Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting information

Heterometallic chalcogenide oligomers as building blocks for an environmentally-friendly, low-cost, solar cells fabrication.

J.Y. Chane-Ching,^{a*} L. Perrin,^b P. Puech,^c V. Bourdon,^d V. Foncrose,^a A. Balocchi,^e X. Marie,^e P. Lavedan^d

^aUniversité de Toulouse, UPS, CNRS, CIRIMAT, 118 Route de Narbonne, F-31062, Toulouse ^bUniversité de Lyon 1, ICBMS, CNRS, INSA, CPE 43 Bd du 11 nov 1918, 69622 Villeurbanne cedex

^cUniversité de Toulouse, CNRS, CEMES, 29 rue Jeanne Marvig 31055 Toulouse, France.

^dUniversité de Toulouse, UPS, Service commun, 118 Route de Narbonne, F-31062, Toulouse

^eUniversité de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France.

Email address: chane@chimie.ups-tlse.fr

Table of contents

S1- h-s oligomers formation domain.	p 1
S2- ESI-MS spectrum of $(Sn_a-S_c)^{t-}$ prepared in highly basic pH.	p 4
S3- Confirmation of chemical composition. Comparison of ESI-MS experimental isotop	ic
distribution with theoretical spectra.	p 5
S4- $(Sn_a - Zn_b - S_c)^{t-}$ oligomers-capped ZnS colloids.	р7
S5- DFT results.	p 8
S6- TGA and XRD results obtained after thermal decomposition of the hetero-metallic	
chalcogenide oligomers.	p 13
S7- Low-chloride hetero-metallic oligomers solutions preparation for infiltration.	p 15
S8- Solar cell characteristics.	p 15

S1- h- s oligomers formation domains.

Figure S1a. h-s $(Sn_a-S_c)^{t-}$ oligomers formation domain. s denotes $[S^{2^-}]/[Sn^{4+}])$ molar ratio and $h = [H]/([Sn^{4+}])$ or $[OH]/([Sn^{4+}])$ molar ratios. [H], [OH] being the molar concentration in the metallic solution. The h-s formation domain is determined at $[Sn^{4+}] = 0.1M$. Blue area depicts the as-synthesized limpid solutions.

Figure S1b. Figure S1b: h-s $(Ga_a-S_c)^{t-}$ oligomers formation domain. s denotes $[S^{2-}]/[Ga^{3+}])$ molar ratio and h = [H]/ ([Ga³⁺]) or [OH]/([Ga³⁺]) molar ratios. [H], [OH] being the molar concentration in the metallic solution. The h-s formation domain is determined at $[Ga^{3+}] = 0.1$ M. The colored areas depict the domain of limpid oligomer solutions. Blue area: assynthesized limpid solutions. Grey area: limpid solutions in low ionic strength conditions

Figure S1c. Typical $(Sn_a-Zn_b-S_c)^{t-}$ oligomers formation domain, $x_{Zn}=0.33$. s denotes $[S^{2-}]/[Sn^{4+}]+[Zn^{2+}])$ molar ratio and $h = [H]/([Sn^{4+}]+[Zn^{2+}])$ or $[OH]/([Sn^{4+}]+[Zn^{2+}])$. [H], [OH] being the molar concentration in the metallic solution. Total metal concentration of the reaction mixtures is 0.1 M. The blue area represents the oligomer formation domain. pH values were ranging from 8.6 ([H]/[Sn]+[Zn] = 1.5) to 11.6 ([OH]/[Zn]+[Sn] = 6).

Figure S1d. Typical $(Sn_a-Ga_b-S_c)^{t-}$ oligomer formation domain, $x_{Ga}=0.5$, showing successful preparation of limpid dispersions in a large range of [OH]/([Sn]+[Ga]) values, ([Sn]+[Ga]) = 0.1 M.

S2- ESI-MS spectrum of $(Sn_a-S_c)^{t-}$ prepared in highly basic pH

Figure S2. Negative ion ESI-MS experimental spectrum of $(Sn_aZn_bS_c)^{t-}$ oligomer, x $_{Zn}=0$, Sn(IV)= 0.1M and OH/Sn= 9.5 molar. The OH/Sn ratio was adjusted using NaOH. We can observe m/z= 398.4 $(Sn_2S_5H)^{-}$, m/z= 420.4 $(Sn_2S_5Na)^{-}$ m/z= 581 $(Sn_3S_7H)^{-}$, m/z= 602.5 $(Sn_3S_7Na)^{-}$. On can note that $(Sn_4S_{10}H_3)^{-}$ tetramers m/z= 798.3 are not observed in highly basic conditions.

S3- Confirmation of chemical composition. Comparison of ESI-MS experimental isotopic distribution with theoretical spectra.

S3-1- Monometallic oligomers

Figure S3a. Confirmation of chemical composition for m/z = 798.35 (Sn₄S₁₀H₃), detected by ESI-MS.

Figure S3b. Confirmation of chemical composition (A) for m/z=554.45 $(Ga_9S_{15})^{3-}$, (B) for m/z=622.39 $(Ga_{10}S_{17})^{4-}$, detected by ESI-MS.

Figure S3c. Confirmation of chemical composition (A) for $m/z = 678.41 (Sn_3 Zn_1S_8)^{2^-}$, (B) for $m/z = 714.40 (Sn_3 Zn_1S_9)^{4^-}$ (C) for $m/z = 1053.97 (Sn_3 Zn_1Se_8)^{2^-}$, (D) for $m/z = 1135.9(Sn_3 Zn_1Se_9)^{4^-}$ detected by ESI-MS.

Figure S3d. Confirmation of chemical composition (A) for $m/z = 750.38 (Sn_3 Ga_1S_{10})^{5-}$, (B) for $m/z = 668.42 (Sn_2 Ga_2S_9)^{4-}$ (C) for $m/z = 702.41 (Sn_2 Ga_2S_{10})^{6-}$, (D) for $m/z = 586.47 (Sn Ga_3S_8)^{3-}$ detected by ESI-MS.

S4- (Sn_a–Zn_b–S_c)^{t-} oligomers-capped ZnS colloids

Figure S4. Correlogramms recorded by dynamic light scattering on Sn(IV)-Zn(II)-S dispersions showing monodisperse size distribution for $0.2 < x_{Zn} < 0.50$ and an increase

average hydrodynamic diameter with x_{Zn} . Corresponding hydrodynamic diameters of 4.25 nm, 5.5 nm and 18.5 nm were respectively determined for x_{Zn} = 0.5 (s= 6, red curve) x_{Zn} = 0.66 (s= 4, green curve) x_{Zn} = 0.66 (s= 6, Blue curve).

S5- DFT results.

Oligomers	Frequency, cm^{-1} (Raman Scattering Activity >20 a^{4} .amu ⁻¹)
$(Sn_4S_{10})^{4-}$	70.4(22) 72.6(22) 96.7(33) 98.4(34) 99.0(32) 133.0(99) 287.2(88) 287.7 (318)
	289.5 (63) 301.2(29) 302.9(26) 338.8 (46) 339.4 (47) 340.5 (47) 386.0 (92) 386.5 (92)
	387.0 (88) 393.9 (408)
	Main peak: 390
$(Sn_3GaS_{10})^{5-}$	74.3(22) 98.9(23) 99.8(29) 108.5(32) 140.6 (74) 274.2(34) 287.6 (315) 292.2(33)
	293.9(47) 321.5(35) 324.0(40) 350.8 (375) 372.8 (113) 375.4 (102) 377.0 (204)
	388.2 (151)
	Main peak: 372
$(Sn_2Ga_2S_{10})^{6-}$	105.2(32) 147.0(63) 272.3(52) 279.1 (57) 281.9 (118) 298.0 (70) 303.7(32)
	327.9(27) 330.3(38) 337.8 (387) 351.1(91) 359.6 (120) 361.3 (210) 374.3 (106)
	Main peak 343
$(SnGa_3S_{10})^{7-}$	100.7(22) 148.9 (57) 258.9(21) 277.6 (118) 294.6(45) 325.6 (355) 330.3 (98)
	333.2 (88) 341.0 (138) 349.4 (63) 353.4(57)
	Main peak: 329
$(Ga_4S_{10})^{8-}$	151.9(58) 267.2(27) 277.8(45) 280.7 (110) 295.2(21) 310.1(55) 312.7 (78)
	314.8 (68) 330.0(32) 330.7(76)
	Main peak: 310

Table S5. Calculated Raman shift and scattering activities of $(Sn_aGa_bS_c)^{t-}$ adamantane –like structures. * denote oligomers observed by mass spectrometry. The frequency of main peak has been determined by convoluting Lorentzian functions whose amplitudes are proportional to computed Raman activity intensities and a half-band width of 20 cm⁻¹. Increase of the number of substituted Ga cations into the adamantane-like structure clearly results in a decrease of the frequency of the Raman main peak.

Cartesian Coordinates of DFT-Optimized Compounds and There Related Energies. 8

```
[SnSe_3]^{2}
  4
scf done: -31.991577
Sn
     0.490921
               -0.248044
                           -0.371230
                -0.086782
Se
     2.665337
                            0.764849
    -0.673701
                -2.409616
                           -0.493915
Se
Se -0.519382
                 1.752668
                           -1.382976
[SnSe_4]^{4-}
  5
scf done: -41.679006
     0.301056
               -0.119670
                            0.178351
Sn
Se -0.726686
                0.404852
                            2.464426
     2.854166
                -0.179276
Se
                            0.384191
Se -0.534169
                -2.404561
                            -0.628920
Se -0.386572
                 1.684144
                           -1.503468
[\operatorname{Sn}_2\operatorname{Se}_5]^{2}
  12
scf done: -3423.503759
Zn
     0.035128
                -0.286652
                           -0.477250
    2.229832
S
                0.321887
                           -0.811671
S
    -0.952851
               -2.353384
                           -0.739872
S
    -1.600291
                1.571050
                           -0.925008
     2.313362
                0.145488
Sn
                           -3.212983
Sn -0.815405
               -2.556558 -3.137441
Sn -1.273261
                1.134293 -3.174278
    4.335352
S
                0.635105
                           -4.208283
S
    0.698452
                1.900482
                           -4.221145
S
    -1.607630
              -4.516353
                           -4.057786
S
   1.425335
               -2.009264
                           -4.020390
S -2.332433
                           -4.171111
               -0.725598
lin - [Sn_4Se_{10}]^{4-}
  14
scf done: -108.676640
     0.072410
                -0.194489
                           -0.198413
Sn
Se -0.621784
                0.367216
                            2.323374
Se
     2.679248
                -0.169226
                            0.404535
Se
    -0.653946
                -2.490249
                            -0.802350
                1.707229
Se
    -0.490592
                           -1.691116
Sn
     1.881709
                0.351512
                            2.761370
Se
     2.850891
                2.490727
                            3.839126
     2.692145
Se
                -1.263953
                            4.609212
```

Sn	3.661303	0.875266	5.686982
Se	2.863717	1.396005	8.043802
Se	6.164787	0.859571	6.125023
Sn	5.470544	1.421292	8.646794
Se	6.033535	-0.480410	10.139521
Se	6.196875	3.717062	9.250724

ada-[Sn₄Se₁₀]₄₋

14

scf	done: -108.6	594776	
Sn	-0.045393	-0.196485	0.035593
Se	-0.042109	-0.122814	2.509769
Se	2.370392	0.244251	-0.775517
Se	-0.850539	-2.540276	-0.699554
Se	-1.654386	1.639547	-0.815407
Sn	2.307541	0.158294	-3.358562
Sn	-0.831520	-2.548833	-3.285153
Sn	-1.610370	1.523236	-3.398117
Se	4.598545	0.573143	-4.199431
Se	0.764593	2.008064	-4.300225
Se	-1.603016	-4.774766	-4.045891
Se	1.562830	-2.174962	-4.187928
Se	-3.132941	3.269215	-4.270786
Se	-2.458141	-0.773759	-4.230101

ada- $[Sn_3ZnSe_9]^{4-}$

13	3		
scf	done: -323.0	75542	
Zn	-0.026327	-0.218036	-0.582476
Se	2.391762	0.260094	-0.683679
Se	-0.846429	-2.547937	-0.600183
Se	-1.689017	1.621990	-0.725405
Sn	2.336592	0.169684	-3.221688
Sn	-0.846383	-2.569038	-3.140102
Sn	-1.634335	1.552683	-3.260409
Se	4.564965	0.555783	-4.269535
Se	0.757716	1.998328	-4.195419
Se	-1.599263	-4.738968	-4.108279
Se	1.544353	-2.154260	-4.090127
Se	-3.103054	3.247253	-4.347079
Se	-2.430792	-0.764000	-4.149377

ada-[Sn₃Zn₂Se₈]⁴⁻

12 scf done: -537.441905

Zn	-0.108019	-0.394546	-0.590756
Se	2.334172	0.184271	-0.748642
Se	-0.894929	-2.694482	-0.563477
Se	-1.666603	1.576438	-0.777666
Sn	2.328744	0.077750	-3.302088
Zn	-0.616565	-1.916775	-2.861563
Sn	-1.684989	1.470255	-3.331981
Se	4.579428	0.644031	-4.251431
Se	0.734367	1.937715	-4.240725
Se	1.526210	-2.204890	-4.112203
Se	-3.065491	3.303781	-4.340378
Se	-2.447274	-0.831005	-4.144570

ada- $[Sn_4S_{10}]^{4-}$

14

scf	done: -3996.	440783	
Sn	-0.045571	-0.197010	-0.037223
S	-0.043359	-0.134519	2.282352
S	2.230653	0.202809	-0.876754
S	-0.809341	-2.405273	-0.802876
S	-1.548658	1.540028	-0.915683
Sn	2.238132	0.148943	-3.333293
Sn	-0.808434	-2.486001	-3.260757
Sn	-1.564648	1.469116	-3.375210
S	4.385564	0.542027	-4.119568
S	0.718189	1.878043	-4.193990
S	-1.530426	-4.571688	-3.976479
S	1.466521	-2.058404	-4.093282
S	-2.992447	3.104519	-4.195710
S	-2.320688	-0.748736	-4.122837

 $lin - [Sn_4S_{10}]^{4-}$

14

scf done: -3996.415696 Sn 0 155596 -0 167751

	done. 2770.	110070	
Sn	0.155596	-0.167751	-0.060806
S	-0.448613	0.386829	2.397748
S	2.661039	-0.113633	0.595367
S	-0.492176	-2.348647	-0.556529
S	-0.339933	1.646592	-1.433553
Sn	1.905546	0.369671	2.809935
S	2.841309	2.372838	3.876938
S	2.701807	-1.146047	4.571345
Sn	3.637521	0.857128	5.638377
S	2.881917	1.340431	7.852908
S	5.991659	0.839999	6.050677
Sn	5.387321	1.394540	8.509212
S	5.882790	-0.419823	9.881952

 $ada - [Ga_4S_{10}]^{8-}$

14	1		
scf	done: -4289.	678285	
Ga	-0.048278	-0.199922	-0.145783
S	-0.054905	-0.141517	2.154112
S	2.141572	0.197329	-0.945958
S	-0.771605	-2.330249	-0.865324
S	-1.517591	1.461282	-0.968514
Ga	2.137752	0.126645	-3.308676
Ga	-0.771182	-2.390024	-3.226804
Ga	-1.495285	1.408863	-3.333297
S	4.270751	0.497995	-4.092348
S	0.698386	1.821816	-4.126460
S	-1.500104	-4.461899	-3.911871
S	1.420916	-2.009943	-4.024927
S	-2.938501	3.018885	-4.127960
S	-2.196441	-0.715407	-4.097499

 $lin - [Ga_4S_{10}]^{8-}$

14	1		
scf	done: -4289.	688653	
Ga	0.318252	-0.121248	0.143820
S	-0.368930	0.381423	2.440665
S	2.676240	-0.148305	0.785876
S	-0.410283	-2.192581	-0.538369
S	-0.146887	1.623550	-1.275987
Ga	1.903319	0.351485	2.914798
S	2.772330	2.298780	3.919606
S	2.628682	-1.104489	4.622407
Ga	3.551458	0.835839	5.593632
S	2.888467	1.288420	7.769466
S	5.844862	0.843149	5.944535
Ga	5.279313	1.363529	8.265452
S	5.913362	-0.309381	9.702483
S	5.950658	3.477385	8.850199

ada- $[Sn_3GaS_{10}]^{5-}$

14	4		
scf	done: -4069.	772394	
Ga	-0.044505	-0.197220	-0.054129
S	-0.060936	-0.135415	2.167095
S	2.154278	0.197562	-0.862551
S	-0.765354	-2.335639	-0.789762
S	-1.502419	1.476384	-0.896406
Sn	2.224056	0.145687	-3.278747

Sn	-0.801077	-2.472845	-3.203963
Sn	-1.555729	1.462848	-3.314713
S	4.368609	0.535689	-4.127189
S	0.711045	1.857243	-4.219975
S	-1.530305	-4.555076	-3.980774
S	1.456577	-2.048429	-4.121530
S	-2.976341	3.099144	-4.197472
S	-2.302412	-0.746077	-4.141194

ada-[Sn₂Ga₂S₁₀]⁶⁻

14	4			
scf done: -4143.088763				
Ga	0.003219	-0.187702	-0.086636	
S	-0.068826	-0.141748	2.157065	
S	2.130449	0.202744	-0.950363	
S	-0.789343	-2.335521	-0.788285	
S	-1.532111	1.462330	-0.895661	
Ga	2.212393	0.146276	-3.276082	
Sn	-0.750248	-2.453037	-3.214775	
Sn	-1.497326	1.462030	-3.325666	
S	4.276518	0.505476	-4.090434	
S	0.748743	1.808991	-4.186581	
S	-1.526651	-4.547493	-3.977917	
S	1.467274	-1.979334	-4.088081	
S	-2.970596	3.091084	-4.190593	
S	-2.328008	-0.750241	-4.107300	

ada-[SnGa3S₁₀]⁷⁻

4					
scf done: -4216.390241					
-0.041044	-0.199942	-0.125233			
-0.028077	-0.139940	2.257084			
2.222078	0.212197	-0.941285			
-0.813247	-2.390412	-0.874442			
-1.559516	1.509799	-0.981879			
2.145975	0.130566	-3.357426			
-0.783706	-2.399588	-3.289969			
-1.503685	1.407879	-3.399426			
4.267447	0.500555	-4.082329			
0.699740	1.828519	-4.091419			
-1.493000	-4.467480	-3.911495			
1.413102	-2.001511	-4.002732			
-2.931792	3.015111	-4.141405			
-2.218788	-0.721897	-4.079354			
	4 done: -4216. -0.041044 -0.028077 2.222078 -0.813247 -1.559516 2.145975 -0.783706 -1.503685 4.267447 0.699740 -1.493000 1.413102 -2.931792 -2.218788	4 done: -4216.390241 -0.041044 -0.199942 -0.028077 -0.139940 2.222078 0.212197 -0.813247 -2.390412 -1.559516 1.509799 2.145975 0.130566 -0.783706 -2.399588 -1.503685 1.407879 4.267447 0.500555 0.699740 1.828519 -1.493000 -4.467480 1.413102 -2.001511 -2.931792 3.015111 -2.218788 -0.721897			

Figure S6-a: TGA curves recorded on (A): $NH_4Cl-(NH_4)_2S-(Sn_aZn_bS_c)^{t-}$ and (B): $NH_4Cl-(NH_4)_2S-(Sn_aGa_bS_c)^{t-}$ solid samples showing two decomposition temperatures occurring at T< 250 °C. $(Sn_aZn_bS_c)^{t-}$ oligomers were prepared at x_{Zn} = 0.33, ([Zn]+[Sn])= 0.2M, s= $(NH_4)_2S/([Sn]+[Sn])$ = 6). $(Sn_aGa_bS_c)^{t-}$ oligomers were synthesized at x_{Ga} = 0.33 (Sn+Ga= 0.40M, s= 6) and x_{Ga} = 0.50 (Sn+Ga= 0.35M, s= 6). The solid samples were collected after evaporating the oligomer solutions at room temperature during 16 h, centrifugation at 4500 rpm, 10 min and drying at 30 °C under air atmosphere. TGA curves were recorded under N₂ at heating rate v= 0.5 °C min⁻¹.

Fig S6-b: X-ray diffractogram recorded on $(Sn_aZn_bS_c)^{t-}$, x_{Zn} = 0.33 solid oligomer after calcination at 550 °C 2h under N₂. Decomposition into the parent metal chalcogenides is observed resulting for x_{Zn} =0.33 in the formation of a SnS₂ solid solution (Hexagonal , 00-022-0951).

Fig S6-c: X-ray diffractogram recorded on $(Sn_aGa_bS_c)^{t-}$, $x_{Ga} = 0.33$ and $x_{Ga} = 0.55$ solid oligomers after calcination at 550 °C 2h under N₂. $Sn_{1,x}Ga_xS_2$ solid solution (SnS₂ Hexagonal, 01-089-2358) and trace of Ga₂S₃ (Cubic, 03-065-7839) are observed for the sample prepared at $x_{Ga} = 0.33$ while Ga₂S₃ (Cubic, 00-043-0916) and SnS₂ (Hexagonal, 00-040-1467) structures are identified at $x_{Ga} = 0.50$. Note the better crystallization of the sample prepared at $x_{Ga} = 0.33$.

S7- Low-chloride hetero-metallic oligomers solutions preparation for infiltration

The $(Sn_a-Zn_b-S_c)^{t}$ hetero-metallic oligomers were used as composition additives to fine tune the Cu non stoichiometry of CZTS nanocrystals films. To avoid chloride contamination of CZTS nanocrystals films, a procedure was developed for the synthesis of low-chloride hetero-metallic oligomers solutions. Oligomer solutions with concentration close to the solubility limit as indicated in the oligomers formation domain were prepared. Room-temperature evaporation under stirring of these solutions yields super-saturated oligomers solutions which precipitate with time (t= 16 h). The solid precipitate was isolated and re-dispersed in a diluted (NH₄)₂S solution producing low chloride oligomer solutions displaying total metal cations concentration larger than 0.5 M. In a typical synthesis, a 0.2 M solution of $(Sn_a-Zn_b-S_c)^{t}$, $x_{Zn}= 0.33$, oligomers are prepared at 0.2 M ([Sn]+[Zn]). The oligomer solution is evaporated at room temperature overnight under stirring. The solid precipitate (4.16 g) is isolated by centrifugation at 4500 rpm. The $(Sn_a-Zn_b-S_c)^{t}$ oligomer solution is obtained by re-dissolution in 0.02 M (NH₄)₂S solution.

S8- Solar cells characteristics

Figure S8. Current voltage curve and solar cell characteristics for the Mo/CZTSSe/CdS/ ZnO: ZnO/Al cell.