 mM	0.6 µM	Substrate: TMB	61
nanoplates			-		
Co _x Fe _{3-x} O ₄	Color.	8-90 μM	2.47 μM	Substrate: TMB	62
nanocubes					
MoS ₂ nanosheets	Color.	5-150 μM	1.2 μM	Substrate: TMB	111
				Glucose in serum was tested.	
WS_2 nanosheets	Color.	5-300 μM	2.9 µM	Substrate: TMB	112
				Glucose in serum of health persons and	
Prussian blue	Color	0.1.50 uM	0.03 µM	Substrate: ABTS	
nanoparticles	C0101.	0.1-50 µivi	0.05 µivi	Substrate: AB15	
Fe ₃ O ₄ MNPs	Fluor.	1.6-160 uM	1.0 µM	Fluorescence of CdTe OD was quenched.	75
				Glucose in serum was tested.	
Fe ₃ O ₄ MNPs	Fluor.	0.05-10 μM	0.025 μM	Substrate: benzoic acid	76
				Glucose in serum was tested. μΜ Substrate: benzoic acid Oxidation of BA gave fluorescence.	
				Glucose in serum was tested.	
Fe ₃ O ₄ MNPs with	Fluor.	3-9 μM	3 μΜ	GOx was electrostatically assembled onto the	113
PDDA coating				Fe ₃ O ₄ @PDDA.	
				Oxidation of AU gave fluorescence.	
				Glucose in serum was tested.	
				cellobiose galactose lactose maltose	
				raffinose, and xylose,	
BiFeO ₃ NPs	Fluor.	1-100 µM	0.5 µM	Oxidation of BA gave fluorescence.	74
				Glucose in serum was tested.	
CoFe ₂ O ₄ NPs	CL	0.1-10 μM	0.024 µM	Other sugars	80
CoFe ₂ O ₄ NPs	CL	0.05-10 μM	10 nM	$CoFe_2O_4$ NPs were coated with chitosan.	81
				Glucose in serum was tested.	
Hemin-graphene	E-chem	0.5-400 μM	0.3 µM		57
hybrid nanosheets					
Fe ₃ O ₄ MNPs	E-chem	0.5-10 mM	0.2 mM	Fe_3O_4 was encapsulated in mesoporous carbon	85
				with GOx, and the composite was used to	
				Comparison between fine MNDs via	
				encapsulated MNPs	
FeaO, MNPs	E-chem	6-2200 µM	6 uM	Glucose in serum was tested	114
10304111115	E chem	0 2200 µm	ο μινι	Compared with clinical analyzer.	
				Nafion for high selectivity against AA, UA,	
				sucrose, and lactose.	

Fe ₃ O ₄ -enzyme-	E-chem	0.5 µM-34 mM	0.3 µM	Glucose in serum was tested.	115
polypyrrole					
nanoparticles					
Ascorbic acid	1				
MIL-53(Fe)	Color.	28.6-190.5 μM	15 μM	Substrate: TMB	50
				MIL-53(Fe) is a metal-organic framework.	
Dopamine		I.			
Co _x Fe _{3-x} O ₄	Color.	0.6-8 μM	0.13 μM	Substrate: TMB	116
nanoparticles			-	Dopamine in serum was tested.	
Thrombin					
Ag/Pt bimetallic	Color.	1-50 nM	2.6 nM	Ag/Pt bimetallic nanoclusters was produced	117
nanoclusters				through a DNA-templated method.	
Glutathione	1				
Fe-MIL-88NH ₂ MOF	Color.	1-100 μM	0.45 µM	Substrate: TMB	118
Cysteine	1		I		
Fe-MIL-88NH ₂ MOF	Color.	1-80 μM	0.39 µM	Substrate: TMB	118
Homocysteine	1		I		
Fe-MIL-88NH2	Color.	1-80 μM	0.40 µM	Substrate: TMB	118
MOF					
Choline		20.100.14	20.14		110
Fe ₃ O ₄	Fluor.	20-100 μM	20 µM	Choline oxidase was electrostatically	113
MNPs with PDDA				assembled onto the Fe_3O_4 @PDDA.	
Coating	Eaham	1 mM 10 mM	0.1 mM	Utiliation of AU gave fluorescence.	110
re_3O_4 winps	E-chem	1 mwi-10 mwi	0.1 mvi	re ₃ O ₄ and choime oxidase were miniophized	119
		(10g)		Selectivity against $\Delta \Delta$ and $U\Delta$	
Platinum	Color	6-400 µM	2.5 uM	Substrate: N-ethyl-N-(3-sulfopropyl)-3-	120
nanonarticles	C0101.	0-400 µivi	2.5 µW	methylaniline sodium salt and 4-amino-	120
nanoparticies				antipyrine	
Acetylcholine			I	unupyine	
Fe ₂ O ₄	Color.	100 nM-10 mM	39 nM	Substrate: TMB	121
nanospheres/reduced					
graphene oxide					
Platinum	Color.	10-200 μM	2.84 μM	Substrate: N-ethyl-N-(3-sulfopropyl)-3-	120
nanoparticles				methylaniline sodium salt and 4-amino-	
				antipyrine	
Glutathione					
Carbon nanodots	Color.	0-7 μM	0.3 µM	Substrate: TMB	122
Cholesterol	1				
Fe ₃ O ₄ MNPs	Color.	10-250 μM	5 μΜ	Substrate: TMB	39
				Fe ₃ O ₄ was encapsulated in mesoporous silica	
				with cholesterol oxidase.	
				Showing the recycle capability.	
				Comparison between free MINPs vs	
A @ D4	Calar	20.200M	20M	Substrates OPD	54
nanorode	Color.	50-500 µM	50 µM	Substrate: OPD	54
Galactose					
FerO, MNPs	Color	10-200 mg/I	5 mg/I	Substrate: ABTS	123
10304 10101 5	C0101.	10-200 mg/L	J mg/L	Galactose in dried blood samples from normal	125
				persons and patients was tested	
				Plates were used for sensing.	
Fe ₃ O ₄ MNPs with	Fluor.	2-80 µM	2 µM	Galactose oxidase was electrostatically	113
PDDA coating				assembled onto the Fe_3O_4 @PDDA.	
				Oxidation of AU gave fluorescence.	
Melamine	•		•		-
Bare gold	Color.	1-800 nM	0.2 nM	Substrate: TMB	124
nanoparticles					
Kanamycin					
Gold nanoparticles	Color.	1-100 nM	1.49 nM	Substrate: TMB	125

				Gold nanoparticles were modified by kanamycin antamer	
Xanthine					
AuNC@BSA	Color.	1-200 μM	0.5 μΜ	Substrate: TMB Xanthine in serum and urine samples was tested.	53
Mercury(II)					
Ag nanoparticles	Color.	0.5-800 nM	0.125 nm	Substrate: TMB Mercury(II) in blood and wastewater was tested.	126
Carbon nanodots	Color.	0-0.46 µM	23 nM	Substrate: TMB	127
Platinum nanoparticle	Color.	0.01-4 nM	8.5 pM	Substrate: TMB	128
Calcium ion					
Co ₃ O ₄ Nanomaterials	E-chem	0.1-1 mM	4 µM	The calcium ion in a milk sample was tested.	129

Fe3O4 NPs with dextran coatingpreS1antigen-down immunoassay24TnIcapture-detection sandwich immunoassay130Fe3O4 NPs with chitosan coatingmouse IgGantigen-down immunoassay130Fe2O3 NPs with chitosan coatingCEAcapture-detection sandwich immunoassay130Fe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Feric nano-core residing in ferritinavidin nitrated human ceruloplasminantigen-down immunoassayavidin-biotin interaction asadwich immunoassay132Fe(1-x)Mn_xFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayavidin-biotin interaction132Fe-TAMLsticholysin II antigen-down immunoassayantigen-down immunoassay134134Co ₃ O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassay136Platinum nanoparticlescytokeratin 19 fragmentsantigen-down immunoassay137Platinum nanoparticles onfolate receptors fragmentsantigen-down immunoassay137
coatingTnIcapture-detection sandwich immunoassayImmunoassayFe3O4 NPs with chitosan coatingmouse IgGantigen-down immunoassay130CEAcapture-detection sandwich immunoassayImmunoassay130Fe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Feric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Fec(1-x)MnxFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin IIantigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles136Co3O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayI37Platinum nanoparticlescytokeratin 19 fragmentssandwich immunoassay137
Fe3O4 NPs with chitosan coatingmouse IgGantigen-down immunoassay130Fe3O4 NPs with chitosan coatingCEAcapture-detection sandwich immunoassay130CEAsandwich immunoassaycetaFe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Fe(1-xyMn_xFe2O4 NPs with ceruloplasminmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin IIantigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassayfe-TAML was encapsulated inside mesoporous silica nanoparticles.136Co ₃ O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayfe-TAML was encapsulated inside mesoporous silica nanoparticles.136Platinum nanoparticlescytokeratin 19 fragmentssandwich immunoassayfe-TAML137Platinum nanoparticles onfolate receptors fragmentsantigen-down immunoassayfe-TAMLPlatinum nanoparticlesfolate receptors fragmentsantigen-down immunoassayfe-TAMLPlatinum nanoparticlesfolate receptors fragmentsantigen-down immunoassayfe-TAML
Fe304 NPs with chitosan coatingmouse IgGantigen-down immunoassay130CEAcapture-detection sandwich immunoassay131Fe203 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassay antigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassay antigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassay asndwich immunoassayboth direct and indirect assay133MnFe204 NPs with ciric acid coatingsticholysin II antigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassay antigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.136Co ₃ O ₄ nanoparticlesvascular endothelial growth factorantigen-down immunoassayIafPlatinum nanoparticles onfoldte receptors fragmentsantigen-down immunoassay137
coatingCEAcapture-detection sandwich immunoassayImmunoassayFe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassayboth direct and indirect assay133Fe(1.syMn_xFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassay antigen-down immunoassayboth direct and indirect assay133Fe-1AMLsticholysin II human IgGantigen-down immunoassay antigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co ₃ O ₄ nanoparticlesvascular endothelial growth factorantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.136Platinum nanoparticles onfolter receptors fragmentsantigen-down immunoassay137Platinum nanoparticles onfolter receptors folter receptorsantigen-down immunoassay97
ImmunoassayImmunoassayFe2Q3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassay sandwich immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassay sandwich immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassay sandwich immunoassayboth direct and indirect assay133Fe(1.x)Mn_xFe2Q4 NPs with PMIDA coatingmouse IgGantigen-down immunoassay numerationboth direct and indirect assay134Fe-TAMLsticholysin II antigen-down immunoassayantigen-down immunoassay numerationFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co ₃ O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayIa36Platinum nanoparticles on fragmentscytokeratin 19 fragmentssandwich immunoassay137
CEAsandwich immunoassayIgGFe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Fe(1-x)Mn_xFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin IIantigen-down immunoassay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles135Co ₃ O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayI36Platinum nanoparticles on fragmentscytokeratin 19 fragmentssandwich immunoassay137Platinum nanoparticles on fragmentsfold te receptorsantigen-down immunoassay97
Fe2O3 NPs with Prussian blue coatingIgGantigen-down immunoassay131Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132Ferric nano-core residing in ferritinnitrated human ceruloplasminsandwich immunoassayavidin-biotin interaction132Fe(1-s)Mn_xFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin IIantigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co ₃ O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassay136Platinum nanoparticles oncytokeratin 19 fragmentssandwich immunoassay137Platinum nanoparticles oncytokeratin 19 fragmentsantigen-down immunoassay97
blue coatingImage: constraint of the security of the
Ferric nano-core residing in ferritinavidinantigen-down immunoassayavidin-biotin interaction132ferritinnitrated human ceruloplasminsandwich immunoassayavidin-biotin interaction132Fe (1.x)Mn_xFe_2O_4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe_2O_4 NPs with citric acid coatingsticholysin IIantigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles135Co_3O_4 nanoparticlesvascular endothelial growth factorantigen-down immunoassay136Platinum nanoparticles onfolate receptorsantigen-down immunoassay137
ferritinnitrated human ceruloplasminsandwich immunoassayboth direct and indirect assay133Fe(1-x)Mn_xFe_2O_4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe_2O_4 NPs with citric acid coatingsticholysin II antigen-down immunoassayantigen-down immunoassayboth direct and indirect assay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co_3O_4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayImmunoassay136Platinum nanoparticles oncytokeratin 19 fragmentssandwich immunoassayImmunoassay137Platinum nanoparticles onfolate receptors folate receptorsantigen-down immunoassay97
Fe (1-x)MnxFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin II antigen-down immunoassayantigen-down immunoassay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co3O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassay136Platinum nanoparticles onfolate receptors folate receptorsantigen-down immunoassay137
Fe(1-x)MnxFe2O4 NPs with PMIDA coatingmouse IgGantigen-down immunoassayboth direct and indirect assay133MnFe2O4 NPs with citric acid coatingsticholysin II human IgGantigen-down immunoassay134Fe-TAMLhuman IgGantigen-down immunoassayFe-TAML was encapsulated inside mesoporous silica nanoparticles.135Co3O4 nanoparticlesvascular endothelial growth factorantigen-down immunoassayI36Platinum nanoparticles onfolate receptors folate receptorsantigen-down immunoassay97
PMIDA coating and the second seco
MnFe2O4 NPS with citric acid coating sucholysin II antigen-down immunoassay 134 Fe-TAML human IgG antigen-down immunoassay Fe-TAML was encapsulated inside mesoporous silica nanoparticles. 135 Co ₃ O ₄ nanoparticles vascular endothelial growth factor antigen-down immunoassay Fe-TAML was encapsulated inside mesoporous silica nanoparticles. 136 Platinum nanoparticles on cytokeratin 19 fragments sandwich immunoassay 137
Actio coating human IgG antigen-down immunoassay Fe-TAML was encapsulated inside mesoporous silica nanoparticles. 135 Fe-TAML human IgG antigen-down immunoassay Fe-TAML was encapsulated inside mesoporous silica nanoparticles. 136 Co ₃ O ₄ nanoparticles vascular endothelial growth factor antigen-down immunoassay 136 Platinum nanoparticles on cytokeratin 19 fragments sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
Pe-TAML Inuman IgO antigen-down inimunoassay Pe-TAML was 133 encapsulated inside encapsulated inside mesoporous silica 136 Co ₃ O ₄ nanoparticles vascular antigen-down immunoassay 136 Platinum nanoparticles on cytokeratin 19 sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
Co ₃ O ₄ nanoparticles vascular endothelial growth factor antigen-down immunoassay endothelial growth factor 136 Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137
Co ₃ O ₄ nanoparticles vascular endothelial growth factor antigen-down immunoassay endothelial growth factor 136 Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137
Co ₃ O ₄ nanoparticles vascular endothelial growth factor antigen-down immunoassay 136 Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
endothelial growth factor endothelial growth factor 137 Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
growth factor growth factor Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
Platinum nanoparticles cytokeratin 19 fragments sandwich immunoassay 137 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
fragments 97 Platinum nanoparticles on folate receptors antigen-down immunoassay 97
Platinum nanoparticles on folate receptors antigen-down immunoassay 97
graphene oxide
Gold nanoparticles-respiratorysandwich immunoassayThe peroxidase-like activity138
graphene oxide hybrids syncytial virus of gold nanoparticles-
graphene oxide hybrids was
enhanced by mercury(II).
Rod-shaped Au@PtCu human IgG antigen-down immunoassay The detection limit was 90 139
pg/mL.
Au@Pt nanorods with PSS mouse IL-2 sandwich immunoassay 140
Country DCA control Clinical 1 11
Graphene Oxide PSA sandwich immunoassay Chinical samples were 141

 Table S4. Nanozyme as peroxidase mimics for immunoassay.

Catalyst	<i>K</i> _{cat}	K _m	V _{max}	Substrate	Ref
Peroxidase and it mimics			·		
Fe ₃ O ₄ NPs	$3.02 \times 10^4 \text{s}^{-1}$	0.098 mM	$3.44 \times 10^{-8} \text{ M s}^{-1}$	TMB	142
HRP	$4.00 \times 10^3 \text{ s}^{-1}$	0.434 mM	$10.00 \times 10^{-8} \text{ M s}^{-1}$	TMB	
Hemin-graphene	246 min ⁻¹	1.22 mM	N.A.	Pyrogallol	143
HRP	1750 min ⁻¹	0.81 mM	N.A.	Pyrogallol	
GO-COOH	N.A.	0.0237±0.001 mM	$(3.45\pm0.31) \times 10^{-8} \text{ M s}^{-1}$	TMB	56
HRP	N.A.	0.214±0.014 mM	$(2.46\pm0.32) \times 10^{-8} \text{ M s}^{-1}$	TMB	
Vanadia nanowires	0.065 s^{-1}	2.22 mM	0.83 mM min^{-1}	GSH	32
GPx1 enzyme	N.A.	10 mM	N.A.	GSH	
V ₂ O ₅ nanowires	$2.5 \times 10^3 \text{ s}^{-1}$	0.4 μM	0.2807 M s ⁻¹	ABTS	27
Oxidase and it mimics					
MoO ₃ -TPP nanoparticles	2.78 ± 0.09 s ⁻¹	0.59 ±0.02 mM	1.13 μM·min ⁻¹	SO ₃ ²⁻	33
native human SuOx	16 s^{-1}	0.017 mM	N.A.	SO ₃ ²⁻	
polymer-coated	N.A.	3.8 mM	0.7 μM·s ⁻¹	TMB	26a
nanoceria					

Table S5. (Comparison	of the kinetic	parameters o	of selected nanoz	ymes and p	protein enzymes
						1

Abbreviations

AA	ascorbic acid
4-AAP	4-aminoatipyrine
ABTS	2,2'-azino-di(3-ethylbenzthiazoline-6-sulfonic acid)
APTES	(3-aminopropyl)triethoxysilane
AU	amplex ultrared
BA	benzoic acid
CD	cyclodextran
CEA	carcinoembryonic antigen
CNT	carbon nanotubes
Color.	colorimetric
DPD	N,N-diethyl-p-phenylenediamine
E-chem	electrochemical
Fluor.	fluorometric
GOx	glucose oxidase
GPx1	glutathione peroxidase 1
H ₂ TCPP	5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin
HRP	horseradish peroxidase
IgG	immunoglobin G
LDH	layered double hydroxide
LOD	limit of detection
Meth	methods
MNPs	magnetic nanoparticles
MPTES	mercaptopropyltriethoxysilane
MWCNT	multi-walled carbon nanotubes
NPs	nanoparticles
OPD	o-phenylenediamine
PDDA	poly(diallyldimethylammonium chloride)
PMIDA	N-phosphonomethyl iminodiacetic acid
PSA	prostate specific antigen
PVDF	polyvinylidene difluoride
QD	quantum dot
Ref	references
SuOx	sulfite oxidase
TAML	tetraamidomacrocyclic ligand
TMB	3,3',5,5'-tetramethylbenzidine
UA	uric acid

References:

- 1. J. B. Sumner, J. Biol. Chem., 1926, 70, 97-98.
- 2. J. B. Sumner, J. Biol. Chem., 1926, 69, 435-441.
- 3. F. Cramer and W. Kampe, J. Am. Chem. Soc., 1965, 87, 1115-1120.
- 4. N. Hennrich and F. Cramer, J. Am. Chem. Soc., 1965, 87, 1121-1126.
- 5. C. R. Woese, *The Origins of the Genetic Code; Harper and Row: New York*, 1967.
- 6. F. H. C. Crick, J. Mol. Biol., 1968, **38**, 367-379.
- 7. L. E. Orgel, J. Mol. Biol., 1968, **38**, 381-393.
- 8. R. Breslow and L. E. Overman, J. Am. Chem. Soc., 1970, 92, 1075-1077.
- 9. I. M. Klotz, G. P. Royer and I. S. Scarpa, Proc. Natl. Acad. Sci. U. S. A., 1971, 68, 263-264.
- 10. G. Wulff and A. Sarhan, *Angew. Chem.-Int. Edit.*, 1972, **11**, 341-342.
- 11. Takagish.T and I. M. Klotz, *Biopolymers*, 1972, **11**, 483-491.
- 12. K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling and T. R. Cech, *Cell*, 1982, **31**, 147-157.
- 13. C. Guerriertakada, K. Gardiner, T. Marsh, N. Pace and S. Altman, *Cell*, 1983, **35**, 849-857.
- 14. S. J. Pollack, J. W. Jacobs and P. G. Schultz, *Science*, 1986, **234**, 1570-1573.
- 15. A. Tramontano, K. D. Janda and R. A. Lerner, *Science*, 1986, 234, 1566-1570.
- 16. T. Pan and O. C. Uhlenbeck, *Biochemistry*, 1992, **31**, 3887-3895.
- 17. H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki and Y. Sugiura, *J. Am. Chem. Soc.*, 1993, **115**, 7918-7919.
- 18. R. R. Breaker and G. F. Joyce, *Chem. Biol.*, 1994, **1**, 223-229.
- 19. L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T. S. Lin and D. W. Choi, *Neurobiol. Dis.*, 1996, **3**, 129-135.
- L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K. F. Shen, T. Y. Luh, D. W. Choi and T. S. Lin, *Proc. Natl. Acad. Sci. U. S. A.*, 1997, **94**, 9434-9439.
- 21. F. Manea, F. B. Houillon, L. Pasquato and P. Scrimin, Angew. Chem.-Int. Ed., 2004, 43, 6165-6169.
- 22. M. Comotti, C. Della Pina, R. Matarrese and M. Rossi, Angew. Chem.-Int. Ed., 2004, 43, 5812-5815.
- 23. R. W. Tarnuzzer, J. Colon, S. Patil and S. Seal, *Nano Lett.*, 2005, **5**, 2573-2577.
- 24. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat. Nanotech.*, 2007, **2**, 577-583.
- 25. H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250-2254.
- (a) A. Asati, S. Santra, C. Kaittanis, S. Nath and J. M. Perez, *Angew. Chem.-Int. Edit.*, 2009, 48, 2308-2312;
 (b) T. Pirmohamed, J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. S. King, S. Seal and W. T. Self, *Chem. Commun.*, 2010, 46, 2736-2738.
- 27. R. Andre, F. Natalio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H. C. Schroeder, W. E. G. Mueller and W. Tremel, *Adv. Funct. Mater.*, 2011, **21**, 501-509.
- 28. K. Fan, C. Cao, Y. Pan, D. Lu, D. Yang, J. Feng, L. Song, M. Liang and X. Yan, *Nat. Nanotechnol.*, 2012, **7**, 459-464.
- 29. T. Xue, S. Jiang, Y. Qu, Q. Su, R. Cheng, S. Dubin, C.-Y. Chiu, R. Kaner, Y. Huang and X. Duan, *Angew. Chem.-Int. Edit.*, 2012, **51**, 3822-3825.
- 30. H. J. Cheng and H. Wei, *Gordon Research Conference: Bioanalytical Sensors*, Newport, RI, USA, June 22–27, 2014.
- 31. B. Li, D. Chen, J. Wang, Z. Yan, L. Jiang, D. Duan, J. He, Z. Luo, J. Zhang and F. Yuan, *Sci. Rep.*, 2014, **4**, 6759.
- 32. A. A. Vernekar, D. Sinha, S. Srivastava, P. U. Paramasivam, P. D'Silva and G. Mugesh, *Nat. Commun.*, 2014, **5**, 5301.
- 33. R. Ragg, F. Natalio, M. N. Tahir, H. Janssen, A. Kashyap, D. Strand, S. Strand and W. Tremel, *ACS Nano*, 2014, **8**, 5182-5189.
- 34. G. Y. Tonga, Y. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y.-C. Yeh, B. Yan, S. Hou and V. M. Rotello, *Nat. Chem.*, 2015, **7**, 597-603.
- 35. D. Duan, K. Fan, D. Zhang, S. Tan, M. Liang, Y. Liu, J. Zhang, P. Zhang, W. Liu, X. Qiu, G. P. Kobinger, G. F. Gao and X. Yan, *Biosens. Bioelectron.*, 2015, **74**, 134-141.
- 36. R. C. Spitale, R. Volpini, M. V. Mungillo, J. Krucinska, G. Cristalli and J. E. Wedekind, *Biochemistry*, 2009, **48**, 7777-7779.

- 37. A. Unciti-Broceta, *Nat. Chem.*, 2015, **7**, 538-539.
- 38. Q. Chang, K. J. Deng, L. H. Zhu, G. D. Jiang, C. Yu and H. Q. Tang, *Microchim. Acta*, 2009, **165**, 299-305.
- 39. M. I. Kim, J. Shim, T. Li, J. Lee and H. G. Park, *Chem.-Eur. J.*, 2011, **17**, 10700-10707.
- 40. Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu and X. G. Chen, *Nanoscale*, 2012, **4**, 3969-3976.
- 41. S. Liu, J. Q. Tian, L. Wang, Y. L. Luo, G. H. Chang and X. P. Sun, *Analyst*, 2011, **136**, 4894-4897.
- 42. W. Wang, X. Jiang and K. Chen, *Chem. Commun.*, 2012, **48**, 7289-7291.
- 43. B. Malvi, C. Panda, B. B. Dhar and S. Sen Gupta, *Chem. Commun.*, 2012, **48**, 5289-5291.
- 44. P. Roy, Z. H. Lin, C. T. Liang and H. T. Chang, *Chem. Commun.*, 2012, **48**, 4079-4081.
- 45. J. Q. Tian, S. Liu, Y. L. Luo and X. P. Sun, *Catal. Sci. Technol.*, 2012, **2**, 432-436.
- 46. Q. Y. Liu, H. Li, Q. R. Zhao, R. R. Zhu, Y. T. Yang, Q. Y. Jia, B. Bian and L. H. Zhuo, *Mater. Sci. Eng. C Mater. Biol. Appl.*, 2014, **41**, 142-151.
- 47. Y. Liu, M. Yuan, L. J. Qiao and R. Guo, *Biosens. Bioelectron.*, 2014, **52**, 391-396.
- 48. Q. Chang and H. Q. Tang, *Microchim. Acta*, 2014, **181**, 527-534.
- 49. T. B. Zhang, Y. C. Lu and G. S. Luo, ACS Appl. Mater. Interfaces, 2014, 6, 14433-14438.
- 50. L. H. Ai, L. L. Li, C. H. Zhang, J. Fu and J. Jiang, *Chem.-Eur. J.*, 2013, **19**, 15105-15108.
- 51. W. Chen, J. Chen, Y. B. Feng, L. Hong, Q. Y. Chen, L. F. Wu, X. H. Lin and X. H. Xia, *Analyst*, 2012, **137**, 1706-1712.
- 52. Y. Jv, B. X. Li and R. Cao, *Chem. Commun.*, 2010, 46, 8017-8019.
- 53. X. X. Wang, Q. Wu, Z. Shan and Q. M. Huang, *Biosens. Bioelectron.*, 2011, 26, 3614-3619.
- 54. J. B. Liu, X. N. Hu, S. Hou, T. Wen, W. Q. Liu, X. Zhu, J. J. Yin and X. C. Wu, Sens. Actuator B-Chem., 2012, 166, 708-714.
- 55. L. J. Wan, J. H. Liu and X. J. Huang, *Chem. Commun.*, 2014, **50**, 13589-13591.
- 56. Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren and X. G. Qu, *Adv. Mater.*, 2010, 22, 2206-2210.
- 57. Y. J. Guo, J. Li and S. J. Dong, Sens. Actuator B-Chem., 2011, 160, 295-300.
- 58. W. B. Shi, Q. L. Wang, Y. J. Long, Z. L. Cheng, S. H. Chen, H. Z. Zheng and Y. M. Huang, *Chem. Commun.*, 2011, **47**, 6695-6697.
- 59. S. Liu, J. Q. Tian, L. Wang, Y. L. Luo and X. P. Sun, *RSC Adv.*, 2012, **2**, 411-413.
- 60. N. Li, Y. Yan, B. Y. Xia, J. Y. Wang and X. Wang, *Biosens. Bioelectron.*, 2014, 54, 521-527.
- 61. Y. W. Zhang, J. Q. Tian, S. Liu, L. Wang, X. Y. Qin, W. B. Lu, G. H. Chang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi and X. P. Sun, *Analyst*, 2012, **137**, 1325-1328.
- 62. W. S. Yang, J. H. Hao, Z. Zhang, B. P. Lu, B. L. Zhang and J. L. Tang, *RSC Adv.*, 2014, **4**, 35500-35504.
- 63. Q. Y. Liu, R. R. Zhu, H. Du, H. Li, Y. T. Yang, Q. Y. Jia and B. Bian, *Mater. Sci. Eng. C-Mater. Biol. Appl.*, 2014, **43**, 321-329.
- 64. S. Liu, L. Wang, J. F. Zhai, Y. L. Luo and X. P. Sun, Anal. Methods, 2011, 3, 1475-1477.
- 65. X. M. Chen, B. Y. Su, Z. X. Cai, X. Chen and M. Oyama, *Sens. Actuat. B-Chem.*, 2014, **201**, 286-292.
- 66. X. Chen, X. D. Zhou and J. M. Hu, Anal. Methods, 2012, 4, 2183-2187.
- 67. F. M. Qiao, L. J. Chen, X. N. Li, L. F. Li and S. Y. Ai, Sens. Actuat. B-Chem., 2014, 193, 255-262.
- 68. W. M. Zhang, D. Ma and J. X. Du, *Talanta*, 2014, **120**, 362-367.
- 69. T. Wang, Y. C. Fu, L. Y. Chai, L. Chao, L. J. Bu, Y. Meng, C. Chen, M. Ma, Q. J. Xie and S. Z. Yao, *Chem.-Eur. J.*, 2014, **20**, 2623-2630.
- 70. Y. Tao, E. G. Ju, J. S. Ren and X. G. Qu, *Chem. Commun.*, 2014, **50**, 3030-3032.
- 71. S. Liu, J. Tian, L. Wang, Y. Zhang, Y. Luo, H. Li, A. M. Asiri, A. O. Al-Youbi and X. Sun, *Chempluschem*, 2012, **77**, 541-544.
- 72. J. J. Wang, D. X. Han, X. H. Wang, B. Qi and M. S. Zhao, *Biosens. Bioelectron.*, 2012, 36, 18-21.
- 73. Z. L. Jiang, L. Kun, H. X. Ouyang, A. H. Liang and H. S. Jiang, J. Fluoresc., 2011, 21, 2015-2020.
- 74. W. Luo, Y. S. Li, J. Yuan, L. H. Zhu, Z. D. Liu, H. Q. Tang and S. S. Liu, *Talanta*, 2010, **81**, 901-907.
- 75. Y. Gao, G. N. Wang, H. Huang, J. J. Hu, S. M. Shah and X. G. Su, *Talanta*, 2011, **85**, 1075-1080.
- 76. Y. Shi, P. Su, Y. Y. Wang and Y. Yang, *Talanta*, 2014, **130**, 259-264.
- 77. A. L. Hu, Y. H. Liu, H. H. Deng, G. L. Hong, A. L. Liu, X. H. Lin, X. H. Xia and W. Chen, *Biosens. Bioelectron.*, 2014, **61**, 374-378.

- 78. M. M. Vdovenko, A. S. Demiyanova, K. E. Kopylov and I. Y. Sakharov, *Talanta*, 2014, **125**, 361-365.
- 79. S. H. He, W. B. Shi, X. D. Zhang, J. A. Li and Y. M. Huang, *Talanta*, 2010, **82**, 377-383.
- 80. W. B. Shi, X. D. Zhang, S. H. He and Y. M. Huang, *Chem. Commun.*, 2011, **47**, 10785-10787.
- 81. Y. W. Fan and Y. M. Huang, *Analyst*, 2012, **137**, 1225-1231.
- 82. L. H. Zhang, Y. M. Zhai, N. Gao, D. Wen and S. J. Dong, *Electrochem. Commun.*, 2008, **10**, 1524-1526.
- 83. Z. L. Liu, B. Zhao, Y. Shi, C. L. Guo, H. B. Yang and Z. Li, *Talanta*, 2010, **81**, 1650-1654.
- 84. S. Z. Kang, H. Chen and J. Mu, *Solid State Sci.*, 2011, **13**, 142-145.
- 85. M. I. Kim, Y. Ye, B. Y. Won, S. Shin, J. Lee and H. G. Park, Adv. Funct. Mater., 2011, 21, 2868-2875.
- 86. X. X. Liu, H. Zhu and X. R. Yang, *Talanta*, 2011, **87**, 243-248.
- 87. J. Yang, H. Xiang, L. Shuai and S. Gunasekaran, Anal. Chim. Acta, 2011, 708, 44-51.
- 88. Z. X. Zhang, H. Zhu, X. L. Wang and X. R. Yang, *Microchim. Acta*, 2011, **174**, 183-189.
- 89. Y. P. Ye, T. Kong, X. F. Yu, Y. K. Wu, K. Zhang and X. P. Wang, *Talanta*, 2012, **89**, 417-421.
- 90. A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul and B. Adhikary, J. Mol. Catal. A-Chem., 2012, 360, 71-77.
- 91. Y. Q. Miao, H. Wang, Y. Y. Shao, Z. W. Tang, J. Wang and Y. H. Lin, *Sens. Actuator B-Chem.*, 2009, **138**, 182-188.
- H. T. Fang, Y. L. Pan, W. Q. Shan, M. L. Guo, Z. Nie, Y. Huang and S. Z. Yao, *Anal. Methods*, 2014, 6, 6073-6081.
- 93. Z. H. Dai, S. H. Liu, J. C. Bao and H. X. Ju, *Chem.-Eur. J.*, 2009, **15**, 4321-4326.
- 94. A. K. Dutta, S. K. Maji, D. N. Srivastava, A. Mondal, P. Biswas, P. Paul and B. Adhikary, *ACS Appl. Mater. Interfaces*, 2012, **4**, 1919-1927.
- 95. S. K. Maji, A. K. Dutta, P. Biswas, D. N. Srivastava, P. Paul, A. Mondal and B. Adhikary, *Appl. Catal. A-Gen.*, 2012, **419**, 170-177.
- 96. J. S. Mu, Y. Wang, M. Zhao and L. Zhang, Chem. Commun., 2012, 48, 2540-2542.
- 97. F. T. Zhang, X. Long, D. W. Zhang, Y. L. Sun, Y. L. Zhou, Y. R. Ma, L. M. Qi and X. X. Zhang, *Sens. Actuat. B-Chem.*, 2014, **192**, 150-156.
- 98. R. J. Cui, Z. D. Han and J. J. Zhu, Chem.-Eur. J., 2011, 17, 9377-9384.
- 99. Y. L. Wang, S. H. Chen, F. Ni, F. Gao and M. G. Li, *Electroanalysis*, 2009, 21, 2125-2132.
- 100. L. Cui, H. S. Yin, J. Dong, H. Fan, T. Liu, P. Ju and S. Y. Ai, *Biosens. Bioelectron.*, 2011, **26**, 3278-3283.
- 101. S. K. Maji, A. K. Dutta, D. N. Srivastava, P. Paul, A. Mondal and B. Adhikary, *J. Mol. Catal. A-Chem.*, 2012, **358**, 1-9.
- 102. C. J. Yu, C. Y. Lin, C. H. Liu, T. L. Cheng and W. L. Tseng, *Biosens. Bioelectron.*, 2010, 26, 913-917.
- K. Mitra, A. B. Ghosh, A. Sarkar, N. Saha and A. K. Dutta, *Biochem. Biophys. Res. Commun.*, 2014, 451, 30-35.
- 104. T. R. Lin, L. S. Zhong, J. Wang, L. Q. Guo, H. Y. Wu, Q. Q. Guo, F. F. Fu and G. N. Chen, *Biosens. Bioelectron.*, 2014, **59**, 89-93.
- 105. F. Q. Yu, Y. Z. Huang, A. J. Cole and V. C. Yang, *Biomaterials*, 2009, **30**, 4716-4722.
- 106. Y. P. Liu and F. Q. Yu, *Nanotechnology*, 2011, **22**, 145704.
- 107. L. Su, J. Feng, X. M. Zhou, C. L. Ren, H. H. Li and X. G. Chen, Anal. Chem., 2012, 84, 5753-5758.
- 108. Z. C. Xing, J. Q. Tian, A. M. Asiri, A. H. Qusti, A. O. Al-Youbi and X. P. Sun, *Biosens. Bioelectron.*, 2014, **52**, 452-457.
- 109. K. G. Qu, P. Shi, J. S. Ren and X. G. Qu, Chem.-Eur. J., 2014, 20, 7501-7506.
- 110. G. L. Wang, X. F. Xu, X. M. Wu, G. X. Cao, Y. M. Dong and Z. J. Li, *J. Phys. Chem. C*, 2014, **118**, 28109-28117.
- 111. T. R. Lin, L. S. Zhong, L. Q. Guo, F. F. Fu and G. N. Chen, *Nanoscale*, 2014, 6, 11856-11862.
- 112. T. R. Lin, L. S. Zhong, Z. P. Song, L. Q. Guo, H. Y. Wu, Q. Q. Guo, Y. Chen, F. F. Fu and G. N. Chen, *Biosens. Bioelectron.*, 2014, **62**, 302-307.
- 113. C. H. Liu and W. L. Tseng, Anal. Chim. Acta, 2011, 703, 87-93.
- 114. L. Q. Yang, X. L. Ren, F. Q. Tang and L. Zhang, *Biosens. Bioelectron.*, 2009, 25, 889-895.
- 115. Z. P. Yang, C. J. Zhang, J. X. Zhang and W. B. Bai, *Biosens. Bioelectron.*, 2014, **51**, 268-273.

- 116. X. Y. Niu, Y. Y. Xu, Y. L. Dong, L. Y. Qi, S. D. Qi, H. L. Chen and X. G. Chen, *J. Alloys Compd.*, 2014, **587**, 74-81.
- 117. C. Zheng, A. X. Zheng, B. Liu, X. L. Zhang, Y. He, J. Li, H. H. Yang and G. N. Chen, *Chem. Commun.*, 2014, **50**, 13103-13106.
- 118. Z. W. Jiang, Y. Liu, X. O. Hu and Y. F. Li, *Anal. Methods*, 2014, **6**, 5647-5651.
- 119. Z. X. Zhang, X. L. Wang and X. R. Yang, *Analyst*, 2011, **136**, 4960-4965.
- 120. S. B. He, G. W. Wu, H. H. Deng, A. L. Liu, X. H. Lin, X. H. Xia and W. Chen, *Biosens. Bioelectron.*, 2014, **62**, 331-336.
- 121. J. Qian, X. W. Yang, L. Jiang, C. D. Zhu, H. P. Mao and K. Wang, *Sens. Actuat. B-Chem.*, 2014, **201**, 160-166.
- 122. M. Shamsipur, A. Safavi and Z. Mohammadpour, Sens. Actuat. B-Chem., 2014, 199, 463-469.
- 123. M. I. Kim, J. Shim, T. Li, M. A. Woo, D. Cho, J. Lee and H. G. Park, *Analyst*, 2012, **137**, 1137-1143.
- 124. P. J. Ni, H. C. Dai, Y. L. Wang, Y. J. Sun, Y. Shi, J. T. Hu and Z. Li, *Biosens. Bioelectron.*, 2014, **60**, 286-291.
- 125. T. K. Sharma, R. Ramanathan, P. Weerathunge, M. Mohammadtaheri, H. K. Daima, R. Shukla and V. Bansal, *Chem. Commun.*, 2014, **50**, 15856-15859.
- 126. Z. Z. Sun, N. Zhang, Y. M. Si, S. Li, J. W. Wen, X. B. Zhu and H. Wang, *Chem. Commun.*, 2014, **50**, 9196-9199.
- 127. Z. Mohammadpour, A. Safavi and M. Shamsipur, Chem. Eng. J., 2014, 255, 1-7.
- 128. G. W. Wu, S. B. He, H. P. Peng, H. H. Deng, A. L. Liu, X. H. Lin, X. H. Xia and W. Chen, *Anal. Chem.*, 2014, **86**, 10955-10960.
- 129. J. S. Mu, L. Zhang, M. Zhao and Y. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 7090-7098.
- 130. L. Z. Gao, J. M. Wu, S. Lyle, K. Zehr, L. L. Cao and D. Gao, J. Phys. Chem. C, 2008, 112, 17357-17361.
- 131. X. Q. Zhang, S. W. Gong, Y. Zhang, T. Yang, C. Y. Wang and N. Gu, J. Mater. Chem., 2010, 20, 5110-5116.
- 132. Z. W. Tang, H. Wu, Y. Y. Zhang, Z. H. Li and Y. H. Lin, Anal. Chem., 2011, 83, 8611-8616.
- 133. D. Bhattacharya, A. Baksi, I. Banerjee, R. Ananthakrishnan, T. K. Maiti and P. Pramanik, *Talanta*, 2011, **86**, 337-348.
- 134. V. Figueroa-Espi, A. Alvarez-Paneque, M. Torrens, A. J. Otero-Gonzalez and E. Reguera, *Colloid Surf. A-Physicochem. Eng. Asp.*, 2011, **387**, 118-124.
- 135. S. Kumari, B. B. Dhar, C. Panda, A. Meena and S. Sen Gupta, *ACS Appl. Mater. Interfaces*, 2014, **6**, 13866-13873.
- 136. J. L. Dong, L. N. Song, J. J. Yin, W. W. He, Y. H. Wu, N. Gu and Y. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 1959-1970.
- 137. Y. J. Song, X. F. Xia, X. F. Wu, P. Wang and L. D. Qin, *Angew. Chem.-Int. Edit.*, 2014, **53**, 12451-12455.
- 138. L. Zhan, C. M. Li, W. B. Wu and C. Z. Huang, *Chem. Commun.*, 2014, **50**, 11526-11528.
- 139. X. N. Hu, A. Saran, S. Hou, T. Wen, Y. L. Ji, W. Q. Liu, H. Zhang and X. C. Wu, *Chin. Sci. Bull.*, 2014, **59**, 2588-2596.
- 140. W. W. He, Y. Liu, J. S. Yuan, J. J. Yin, X. C. Wu, X. N. Hu, K. Zhang, J. B. Liu, C. Y. Chen, Y. L. Ji and Y. T. Guo, *Biomaterials*, 2011, **32**, 1139-1147.
- 141. F. L. Qu, T. Li and M. H. Yang, *Biosens. Bioelectron.*, 2011, 26, 3927-3931.
- 142. L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, **2**, 577-583.
- 143. T. Xue, S. Jiang, Y. Q. Qu, Q. Su, R. Cheng, S. Dubin, C. Y. Chiu, R. Kaner, Y. Huang and X. F. Duan, *Angew. Chem.-Int. Ed.*, 2012, **51**, 3822-3825.