Supporting Information

Lewis Acid Catalyzed Nazarov Type Cyclization for the Synthesis of Substituted Indane Framework: Total Synthesis of (\pm)-Mutisianthol

Dattatraya H. Dethe, ${ }^{\epsilon}$ Raghavender Boda ${ }^{\epsilon}$ and Ganesh M. Murhade ${ }^{\epsilon}$
${ }^{\epsilon}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India Tel: + 91-512-2596537, Fax: + 91-512-2597436.

Table of Contents:
General Information 3
Synthesis of Compound 12 and 13: 4
Synthesis of Compound 14 and 15: 5
Synthesis of Compound 16: 6
Synthesis of Compound 17 and 18: 7
Synthesis of Compound 19 and 20: 8
Synthesis of Compound 23 and 24a, b: 9
Synthesis of Compound 25a: 10
Synthesis of Compound 25b and 26: 11
Synthesis of Compound 27: 12
Synthesis of Compound 28 and 29: 13
Synthesis of Compound 30 and 31a, b: 14
Synthesis of Compound 32a, b: 15
Synthesis of Compound 33a, b, 1 and 30: 16
Mutisianthol ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR comparison tables: 17
X-ray crystallographic data: 18
NMR Spectra: 19

General Information

All reactions were carried out under nitrogen or argon atmosphere with dry solvents under anhydrous conditions, unless otherwise mentioned. Anhydrous THF and diethyl ether were distilled from sodium-benzophenone and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically pure material, unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and an p-anisaldehyde or ninhydrin stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography.

Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded on either a Bruker Avance $200\left({ }^{1} \mathrm{H}: 200 \mathrm{MHz},{ }^{13} \mathrm{C}: 50 \mathrm{MHz}\right)$, Bruker Avance $400\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$, Bruker Avance $500\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right)$, JEOL ECX $500\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right)$ Mass spectrometric data were obtained using WATERS-Q-Tof Premier-ESI-MS.

Diastereomeric ratios (dr) were determined by crude ${ }^{1} \mathrm{H}$ NMR.
The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of a doublet of a doublet, $\mathrm{dm}=$ doublet of a multiplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad .

Synthesis of compound 12

To a suspension of NaH (60% dispersion in mineral oil, $1.6 \mathrm{~g}, 40 \mathrm{mmol}$) in dry THF (20 ml) was added drop wise triethylphosphonoacetate $(9.6 \mathrm{ml}, 48 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After 30 min , the compound $\mathbf{1 1}(4 \mathrm{~g}, 26.7 \mathrm{mmol})$ in dry THF was added to the reaction mixture, which was then allowed to warm to RT and stirred for 24 h and then cooled with a water bath. A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 ml) was then added drop wise to the cold mixture. The aqueous phase was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with brine $(3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column furnished the product $\mathbf{1 2}$ $(4.7 \mathrm{~g}, 80 \%)$ as a colorless liquid; $R f=0.4$ (EtOAc-hexane 1:19); IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2933$, 1712, 1627, 1578, 1342, 1291, 1217, 1160, 1043, 853, 781, 692; ${ }^{1} \mathrm{H}$ NMR (200 MHz , CHLOROFORM-d) $\delta=7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1$ H), $6.96-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) δ $=166.7,159.5,155.3,143.6,129.4,118.7,117.2,114.2,112.0,59.8,55.2,17.9,14.2$; HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}$ [M+Na]: 243.0997; found: 243.0997.

Synthesis of compound 13

Compound $\mathbf{1 2}(4 \mathrm{~g}, 18.2 \mathrm{mmol})$ was dissolved in 20 ml of MeOH and 10% palladium on activated carbon was added. The reaction was stirred under H_{2} at RT overnight, whereupon TLC showed the reaction was complete. The solid was filtered off. Evaporation of the solvent
and purification of the residue on silica gel column furnished the product $\mathbf{1 3}(4.0 \mathrm{~g}, 99 \%)$ as a colorless liquid; $R f=0.4$ (EtOAc-hexane 1:19); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2966, 1733, 1602, 1585, $1488,1455,1437,1369,1262,1159,1070,1095,1034,781,700 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CHLOROFORM-d) $\delta=7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 2$ H), $4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{sxt}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.49(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CHLOROFORM-d) $\delta=172.3,159.6,147.4,129.4,119.1,112.7,111.4,60.2,55.1,42.9,36.5,21.7,14.1 ;$ HRMS-ESI: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{3}$ [M+Na]: 245.1154; found: 245.1159.

Synthesis of compound 14

To a cold $\left(0^{\circ} \mathrm{C}\right)$, magnetically stirred solution of ester $13(3 \mathrm{~g}, 13.5 \mathrm{mmol})$ in ether (25 ml) was added $\mathrm{LiAlH}_{4}(1 \mathrm{~g}, 27.0 \mathrm{mmol})$ portion wise and stirred for 15 min . Progress of the reaction was monitored by TLC. The reaction mixture was then quenched with EtOAc, extracted with ether and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue furnished the product $\mathbf{1 4}(2.1 \mathrm{~g}, 86 \%)$ as a colorless liquid; $R f=0.3$ (EtOAc-hexane 1:4); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3358,2958,2932,2876,1608,1600,1584,1486,1454,1436,1317$, 1285, 1261, 1159, 1043, 995, 872, 779, 701; ${ }^{1} \mathrm{H}$ NMR (400MHz, CHLOROFORM-d) $\delta=$ $7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62$ 3.52 (m, 2 H), 2.87 (sxt, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.85(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CHLOROFORM-d) $\delta=159.7$, 148.6, 129.4, 119.3, 112.9, 111.0, 61.1, 55.1, 40.8, 36.5, 22.3; HRMS-ESI: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 181.1229$; found: 181.1225.

Synthesis of compound 15

To a solution of alcohol $\mathbf{1 4}(2 \mathrm{~g}, 11.1 \mathrm{mmol})$ in ethyl acetate, was added IBX ($3.7 \mathrm{~g}, 13.3$ mmol) and refluxed for 1 h . The reaction mixture was cooled to RT and filtered through sintered funnel. The filter cake was washed with ethyl acetate for 2 to 3 times. Evaporation of the solvent and purification of the residue on silica gel column furnished the product $\mathbf{1 5}$ (1.8 $\mathrm{g}, 94 \%$) as a colorless liquid; $R f=0.4$ (EtOAc-hexane 1:6); IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2962,2929$, 2936, 2723, 1723, 1601, 1584, 1487, 1455, 1437, 1318, 1290, 1264, 1160, 1041, 872, 782, $700 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM-d) $\delta=9.71(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.83 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{sxt}, J=7.1 \mathrm{~Hz}, 1$ H), 2.80-2.61 (m, 2 H), 1.32 (d, J=6.9 Hz, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CHLOROFORM-d) $\delta=201.7,159.8,147.1,129.6,119.0,112.8,111.4,55.1,51.6,34.3,22.0 ;$ HRMS-ESI: m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 178.0994; found: 178.0993.

Synthesis of compound 16

To a solution of aldehyde $\mathbf{1 5}(1.5 \mathrm{~g}, 8.42 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dry $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(5.6 \mathrm{~g}, 16.8 \mathrm{mmol})$ and stirred magnetically for 6 h at RT. Evaporation of the solvent and purification of the residue on silica gel column furnished the product $\mathbf{1 6}$ (1.8 $\mathrm{g}, 93 \%$) as a colorless liquid; $R f=0.4$ (EtOAc-hexane 1:6); IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2958,2836$, 1723, 1656, 1601, 1584, 1487, 1454, 1435, 1314, 1266, 1209, 1158, 1043, 980, 872, 780, $700 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-d) $\delta=7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{td}, J=7.6,15.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.79 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.77-6.72$ (m, 2 H), 5.81 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 ($\mathrm{s}, 3$ H), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 2.87 ($\mathrm{sxt}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57-2.49 (m, 1 H), $2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.28$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CHLOROFORM-d) $\delta=166.9$, 159.7, 147.7, 147.5, 129.4, 122.2, 119.2, 112.9, 111.3, 55.1, 51.4, 40.8, 39.2, 21.6; HRMS-ESI: m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]$: 252.1600; found: 252.1608.

Synthesis of compound 17

To a stirred suspension of $\mathrm{LiAlH}_{4}(0.8 \mathrm{~g}, 20.4 \mathrm{mmol})$ in dry THF, a solution of $\mathrm{BnCl}(2.5 \mathrm{ml}$, 21.8 mmol) in dry THF was added drop wise via syringe at room temperature. After the suspension was stirred for 15 min , a solution of compound $\mathbf{1 2}(3.0 \mathrm{~g}, 13.6 \mathrm{mmol})$ in dry THF was added drop wise to the suspension. The reaction mixture was stirred at room temperature for 1 h . Then the reaction was quenched with water, filtered and the filtrate was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silica gel column furnished the product $\mathbf{1 7}(2.1 \mathrm{~g}, 86 \%)$ as a colorless liquid; $R f=0.3$ (EtOAc-hexane 1:6); IR (neat): $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3351,2997,2939,2835,1599,1578,1485,1429,1320.1288,1208,1174$, 1046, 997, 857, 777, 695; ${ }^{1} \mathrm{H}$ NMR (500MHz, CHLOROFORM-d) $\delta=7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1$ H), 7.03-6.99 (m, 1 H), 6.97-6.94 (m, 1 H), 6.83 (dd, $J=2.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.97(\mathrm{~m}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,CHLOROFORM-d) $\delta=159.5,144.4,137.6,129.2,126.7,118.3,112.5,111.7,59.8,55.2$, 16.0; HRMS-ESI: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}$ [M-H]: 177.0916; found: 177.0915.

Synthesis of compound 18

To a solution of alcohol $\mathbf{1 7}(2.0 \mathrm{~g}, 11.2 \mathrm{mmol})$ in ethyl acetate, was added IBX $(3.8 \mathrm{~g}, 13.5$ mmol) and refluxed for 1 h . The reaction mixture was cooled to RT and filtered through sintered funnel. The filter cake was washed with ethyl acetate for 2 to 3 times. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 18 (1.8 $\mathrm{g}, 91 \%$) as a colorless liquid; $R f=0.5$ (EtOAc-hexane 1:6); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3003,2940$, 2838, 1666, 1599, 1577, 1487, 1449, 1432, 1289, 1266, 1138, 1044, 854, 782, 692; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM-d) $\delta=10.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$
(dd, $J=0.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J$ $=1.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,CHLOROFORM-d) $\delta=191.2,159.6,157.5,141.9,129.6,127.2,118.6,115.3,111.9,55.2$, 16.3; HRMS-ESI: m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 177.0916$; found: 177.0915 .

Synthesis of compound 19

To a solution of aldehyde $\mathbf{1 8}(2.0 \mathrm{~g}, 11.4 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dry $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(5.7 \mathrm{~g}, 17.0 \mathrm{mmol})$ and stirred magnetically for 6 h at RT. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 19 (2.4 g, 93\%) as a colorless liquid; $R f=0.4$ (EtOAc-hexane 1:9); IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ 2997, 2949, $1715,1619,1575,1432,1314,1294,1260,1211,1142,1041,977,869,779 ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-d) $\delta=7.67(\mathrm{dd}, J=12.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=2.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CHLOROFORM-d): $\delta=167.7,159.6,145.4,143.5,140.8,129.4,124.8,120.9$, 118.5, 113.5, 111.9, 55.3, 51.5, 16.7; HRMS-ESI: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]:$ 255.0997; found: 255.0998 .

Synthesis of compound 20

To a stirred solution of compound $19(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{DCM}(3 \mathrm{~mL})$ under argon was added $\mathrm{TiCl}_{4}(0.2 \mathrm{ml}, 1 \mathrm{M} \mathrm{sol}$ in $\mathrm{DCM}, 0.2 \mathrm{mmol})$ drop wise at $0{ }^{\circ} \mathrm{C}$. The progress of the reaction was followed by TLC. After it was stirred 2 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of saturated aqueous NaHCO_{3}. The organic layer was separated, and
the aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL})$. The combined organic extracts were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 20 ($30 \mathrm{mg}, 60 \%$) as a semi solid; $R f$ $=0.4$ (EtOAc-hexane 1:19); IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2955,2838,1707,1633,1600,1489,1354$, 1261, 1248, 1189, 1165, 1104, 1049, 847, 818; ${ }^{1}$ H NMR (500 MHz ,CHLOROFORM-d) $\delta=$ $7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66$ - $3.57(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CHLOROFORM-d): $\delta=168.2,162.6,161.9,156.6,132.0,122.8,114.3$, 108.5, 105.0, 55.4, 50.9, 40.9, 37.4, 21.3; HRMS-ESI: m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 232.1099; found: 232.1098.

Synthesis of compound 23

A suspension of $\mathrm{NaH}(4.0 \mathrm{~g}, 60 \%$ suspension in mineral oil, 101.3 mmol$)$ in dry THF was cooled to $0{ }^{\circ} \mathrm{C}$ and added drop wise a solution of compound 22 ($10.0 \mathrm{~g}, 67.6 \mathrm{mmol}$) in dry THF. After 15 min MeI ($8.4 \mathrm{ml}, 135.1 \mathrm{mmol}$) was added slowly, the reaction mixture was allowed to stir at RT for 1 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, water was added to the reaction mixture and extracted with EtOAc. Evaporation of the solvent and purification of the residue on silicagel column furnished the product $23(10.5 \mathrm{~g}, 96 \%)$ as a colorless liquid; $R f=$ 0.4 (hexane); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2953,2924,1462,1377,1137,1045,886,852 ;{ }^{1} \mathrm{H}$ NMR (200 MHz, CHLOROFORM-d) $\delta=7.22-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.38$ (s, 1 H), $5.09(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=157.5,143.4,140.3,130.2,126.0,117.6,111.7,107.2,55.2,21.9$, 15.9; HRMS-ESI: m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 163.1123; found: 163.1127 .

Synthesis of compounds 24a, b

To $1.3 \mathrm{ml}(17.0 \mathrm{mmol})$ of DMF, cooled to $5{ }^{\circ} \mathrm{C}$, was added $1.6 \mathrm{ml}(17.0 \mathrm{mmol})$ of $\mathrm{POCl}_{3} .10$ ml of ethylene dichloride was then added and the mixture was stirred for 15 min while it was cooled to $5{ }^{\circ} \mathrm{C}$. Compound $\mathbf{2 3}$ ($7.5 \mathrm{~g}, 46.3 \mathrm{mmole}$) dissolved in 10 ml of ethylene dichloride and added drop wise with stirring over the course of 40 min . The mixture was then refluxed for 15 min and cooled to room temperature. A solution of $7.0 \mathrm{gm}(85.0 \mathrm{mmol})$ of anhydrous sodium acetate in 50 ml of water was added to the mixture slowly at first and then rapidly with stirring and cooling. The mixture was refluxed for 15 minutes, cooled and extracted with ether. Organic layer was dried over sodium sulfate and the solvent was removed under reduced pressure. The crude was purified by flash chromatography over silica gel column furnished the major product $24 \mathrm{a}(5.4 \mathrm{~g}, 62 \%$) as a yellow color semi solid type compound; $R f$ $=0.4$ (EtOAc-hexane 1:6) and minor product $\mathbf{2 4 b}(1.0 \mathrm{~g}, 12 \%)$ as a yellow color semi solid type compound; $R f=0.5$ (EtOAc-hexane 1:6);

Major aldehyde (24a)

IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2959,2905,1713,1618,1432,1408,1315,1292,1258,1238,1171$, 1143, 1033, 972, 851, 794; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM-d) $\delta=10.17$ (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{dd}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CHLOROFORM-d) $\delta=191.2,157.7,157.6,139.1,130.5,129.3,126.4$, 118.4, 107.3, 55.1, 16.2, 16.0; HRMS-ESI: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 191.1072; found: 191.1074.

Minor aldehyde (24b)

IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2923,2853,1673,1607,1571,1504,1464,1387,1405,1250,1174$, 1129, 1036, 862, 818; ${ }^{1} \mathrm{H}$ NMR (200 MHz , CHLOROFORM-d) $\delta=9.45$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{dd}, J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $2.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=193.1$, 162.0, 157.3, 136.9, 130.2, 128.7, 127.8, 120.4, 109.6, 55.1, 26.1, 15.8; HRMS-ESI: m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 191.1072; found: 191.1075.

Synthesis of compound 25a

To a solution of aldehyde $\mathbf{2 4 a}$ ($5.4 \mathrm{~g}, 28.4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dry $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(14.2 \mathrm{~g}, 42.63 \mathrm{mmol})$ and stirred magnetically for 6 h at RT. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 25a (6.7 g, 96%) as a yellow solid, $\mathrm{Mp} .52-54^{\circ} \mathrm{C} ; R f=0.4$ (EtOAc-hexane $1: 19$); IR (KBr): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1} 2950,1713,1616,1605,1516,1430,1408,1317,1291,1238,1206,1192,1142,1132,971$, 887, 851, 794; ${ }^{1} \mathrm{H}$ NMR (200 MHz, CHLOROFORM-d) $\delta=7.79(\mathrm{dd}, J=11.6,15.0 \mathrm{~Hz}, 1$ H), 7.19-6.90 (m, 3 H), 6.58 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (s, 3 H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz, CHLOROFORM-d) $\delta=167.5$, $157.4,145.5,140.7,140.5,130.2,127.0,123.7,120.2,117.9,107.1,54.9,51.2,16.4,15.8 ;$ HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 247.1334; found: 247.1333.

Synthesis of compound 25b

To a solution of aldehyde $\mathbf{2 4 b}$ ($1.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dry $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(2.6 \mathrm{~g}, 7.9 \mathrm{mmol})$ and stirred magnetically for 6 h at RT. Evaporation of the solvent and purification of the residue on silicagel column furnished the product $\mathbf{2 5 b}(1.2 \mathrm{~g}$, 96%) as a yellow color liquid; $R f=0.5$ (EtOAc-hexane 1:19); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2948$, 2854, 1713, 1616, 1587, 1510, 1436, 1405, 1304, 1252, 1229, 1191, 1168, 1039, 852, 817; ${ }^{1} \mathrm{H}$ NMR (200 MHz, CHLOROFORM-d) $\delta=7.47$ (dd, $J=11.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, 3 H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=$ $167.5,157.3,148.7,142.5,138.8,130.3,126.4,124.8,120.0,119.4,109.7,55.1,51.1,25.8$, 15.8; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}$ [M+Na]: 269.1154; found: 269.1159 .

Synthesis of compound 26

To a stirred solution of compound $\mathbf{2 5 a}$, \mathbf{b} ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dry DCM (5 mL) under argon was added $\mathrm{TiCl}_{4}(0.8 \mathrm{ml}, 1 \mathrm{M}$ sol in $\mathrm{DCM}, 0.8 \mathrm{mmol})$ drop wise at $0^{\circ} \mathrm{C}$. The progress of the reaction was followed by TLC. After it was stirred 2 h at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of saturated aqueous NaHCO_{3}. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL})$. The combined organic extracts were washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 26 ($124 \mathrm{mg}, 62 \%$) as a yellow solid, Mp. $53-55^{\circ} \mathrm{C} ; R f=0.4$ (EtOAc-hexane 1:19); IR (KBr): $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2952, 2832, 1707, 1684, 1631, 1608, 1578, 1491, 1451, 1436, 1346, 1325, 1262, 1178, 1164, 1116, 1020, 841; ${ }^{1} \mathrm{H}$ NMR (200 MHz, CHLOROFORM-d) $\delta=7.31(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1$ H), $3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.71(\mathrm{~m}, 1$ H), $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=$ $168.0,162.1,160.7,154.1,131.0,126.1,123.0,104.7,104.2,55.1,50.5,40.7,37.2,21.2$, 16.3; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 247.1334; found: 247.1338.

Synthesis of compound 27

Compound 26 ($300 \mathrm{mg}, 1.2 \mathrm{mmol}$) was dissolved in 5 mL of methanol and 10% palladium on activated carbon was added. The reaction was stirred under H_{2} at room temperature overnight, whereupon TLC showed the reaction was complete. The solid was filtered off. Evaporation of the solvent and purification of the residue on silicagel column furnished the product 27 ($284 \mathrm{mg}, 94 \%$) as a colorless liquid; $R f=0.5$ (EtOAc-hexane 1:19); IR (neat): $\mathrm{V}_{\max } / \mathrm{cm}^{-1} 2953,2857,1738,1493,1465,1436,1408,1255,1201,1155,1079,1028,996$, 878; ${ }^{1} \mathrm{H}$ NMR (200 MHz , CHLOROFORM-d) $\delta=6.89(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=5.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ - 2.49 (m, 1 H), 2.35 (dd, $J=9.3,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ ($\mathrm{s}, 3 \mathrm{H}$), 1.30 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.35$ - 1.18 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=173.2,157.1,146.9,136.5$, 124.8, 124.5, 104.9, 55.2, 51.4, 42.8, 39.9, 39.3, 38.0, 19.7, 16.3; HRMS-ESI: m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]: 271.1310$; found: 271.1319.

Synthesis of compound 28

To a cold $\left(0^{\circ} \mathrm{C}\right)$, magnetically stirred solution of the compound $27(284 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry ether was added methyl magnesium ioide [prepared from magnesium turnings (140 mg , 5.7 mmol), methyl iodide ($0.3 \mathrm{ml}, 5.7 \mathrm{mmol}$) and few crystals of iodine in dry ether] drop wise via syringe and stirred for 0.5 h at $0^{\circ} \mathrm{C}$. The reaction mixture was then quenched with aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. Organic layer was dried over sodium sulfate and the solvent was removed under reduced pressure. The crude was purified by flash chromatography over silica gel column furnished the product 28 ($258 \mathrm{mg}, 91 \%$) as a gel type compound; $R f=0.5$ (EtOAc-hexane 1:9); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3390$, 2957, 2924, 2855, 1613, 1489, 1465, 1406, 1374, 1299, 1278, 1176, 1201, 1176, 1097, 1064, 1028, 909, 879; ${ }^{1} \mathrm{H}$ NMR (200 MHz, CHLOROFORM-d) $\delta=6.97(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.23-$ 2.96 (m, 2 H), $2.80-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.56$ (dd, $J=10.0$, $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 MHz, CHLOROFORM-d) $\delta=156.8,146.6,138.7,125.0,124.4,105.0,71.3,55.4,49.5$, 45.6, 39.1, 38.5, 30.4, 29.7, 19.5, 16.3; HRMS-ESI: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]$: 266.2120; found: 266.2121 .

Synthesis of compound 29

A solution of compound $28(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ and p-TSA ($18 \mathrm{mg}, 0.1 \mathrm{mmol})$ in dry benzene (3 mL) was refluxed for 12 h , after which it was cooled, washed with saturated NaHCO_{3}, brine and then dried. Removal of solvent followed by chromatography of the residue gave the compound 29 ($77.9 \mathrm{mg}, 84 \%$) as a gel type compound; $R f=0.5$ (hexane); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2953,2925,2853,1613,1488,1465,1405,1374,1303,1278,1198,1156$, 1095, 1068, 1027, 883, 843, 808; ${ }^{1} \mathrm{H}$ NMR (500 MHz , CHLOROFORM-d) $\delta=6.82(\mathrm{~s}, 1 \mathrm{H})$, $6.69(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 1$
H), $2.46(\mathrm{td}, J=6.9,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$), $1.35-1.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CHLOROFORM-d) $\delta=156.9,146.8$, $138.3,132.2,128.5,125.8,124.5,105.1,55.5,44.0,42.4,38.3,25.8,19.4,18.1,16.3$; HRMS-ESI: m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 231.1749$; found: 231.1744.

Synthesis of compound 30

Under $\mathrm{N}_{2}, \mathrm{NaH}$ ($417.4 \mathrm{mg}, 10.4 \mathrm{mmol}, 60 \%$ in mineral oil) was washed with anhydrous hexanes (3 times). After a few minutes, anhydrous DMF (10 mL) was added. To this mixture was slowly added a solution of $\mathrm{EtSH}(0.5 \mathrm{~mL}, 6.8 \mathrm{mmol})$ in anhydrous DMF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting yellow solution was stirred for 20 min at rt . A solution of compound 29 (50 $\mathrm{mg}, 0.22 \mathrm{mmol}$) in anhydrous DMF (1 mL) was then added dropwise, and the resulting mixture was stirred for 6 h at $130^{\circ} \mathrm{C}$, becoming slightly brown. The mixture was cooled to rt, and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. Evaporation of the solvent and purification of the residue on silicagel column furnished the product $\mathbf{3 0}(36.1 \mathrm{mg}, 77 \%)$ as a semi solid; $R f=$ 0.5 (EtOAc-hexane 1:9); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3401,2955,2925,2866,1488,1457,1416$, 1375, 1286, 1182, 1150, 1057, 995; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-d) $\delta=6.79(\mathrm{~s}, 1$ H), $6.62(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}$, $1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25-1.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CHLOROFORM-d) $\delta=152.7$, 147.5, 139.1, 132.3, 128.4, 125.9, 121.2, 109.6, 44.1, 42.4, 38.0, 25.8, 19.2, 18.1, 15.8; HRMS-ESI: m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}\right]: 216.1514$; found: 216.1516.

Synthesis of compound 31a, b

To a solution of compound $26(400 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $1: 1 \mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL) at RT was added freshly crushed Mg turnings ($1.2 \mathrm{~g}, 48.8 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{Cl}(172 \mathrm{mg}, 3.2$ $\mathrm{mmol})$. The resulting mixture was stirred vigorously at rt for 12 h . The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and allowed to warm to RT before being partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was isolated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification of the residue on silicagel column furnished inseparable mixture of diasteromers (1:1) 31a, $\mathbf{b}(205 \mathrm{mg}, 51 \%)$ as a gel type compound;; IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2953$, 2857, 1738, 1493, 1465, 1436, 1408, 1255, 1201, 1155, 1079, 1028, 996, 878; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM-d) $\delta=6.93(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80$ (s, 3 H), 3.72 (s, 3 H), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), 3.59-3.50 (m, 1 H), 3.47-3.36 (m, 1 H), 3.28-3.17 (m, 1 H), 3.14-3.02 (m, 1 H), 2.88 (dd, $J=5.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66-2.53 (m, 2 H), 2.42-2.31 (m, 2 H), 2.19 (s, 3 H), 2.18 (s, 3 H), $2.06-1.97$ (m, 1 H), $1.96-1.87$ (m, 1 H), 1.30 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz , CHLOROFORM-d) $\delta=173.3,173.2,157.2,157.1,146.9,146.8,136.5,136.4,125.5,124.8$, $124.7,124.5,105.2,105.0,55.3,55.2,51.4,51.3,42.8,41.1,40.1,39.9,39.3,39.2,38.0$, 37.5, 20.3, 19.7, 16.3; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{3}$ [M+Na]: 271.1310; found: 271.1319.

Synthesis of compound 32a, b

According to the procedure for the synthesis of compound 28, compound $\mathbf{3 1 a}, \mathbf{b}$ ($200 \mathrm{mg}, 0.8$ mmol), magnesium turnings ($97 \mathrm{mg}, 4.0 \mathrm{mmol}$) and methyl iodide ($0.3 \mathrm{ml}, 4.0 \mathrm{mmol}$) were used to furnish the product 32a, b ($180 \mathrm{mg}, 90 \%$) as a colorless liquid; $R f=0.5$ (EtOAchexane 1:9); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3391,2957,2924,2865,1613,1490,1465,1406,1374$, 1334, 1298, 1277, 1253, 1201, 1174, 1147, 1096, 1066, 1028, 995, 932, 909, 879, 843; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-d) $\delta=6.97$ (s, 2 H), 6.69 (s, 2 H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3$ H), 3.35-3.19 (m, 2 H), 3.15-3.06 (m, 2 H), 2.71-2.65 (m, 1 H), 2.29-2.21 (m, 1 H), 2.22 (s, 3 H), 2.21 ($\mathrm{s}, 3 \mathrm{H}$), 2.16-2.08 (m, 1 H), 2.03-1.93 (m, 2 H), 1.66-1.53 (m, 2 H$), 1.37-$ 1.32 (m, 1 H), 1.36 ($\mathrm{s}, 6 \mathrm{H}$), 1.34 ($\mathrm{s}, 6 \mathrm{H}$), 1.33 (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.24 (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CHLOROFORM-d) $\delta=156.9,147.0,146.6,138.8,138.7$, 125.5,
125.0, 124.7, 124.4, 105.3, 105.0, 71.4, 55.5, 55.4, 49.8, 49.5, 45.6, 43.3, 39.2, 38.6, 38.2, 30.5, 30.2, 29.9, 29.7, 20.9, 19.6, 16.4; HRMS-ESI: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]:$ 271.1674; found: 271.1672.

Synthesis of compound 33a, b

According to the procedure for the synthesis of compound 29, compound $\mathbf{3 2 a}, \mathbf{b}$ ($100 \mathrm{mg}, 0.4$ mmol) and p-TSA ($18 \mathrm{mg}, 0.1 \mathrm{mmol}$) were used to furnish the product $\mathbf{3 3 a}, \mathbf{b}(79.7 \mathrm{mg}, 86 \%)$ as a colorless liquid; $R f=0.5$ (hexane); IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2953,2925,2855,1614,1489$, 1465, 1406, 1374, 1300, 1277, 1199, 1168, 1092, 1068, 1027, 883, 843, 808; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-d) $\delta=6.85(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2$ H), 4.04-3.97 (m, 1 H), 3.85 (s, 1H), 3.83 (s, 1 H), 3.85-3.83(m, 1 H), 3.27-3.24 (m, 1 H), 3.12-3.06 (m, 1 H), 2.50-2.44 (m, 1 H), 2.20 (s, 3 H), 2.19 (s, 3 H), 2.02-1.92 (m, 2 H), $1.80(\mathrm{~s}, 6 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3$ H), $1.35-1.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CHLOROFORM-d) $\delta=157.0,147.2,146.8$, $138.4,137.8,132.2,131.1,128.7,128.5,126.1,125.8,124.8,124.5,105.5,105.1,55.6,55.5$, 44.1, 42.44, 42.42, 41.5, 38.4, 38.3, 29.7, 25.8, 21.0, 19.4, 18.14, 18.14, 16.34, 16.28;

Synthesis of compounds 1 and 30

According to the procedure for the synthesis of compound 30, compound 33a, b ($79 \mathbf{~ m g}, 0.3$ $\mathrm{mmol}), \mathrm{NaH}(659 \mathrm{mg}, 16.5 \mathrm{mmol}, 60 \%$ in mineral oil) and EtSH ($0.8 \mathrm{~mL}, 10.7 \mathrm{mmol}$) were used to furnish the product $\mathbf{1}(28.5 \mathrm{mg}, 38 \%)$ as a white solid and product $\mathbf{3 0}(28.5 \mathrm{mg}, 38 \%)$, Mp. 97-98 ${ }^{\circ} \mathrm{C} ; R f=0.5$ (EtOAc-hexane 1:9; IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3331$, 2951, 2924, 2857, 1618, 1492, 1446, 1374, 1295, 1190, 1162, 881, 861; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORMd) $\delta=6.81(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{brd}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{brs}, 1 \mathrm{H}), 4.02-3.92$ (m, 1 H), 3.24-3.16(m, 1 H), 2.21 (s, 3 H), $1.98-1.89$ (m, 2 H), 1.78 (brs, 3 H), 1.74 (brs, 3
H), $1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CHLOROFORM-d) $\delta=152.7$, 147.9, 138.6, 131.2, 128.6, 126.3, 121.6, 110.1, 42.4, 41.5, 38.0, 25.8, 20.9, 18.1, 15.8; HRMS-ESI: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}\right]: 216.1514$; found: 216.1515.

Mutisianthol 1

synthesized Mutisianthol (1)	Synthetic Mutisianthol (literature) Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr. Tetrahedron, 2003, 59, 5817.	Isolation
$\delta \mathrm{H}(500 \mathrm{MHz}, \mathrm{CDCl} 3$)	$\delta \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	8H ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
1.20 (d, J = 7.0 Hz, 3 H)	1.20 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$	1.20 (d, J = 7.0 Hz, 3 H)
1.74 (brs, 3 H)	1.74 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$),	1.74 (d, $J=10.0 \mathrm{~Hz}, 3 \mathrm{H})$
1.78 (brs, 3 H)	1.77 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$	1.78 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$
1.89-1.98 (m, 2 H$)$,	$1.88-1.97$ (m, 2H),	1.93 (m, 2 H)
2.21 (s, 3 H),	2.21 ($\mathrm{s}, 3 \mathrm{H})$	2.20 ($\mathrm{s}, 3 \mathrm{H})$
3.16-3.24 (m, 1 H)	$3.14-3.25$ (m, 1H)	3.21 (ddq, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$
3.92-4.02 (m, 1 H),	$3.95-3.99$ (m, 1H)	3.97 (ddd, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$
4.54 (brs, 1 H),		
5.12 (brd, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$	$5.10-5.13$ (m, 1H)	5.13 (dqq, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$
6.61 (s, 1 H),	6.61 (s, 1H)	6.61 ($\mathrm{s}, 1 \mathrm{H})$
6.81 (s, 1 H),	6.81 (s, 1H)	6.81 (s, 1 H)

synthesized Mutisianthol (1)	Synthetic Mutisianthol (literature) Ferraz, H. M. C.; Aguilar, A. M.; Silva, L. F. Jr. Tetrahedron, 2003, 59, 5817.
$8 \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$8 \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
15.8	15.8
18.1	18.1
20.9	20.9
25.8	25.8
38.0	38.1
41.5	41.5
42.4	42.4
110.1	110.1
121.6	121.6
126.3	126.3
128.6	128.6
131.2	131.2
138.6	138.7
147.9	147.9
152.7	152.8

X-ray crystallographic data and structure refinement for compound 20

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) compound1
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: compound1

[^0]Click on the hyperlinks for more details of the test.

BR1428_13C-2.esp寅

BR1241_13C-2.es

Way

Abstract

Sat5av2\#015.002.001.1r.esp

^[]

[^0]: The following ALBRTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level.

