O|^&d:[}&&Uˇ]]|^{ ^}, cæb^ Tæe^¦ãæb|QOUQD-{¦Q;[;*æ);a&O@^{ã•d^Ø1[}cā^;•E V@a b[ˇ;}æ);ā°c@^Uæb;g^;U;*æ);ā°ææa[}•G€FÎ

Light induced catalytic hydrodefluorination of perfluoroarenes by porphyrin rhodium

Xu Liu, Zikuan Wang, Xianyuan Zhao and Xuefeng Fu *

Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, Peking University, Beijing, 100871, China. Fax: +86 10 6275 1708; Tel: +86 10 6275 6035; E-mail: fuxf@pku.edu.cn

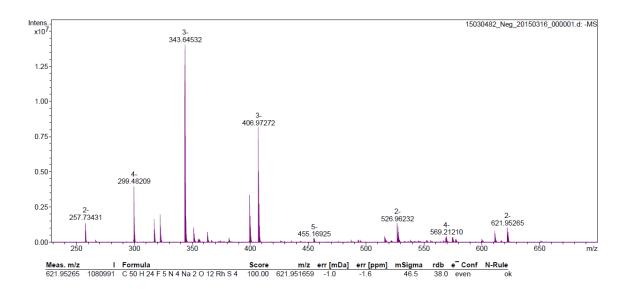
Contents

- 1. General Considerations
- 2. Preparation of Na₄[(TSPP)Rh^{III}(D₂O)₂]
- 3. Spectra for Mechanistic Studies
- 4. Effects of Silanes
- 5. General Procedure for Catalytic Hydrodefluorination Catalyzed by Porphyrin Rhodium
- 6. Spectral Data for Selected Compounds

1. General Considerations

D₂O and CD₃OD were purchased from Cambridge Isotope Laboratory Inc.; tetra (*p*-sulfonatophenyl) porphyrin from Tokyo Chemical Industry (TCI); (Rh(CO)₂Cl)₂ from Strem Chemical Inc.; and all other chemicals were purchased from Alfa Aesar or J&K Scientific Ltd. unless otherwise noted and used as received. ¹H NMR spectra were recorded on a Bruker AVII-400 spectrometer at ambient temperature. ¹F NMR spectra were recorded on a Bruker AVII-300 spectrometer and a Bruker AVII-400 spectrometer at ambient temperature. GC-MS results were obtained by the Agilent 7980A/5975C GC/MSD system equipped with the DB-17MS (30m, 0.25mm, 0.25 μ m) column. GC results were obtained by the Agilent 7980A system equipped with the DB-5MS UI (30 m, 0.25 mm, 0.50 μm) column. ESI-MS results were obtained by a Bruker Apex IV FTMS. Light irradiation experiments was performed using a 500W high-pressure mercury lamp (CHF-XM35-500W, Beijing Trusttech Co., Ltd.,) and the glass vessel was positioned about 15.0 cm away from the light source.

2. Preparation of Na₄[(TSPP)Rh^{III}(H₂O)₂]


 $Na_3[(TSPP)Rh^{III}(H_2O)_2]$ was synthesized by following literature methods of Ashley. The equilibrium distribution of $[(TSPP)Rh^{III}(D_2O)_2]^{-3}$, $[(TSPP)Rh^{III}(D_2O)(OD)]^{-4}$ and $[(TSPP)Rh^{III}(OD)_2]^{-5}$

were reported in the previously published paper.² ¹HNMR (D₂O, 400 MHz) δ (ppm): 9.15 (s, 8H, pyrrole), 8.44 (d, 8H, o-phenyl, J_{H-H}=8 Hz), 8.25 (d, m-phenyl, J_{H-H}=8 Hz). The stock solution of (TSPP)Rh^{III} was prepared in H₂O.

3. Spectra for Mechanistic Studies

3.1 Synthesis of (TSPP)Rh^I

(TSPP)Rh^I was synthesized following our previous reported method³. 10μL of triethylamine was added to 2mL aqueous solution of (TSPP)Rh^{III} (1.0 mM) in 10 mL Schlenk flask. After being degassed by three freeze-pump-thaw cycles, the mixture was stirred at 50 °C for 2 hours, yielding (TSPP)Rh^I quantitatively. The water, excessive triethylamine and other volatile by-products were removed under vacuum line. Then the (TSPP)Rh^I was dissolved in 0.8 mL methanol solution of 12.0 mM sodium borate buffer which was used for stoichiometric and catalytic reactions with the concentration of (TSPP)Rh^I 2.5mM.

(ESI-MS: 1243.91 and Exact Mass: 1243.91)

Figure 1S ESI-MS of anion [(TSPP)Rh-C₆F₅]Na₂²-

(TSPP)Rh- $C_6F_{5:}$ ¹HNMR (CD₃OD, 400 MHz) δ (ppm): 8.77 (s, 8H, pyrrole), 8.22 (d, 8H, o-phenyl, J_{H-H} =8 Hz), 8.17 (d, m-phenyl, J_{H-H} =8 Hz).

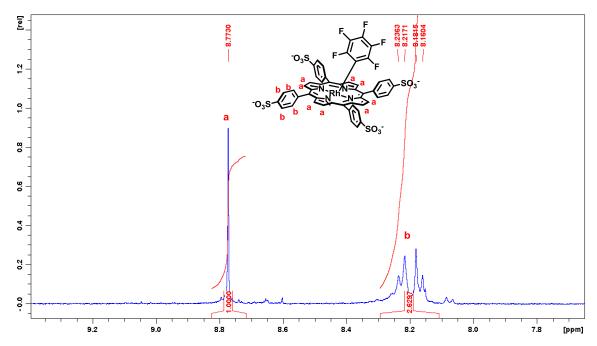


Figure 2S 1 H NMR of (TSPP)Rh- $C_{6}F_{5}$ in $CD_{3}OD$

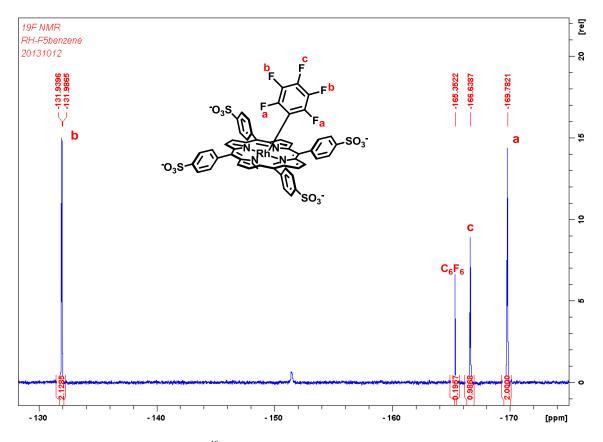


Figure 3S 19 F NMR of (TSPP)Rh- C_6F_5 in CD_3OD

The C_6F_5 radical, which is the photo-cleavage product of Rh-C bond, was trapped by TEMPO(TEMPO=2,2,6,6-Tetramethylpiperidine-1-oxyl)(**Figure 4S**)

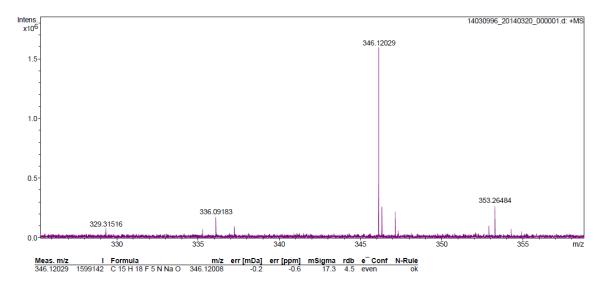


Figure 4S ESI-MS of TEMPO-C₆F₅

(ESI-MS: 346.120 and Exact Mass: 346.120)

The generation of (TSPP)Rh^{II} upon treatment of (TSPP)Rh^{III} with Me₂EtSiH was confirmed by trapping with CH₃I, yielding the known (TSPP)Rh^{III}-CH₃ complex.

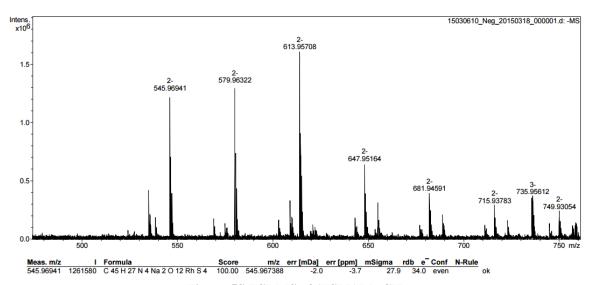


Figure 5S ESI-MS of (TSPP)Rh-CH₃

(ESI-MS: 1091.94 and Exact Mass: 1091.94)

4. Effects of Silanes

Table 1S Effects of silanes^a

entry	NEt ₃	R₃SiH	turnover ^b
1	no	0.2 mmol Me ₂ PhSiH	13.5
2	no	0.2 mmol Et ₃ SiH	21.3
3	no	0.2 mmol Ph ₂ MeSiH	15.5
4	no	0.2 mmol (EtO) ₂ MeSiH	15.5
5	no	0.2 mmol Et ₂ MeSiH	30.5
6 ^c	no	ethylene glycol 30 uL 0.2 mmol EtMe ₂ SiH	65.9

^aReaction conditions: 12 μL (0.1 mmol) hexafluorobenzene and different kinds of silanes (2 mmol) were added to 0.4 mL methanol solution of (TSPP)Rh^{III} (2.5mM) and sodium borate (0.012M), stirring at 60 $^{\circ}$ C under light irradiation (500 W Hg lamp, 15 cm distance) for 36 hours. b GC results, c hexafluorobenzene 24μL (0.2 mmol) was used.

5. General Procedure for Catalytic Hydrodefluorination Catalyzed by Porphyrin Rhodium

In a 25 mL Schlenk flask sealed with a Teflon cap, 1.0 mmol perfluoroarenes and 270 μL (2.0 mmol) Me₂EtSiH were added to 0.50 mL methanol solution of (TSPP)Rh^{III} (2mM) and sodium borate (0.012M), then 0.5 mL ethylene glycol were added. After being degassed by three freeze-pump-thaw cycles, the mixture was stirred at 60 °C under light irradiation for 36 hours. (500 W Hg lamp, 15 cm distance). In addition, the catalytic hydrodefluorination of pentafluorotoluene and N,N-dimethylpentafluoroaniline didn't occur under our standard reaction condition, indicating that our system showed no hydrodefluorination activity for pentafluorotoluene and N,N-dimethylpentafluoroaniline.

6. Spectral Data for Selected Compounds

2,3,5,6-Tetrafluoropyridine 19 F NMR (282 MHz) δ (ppm) -30.18 (m, 2F), -78.06 (m, 2F).

2,3,5,6-Tetrafluorobenzotrifluoride. ¹⁹F NMR (282 MHz) δ (ppm) 5.90(m, 3F), -74.1 (m, 2F), -78.0 (m, 2F).

2,3,5,6-Tetrafluorobenzaldehyde. ¹⁹F NMR (282 MHz) δ (ppm) -73.5 (m, 2F), -81.3 (m, 2F).

Sodium 2,3,5,6-tetrafluorobenzoate. 19 F NMR (282 MHz). δ (ppm) -77.4 (m,2F), -81.8 (m, 2F).

Methyl 2,3,5,6-Tetrafluorobenzoate. ¹⁹F NMR (282 MHz). δ (ppm) -75.8 (m, 2F), -78.3 (m, 2F).

Ethyl 2,3,5,6-tetrafluorobenzoate. 19 F NMR (282 MHz). δ (ppm) -75.8(m,2F), -78.6 (m, 2F).

Reference

- (1) K. R. Ashley, S. B. Shyu and J. G. Leipoldt, *Inorg. Chem.*, 1980, 19, 1613.
- (2) X. Fu and B. B. Wayland, J. Am. Chem. Soc., 2004, 126, 2623.
- (3) Z. Ling, L. Yun, L. Liu, B. Wu and X. Fu, Chem. Commun., 2013, 49, 4214.