Supporting Information

Synthesis of Silafluorenes and Silaindenes via Silyl Radicals from Arylhydrosilanes: Intramolecular Cyclization and Intermolecular Annulation with Alkynes

Table of Contents

1. General considerations	1
2. Intramolecular homolytic aromatic silylation of biphenylhydrosilanes	2
3. Intermolecular silyl radical cascades with alkynes	
4. X-ray diffraction data of 5c. (CCDC 1037609)	
5. Optical Property Characterization	
6. Copy of NMR spectra	

1. General considerations

General. Unless otherwise noted, all reactions were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator. Preparative thin-layer chromatography (PTLC) was performed on pre-coated, glass-backed GF254 silica gel plates. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with PTLC or standard silica gel chromatography. Column chromatography was performed on silica gel (200–300 mesh) using standard methods.

Structural analysis. NMR spectra were measured on a Bruker Avance-400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents (CDCl₃,) and referenced internally to corresponding solvent resonance, and ¹³C NMR spectra were recorded at 100 MHz and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired with an EI source. Single crystal X-ray diffraction analysis of **5c** was carried out by Mr. Yousong Ding on a Bruker apex duo equipment at Center for Applied Chemistry Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University.

Materials. Commercial reagents were purchased from J&K, Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, Strem Chemicals, TCI and used as received unless otherwise stated. Hexane, THF, Et₂O, benzene were purified by distillation over sodium and stored under N₂.

2. Intramolecular homolytic aromatic silylation of

biphenylhydrosilanes

2.1 Preparation of starting materials

A. General procedure A for synthesis of biphenylhydrosilanes:

n-BuLi (1.5 mL, 3.75 mmol, 1.5 eq.) was added dropwise to a solution of 2-bromo-1,1'-biphenyl (582.8 mg, 2.5 mmol, 1.0 eq.) in THF (10 mL) at -78 $^{\circ}$ C under an atmosphere of N₂. After stirring for 15 min, dimethylchlorosilane (354.8 mg, 3.75 mmol, 1.5 eq.) was added dropwise at -78 $^{\circ}$ C to the mixture, then the mixture was warmed to 25 $^{\circ}$ C slowly. After 24 h, a saturated solution of NH₄Cl in H₂O was added and the mixture was extracted using EA (ethyl acetate). The organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The product was isolated by column chromatography on silica gel (PE, petroleum ether) to give 2-(dimethylsilyl)biphenyl.¹

(1b) dimethyl(4'-methyl-[1,1'-biphenyl]-2-yl)silane

Chemical Formula: C₁₅H₁₈Si Exact Mass: 226.1178 Molecular Weight: 226.3940

The general procedure A was followed using 2-bromo-4'-methyl-1,1'-biphenyl (617.9 mg, 2.5 mmol, 1.0 eq.) as starting material, **1b** was obtained as a colorless liquid.

¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 7.2 Hz, 1H), 7.41 (td, *J* = 7.4, 1.2 Hz, 1H), 7.34 (td, *J* = 7.2, 1.2 Hz, 1H), 7.29-7.19 (m, 5H), 4.48 (m, 1H), 2.41 (s, 3H), 0.07 (dd, *J* = 4.0, 1.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 149.5, 141.0, 136.9, 136.2, 135.2, 129.5, 129.2, 128.7, 126.4, 21.4, -2.8.

HRMS (EI⁺): Calculated for $C_{15}H_{18}Si$ (M⁺): 226.1178, Found: 226.1174. IR (cm⁻¹): 3050, 2956, 2117, 1464, 1249, 1124, 881, 835, 762, 731, 708 .

(1g) [1,1':4',1''-terphenyl]-2-yldimethylsilane

Chemical Formula: C₂₀H₂₀Si Exact Mass: 288.1334 Molecular Weight: 288.4650

The general procedure A was followed using 2-bromo-1,1':4',1"-terphenyl (773.0 mg, 2.5 mmol, 1.0 eq.) as starting material, **1g** was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.66 (t, *J* = 8.0 Hz, 5H), 7.49-7.43 (m, 5H), 7.39-7.34 (m, 3H), 4.39 (d, *J* = 3.6 Hz, 1H), 0.11 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 149.0, 142.9, 140.9, 140.1, 136.2, 135.3, 129.8, 129.4, 129.3, 128.9, 127.5, 127.2, 126.7, 126.6, -2.8. HRMS (EI⁺): Calculated for C₂₀H₂₀Si (M⁺): 288.1334, Found: 288.1339. IR (cm⁻¹): 3026, 2955, 2096, 1465, 1426, 1249, 1123, 891, 756, 697.

(1i) (3'-methoxy-[1,1'-biphenyl]-2-yl)dimethylsilane

Chemical Formula: C₁₅H₁₈OSi Exact Mass: 242.1127 Molecular Weight: 242.3930

1209, 877, 836, 761, 730, 701.

The general procedure A was followed using2-bromo-3'-methoxy-1,1'-biphenyl (657.8 mg, 2.5 mmol, 1.0 eq.) as startingmaterial, 1j was obtained as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.62 (dd, J = 7.6, 1.2 Hz, 1H), 7.42 (td,

J = 7.6, 1.6 Hz, 1H), 7.35 (td, *J* = 7.6, 1.6 Hz, 1H), 7.32-7.28 (m, 2H),

6.94-6.90 (m, 3H), 4.36 (m, 1H), 3.83 (s, 3H), 0.09 (d, *J* = 3.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ ppm 159.30, 149.3, 145.3, 136.1, 135.3,

129.2, 129.1, 126.6, 121.9, 114.8, 113.1, 55.4, -2.8.

HRMS (EI⁺): Calculated for $C_{15}H_{18}OSi$ (M⁺): 242.1127, Found: 242.1121.

IR (cm⁻¹): 3052, 3000, 2955, 2902, 2833, 2116, 1583, 1463, 1247, 1216,

(1k) 2-(benzofuran-2-yl)phenyl)dimethylsilane

Chemical Formula: C₁₆H₁₆OSi Exact Mass: 252.0970 Molecular Weight: 252.3880 The general procedure A was followed using 2-(2-bromophenyl)benzofuran (682.8 mg, 2.5 mmol, 1.0 eq.) as starting material, **1k** was obtained as a colorless liquid.

¹H NMR (400 MHz, CDCl₃) δ ppm 7.74 (dd, *J* = 7.6, 6.4 Hz, 2H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.32-7.24 (m, 2H), 6.94 (s, 1H), 4.56 (m, 1H), 0.34 (dd, *J* = 3.6, 2.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 157.8, 154.6, 136.6, 136.3, 136.2, 129.5, 129.2, 128.0, 127.8, 124.2, 123.1, 121.1, 111.1, 103.2, -2.6.

HRMS (EI⁺): Calculated for $C_{16}H_{16}OSi$ (M⁺): 252.0970, Found: 252.0967. IR (cm⁻¹): 3053, 2954, 2923, 2111, 1445, 1247, 898, 877, 764, 747, 724.

2.2. Synthesis of silafluorenes

A. Optimization of reaction parameters

Table S1. Optimization of radical initiator^a

Entry	Radical initiator	Yield (%) ^b
1	di <i>tart</i> butul perovide	70
1		19
2	benzoyl peroxide	19
3	azodiisobutyronitrile	trace
4	<i>tert</i> -butyl hydroperoxide ^c	n.r.

^aReaction conditions: biphenyl-2-yldimethylsilane (0.1 mmol), radical initiator (0.3 mmol), benzene (0.5 ml) under 130 °C and N₂ atomosphere for 24 h. ^bYields based on ¹H NMR analysis of the crude products with 1,3,5-trimethoxybenzene added as an internal standard. ^c70% solvent in H₂O.

Table S2. Optimization of additive^a

Entry	Additive	Yield (%) ^b
1	$K_2CO_3(3.0 \text{ eq})$	75
2	^t BuLi(3.0 eq)	64
3	$K_{3}PO_{4}(3.0 eq)$	60
4	$CsCO_3(3.0 eq)$	43

5	LiOMe(3.0 eq)	68
6	^t BuOK(3.0 eq)	n.r.
7	LiOAc(3.0 eq)	67
8	PhCOONa(3.0 eq)	65
9	$Na_2CO_3(3.0 eq)$	67
10	KOAc(3.0 eq)	72
11	KHCO ₃ (3.0 eq)	72
12	$Na_{3}PO_{4}(3.0 eq)$	72
13	K ₂ CO ₃ (3.0 eq), Phenanthroline(20 mol%)	23
14	K ₂ CO ₃ (3.0 eq), TMEDA(20 mol%)	8
15	K ₂ CO ₃ (3.0 eq), DMEDA(20 mol%)	10

^aReaction conditions: biphenyl-2-yldimethylsilane (0.1 mmol), DTBP (0.3 mmol), additive, benzene (0.5 ml) under 130 $^{\circ}$ C and N₂ atomosphere for 24 h. ^bYields based on ¹H NMR analysis of the crude products with 1,3,5-trimethoxybenzene added as an internal standard.

 Table S3.
 Optimization of solvent^a

Entry	Solvent	Yield (%) ^b
1	acetonitrile	47
2	benzene	66 ^c
3	toluene	39
4	dioxane	57
5	1,2-dichloroethane	36
6	water	7
7	trifluorotoluene	84 (77) ^d
8	chlorobenzene	78
9	1,2-dichlorobenzene	63
10	tert-butylbenzene	65
11	tetrachloromethane	trace
12	1,1,2,2-tetrachloroethane	trace

^aReaction conditions: biphenyl-2-yldimethylsilane (0.1 mmol), DTBP (0.3 mmol), solvent (0.5 ml) under 130 $^{\circ}$ C and N₂ atomosphere for 24 h. ^bYields based on ¹H NMR analysis of the crude products with 1,3,5-trimethoxybenzene added as an internal standard. ^cThe reaction was performed under air. ^dIsolated yield shown in parenthesis.

Table S4.	Optimization	of other	reaction	parameters ^a

Entry	Radical initiator	Temperature (°C)	Time (h)	Yield (%) ^b
1	DTBP(2.0 eq)	130	24	61
2	DTBP(4.0 eq)	130	24	72
3	DTBP(3.0 eq)	130	20	80
4	DTBP(3.0 eq)	130	36	81
5	DTBP(3.0 eq)	130	48	72
6	DTBP(3.0 eq)	120	24	73
7	DTBP(3.0 eq)	140	24	75
8	DTBP(3.0 eq)	150	24	75

^aReaction conditions: biphenyl-2-yldimethylsilane (0.1 mmol), DTBP, trifluorotoluene (0.5 ml) under certain temperature and N_2 atomosphere for a certain period of time. ^bYields based on ¹H NMR analysis of the crude products with 1,3,5-trimethoxybenzene added as an internal standard.

B. General procedure B for synthesis of silafluorenes:

In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar were placed with biphenylhydrosilanes (0.25 mmol, 1.0 eq, if solid). After evacuation and refill with dry nitrogen for three times, DTBP (137.8 uL, 0.75 mmol, 3.0 eq.) and PhCF₃ (1.0 mL) were added with syringes under a stream of nitrogen. The resulting mixture was allowed to stir at 130 \degree for 36 h. After cooling to room temperature, the reaction mixture was concentrated and then purified by column chromatography on silica gel or PTLC (PE as the eluting solvent) to give the target products.

C. Spectra data of silafluorenes:

(2a) 5,5-dimethyl-5*H*-dibenzo[*b*,*d*]silole,¹ CAS: 13688-68-1

Chemical Formula: C₁₄H₁₄Si Exact Mass: 210.0865 Molecular Weight: 210.3510 The general procedure B was followed using biphenyl-2-yldimethylsilane **1a** (53.1 mg, 0.25 mmol, 1.0 eq.) as starting material. **2a** was obtained as yellow oil (40.6 mg, 77%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.43 (s, 6H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 7.2 Hz, 2H), 7.83 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ ppm -3.1, 121.0, 127.5, 130.3, 132.9, 139.1, 147.9..

(2b) 3,5,5-trimethyl-5*H*-dibenzo[*b*,*d*]silole

Exact Mass: 224.1021 Molecular Weight: 224.3780 The general procedure B was followed using dimethyl(4'-methylbiphenyl-2-yl)silane **1b** (56.6 mg, 0.25 mmol, 1.0 eq.) as starting material. **2b** was obtained as yellow oil (37.1 mg, 66%). ¹H NMR (400 MHz, CDCl₃): δ ppm 0.41 (s, 6H), 2.38 (s, 3H), 7.24 (t, *J* = 5.6

H NMR (400 MHz, CDCl₃). 6 ppin 0.41 (s, 6H), 2.38 (s, 5H), 7.24 (t, J = 5.0 Hz, 2H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.44 (s, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.1, 21.5, 120.7, 120.8, 127.1, 130.3, 131.1, 132.8, 133.6, 137.1, 138.8, 139.1, 145.3, 148.0.

HRMS (EI⁺): Calculated for C₁₅H₁₆Si (M⁺): 224.1021, Found: 224.1022. IR (cm⁻¹): 2919, 1619, 1275, 1259, 1062, 764, 750, 672.

(2c) 3-methoxy-5,5-dimethyl-5*H*-dibenzo[*b*,*d*]silole,¹ CAS: 1252259-64-5

ThegeneralprocedureBwasfollowedusing(4'-methoxybiphenyl-2-yl)dimethylsilane1c(60.6mg,0.25mmol,1.0eq.)asstarting material.2cwas obtained as yellow oil (40.7mg,68%).

Chemical Formula: C₁₅H₁₆OSi Exact Mass: 240.0970 Molecular Weight: 240.3770 ¹H NMR (400 MHz, CDCl₃): δ ppm 0.43 (s, 6H), 3.87 (s, 3H), 6.97 (dd, J = 8.4, 2.4 Hz, 1H), 7.17 (d, J = 2.4 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 6.8 Hz, 1H), 7.74 (t, J = 8.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.1, 55.5, 115.7, 118.0, 120.3, 122.1, 126.5, 130.4, 132.8, 138.3, 140.8, 141.1, 147.9, 159.4.

(2d) 3-chloro-5,5-dimethyl-5*H*-dibenzo[*b*,*d*]silole,¹ CAS: 1252259-63-4

Chemical Formula: C₁₄H₁₃ClSi Exact Mass: 244.0475 Molecular Weight: 244.7930

ThegeneralprocedureBwasfollowedusing(4'-chlorobiphenyl-2-yl)dimethylsilane1d(74.0 mg, 0.3 mmol, 1.0 eq.) asstarting material.2dwas obtained as yellow solid (58.0 mg, 79%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.43 (s, 6H), 7.29 (t, *J* = 7.2Hz, 1H), 7.38 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.62 (d, *J* = 6.8 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.2, 121.0, 122.2, 127.7, 130.3, 130.5, 132.7, 133.0, 133.6, 138.7, 141.6, 146.2, 146.9.

(2e) 3-fluoro-5,5-dimethyl-5*H*-dibenzo[*b*,*d*]silole,¹ CAS: 1252259-62-3

Chemical Formula: C₁₄H₁₃FSi Exact Mass: 228.0771 Molecular Weight: 228.3414

The general procedure B was followed using (4'-fluorobiphenyl-2-yl)dimethylsilane **1e** (69.0 mg, 0.3 mmol, 1.0 eq.) as starting material. **2e** was obtained as yellow oil (46.6 mg, 68%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.42 (s, 6H), 7.08 (td, *J* = 8.8, 2.8 Hz, 1H), 7.23-7.29 (m, 2H), 7.42 (td, *J* = 7.6, 1.2 Hz, 1H), 7.61 (d, *J* = 6.8 Hz, 1H), 7.73-7.77 (m, 2H)

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.2, 117.1 (d, J = 23 Hz), 119.1 (d, J = 20 Hz), 120.7, 122.4 (d, J = 7 Hz), 127.2, 130.5, 133.0, 138.6, 142.0 (d, J = 5 Hz), 143.8 (d, J = 3 Hz), 147.1, 162.8 (d, J = 247 Hz).

¹⁹F NMR (377 MHz, CDCl3): δ ppm -115.81.

(2f) 5,5-dimethyl-3-(trifluoromethyl)-5*H*-dibenzo[*b*,*d*]silole,¹ CAS: 1252259-61-2

The general procedure B was followed using dimethyl(4'-(trifluoromethyl)biphenyl-2-yl)silane **1f** (70.1 mg, 0.25 mmol, 1.0 eq.) as starting material. **2f** was obtained as white solid (56.7 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ ppm 0.46 (s, 6H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.48 (td, *J* = 7.6, 1.2 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.86-7.91 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ ppm -3.3, 120.9, 121.7, 124.8 (q, *J* = 271 Hz), 127.4 (q, *J* = 4 Hz), 128.5, 129.2 (q, *J* = 32 Hz), 129.5 (q, *J* = 4 Hz), 130.6, 133.1, 139.6, 140.0, 146.5, 151.3.

¹⁹F NMR (377 MHz, CDCl3): δ ppm -62.20.

(2g) 5,5-dimethyl-3-phenyl-5*H*-dibenzo[*b*,*d*]silole

Chemical Formula: C₂₀H₁₈Si Exact Mass: 286.1178 Molecular Weight: 286.4490

ThegeneralprocedureBwasfollowedusing[1,1':4',1"-terphenyl]-2-yldimethylsilane1g(72.1 mg, 0.25 mmol, 1.0 eq.) asstarting material.2gwas obtained as yellow solid (53 mg, 74%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.52 (s, 6H), 7.34 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.48-7.53 (m, 3H). 7.71 (d, J = 7.6 Hz, 4H), 7.89-7.94 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.1, 121.1, 121.3, 127.2, 127.3, 127.5,

128.9, 129.3, 130.4, 131.6, 132.9, 139.2, 139.8, 140.3, 141.4, 147.1, 147.6.

HRMS (EI⁺): Calculated for $C_{20}H_{18}Si$ (M⁺): 286.1178, Found: 286.1181.

IR (cm⁻¹): 3045, 2957, 1594, 1464, 1433, 1388, 1246, 1130, 1064, 841, 779, 754, 692.

(2h) 1,5,5-trimethyl-5*H*-dibenzo[*b*,*d*]silole¹, CAS: 252259-84-9

Chemical Formula: C₁₅H₁₆Si Exact Mass: 224.1021 Molecular Weight: 224.3780 The general procedure B was followed using dimethyl(2'-methylbiphenyl-2-yl)silane **1h** (56.6 mg, 0.25 mmol, 1.0 eq.) as starting material. **2h** was obtained as yellow oil (35.7 mg, 64%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.41 (s, 6H), 2.77 (s, 3H), 7.19-7.25 (m, 2H). 7.29 (t, J = 6.8 Hz, 1H), 7.45 (td, J = 7.6, 1.6 Hz, 1H), 7.51 (dd, J = 6.8, 1.2 Hz, 1H), 7.68 (dd, J = 6.8, 0.4 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -3.1, 24.4, 125.8, 126.6, 127.0, 130.1, 130.5, 132.9, 134.4, 134.5, 140.5, 140.7, 146.2, 149.8.

(2i) 4-methoxy-5,5-dimethyl-5*H*-dibenzo[*b*,*d*]silole

ThegeneralprocedureBwasfollowedusing(3'-methoxybiphenyl-2-yl)dimethylsilane1i(60.6 mg, 0.25 mmol, 1.0 eq.)as starting material.2i was obtained as yellow oil (48 mg, 67%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.44 (s, 6H), 3.85 (s, 3H), 6.75 (d, J =

Chemical Formula: C₁₅H₁₆OSi Exact Mass: 240.0970 Molecular Weight: 240.3770

7.6 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.38-7.45 (m, 3H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ ppm -3.6, 55.5, 109.1, 114.1, 121.3, 125.7,

127.6, 130.0, 132.5, 132.7, 140.0, 147.7, 149.7, 164.2.

HRMS (EI⁺): Calculated for C₁₅H₁₆OSi (M⁺): 240.0970, Found: 240.0972.

IR (cm⁻¹): 3058, 2955, 1591, 1568, 1558, 1472, 1430, 1243, 1107, 842, 799, 782, 756, 724.

(2j) 11,11-dimethyl-11*H*-benzo[*b*]naphtho[2,1-*d*]silole

Chemical Formula: C₁₈H₁₆Si Exact Mass: 260.1021 Molecular Weight: 260.4110

The general procedure B was followed using dimethyl(2-(naphthalen-2-yl)phenyl)silane **1j** (65.6 mg, 0.25 mmol, 1.0 eq.) as starting material. **2j** was obtained as yellow oil (33.6 mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ ppm 0.62 (s, 6H), 7.34 (t, J = 7.2 Hz, 1H),

7.46-7.55 (m, 3H), 7.72 (d, *J* = 7.2 Hz, 1H), 7.88-8.02 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ -2.5, 120.1, 121.4, 125.8, 127.0, 127.7, 128.8,

129.3, 130.6, 131.3, 133.0, 133.4, 137.1, 137.4, 139.5, 147.1, 148.4.

HRMS (EI⁺): Calculated for $C_{18}H_{16}Si$ (M⁺): 260.1021, Found: 260.1024.

IR (cm⁻¹): 3045, 2956, 2918, 2850, 1585, 1455, 1247, 1147, 1128, 993, 843, 824, 776, 760, 744, 716, 686.

(2k) 10,10-dimethyl-10*H*-benzo[4,5]silolo[3,2-*b*]benzofuran

Chemical Formula: C₁₆H₁₄OSi Exact Mass: 250.0814 Molecular Weight: 250.3720

The general procedure B was followed using 2-(benzofuran-2-yl)phenyl)dimethylsilane **1k** (63.1 mg, 0.25 mmol, 1.0 eq.) as starting material. **2k** was obtained as yellow oil (36.3 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ ppm 0.50 (s, 6H), 7.31-7.23 (m, 3H), 7.42

(td, J = 7.6, 1.1 Hz, 1H), 7.59-7.53 (m, 3H), 7.65 (d, J = 7.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) -3.4, 111.8, 113.3, 119.5, 122.0, 123.4, 123.9, 127.8, 130.0, 130.9, 132.7, 139.0, 142.3, 158.6, 169.5.

HRMS (EI⁺): Calculated for C₁₆H₁₄OSi (M⁺): 250.0814, Found: 250.0818. IR (cm⁻¹): 2955, 2922, 2849, 1733, 1455, 1257, 1123, 841, 814, 784, 746.

(2l) 5-methyl-5-phenyl-5H-dibenzo[b,d]silole¹, CAS: 87522-65-4

Chemical Formula: C₁₉H₁₆Si Exact Mass: 272.1021 Molecular Weight: 272.4220

134.6, 134.8, 137.5, 148.5.

ThegeneralprocedureBwasfollowedusing2-(benzofuran-2-yl)phenyl)dimethylsilane11 (68.6 mg, 0.25 mmol, 1.0 eq.) asstarting material.2k was obtained as yellow oil (33.4 mg, 49%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.73 (s, 3H), 7.22-7.34 (m, 5H), 7.44 (td, J = 7.6, 0.8 Hz, 2H), 7.57-7.53 (m, 2H), 7.64 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) -4.9, 121.1, 127.7, 128.2, 130.0, 130.6, 133.5,

(2m) 5,5-diphenyl-5*H*-dibenzo[*b*,*d*]silole², CAS: 5550-08-3

Chemical Formula: C₂₄H₁₈Si Exact Mass: 334.1178 Molecular Weight: 334.4930 The general procedureBwasfollowedusing[1,1'-biphenyl]-2-yldiphenylsilane1m(101.0mg,0.3mmol,1.0eq.) asstarting material.2mwas obtained as yellow solid (66.8mg,67%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.30-7.42 (m, 8H), 7.48 (td, *J* = 7.6, 1.2 Hz, 2H), 7.65 (dd, *J* = 8.0, 1.6 Hz, 4H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 121.3, 127.9, 128.3, 130.2, 130.9, 132.8, 134.1, 135.7, 136.0, 148.9.

3. Intermolecular silyl radical cascades with alkynes

A. General procedure C for synthesis of silafluorenes:

In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar were placed with alkynes (0.30 mmol, 1.5 eq, if solid) and arylhydrosilanes (0.20 mmol, 1.0 eq, if solid). After evacuation and refill with dry N_2 for three times, alkynes (0.30 mmol, 1.5 eq, if liquid) and arylhydrosilanes (0.20 mmol, 1.0 eq, if liquid), DTBP (110.8 uL, 0.60 mmol, 3.0 eq.) and PhCF₃ or bezene (0.8 mL) were added with syringes under a stream of N_2 . The resulting mixture was allowed to stir at 130 °C for 24 h. After cooling to room temperature, the reaction mixture was concentrated and then purified by column chromatography on silica gel or PTLC (hexane as the eluting solvent) to give the target products.

B. Spectra data of silaindenes:

(5a) 1,1,2,3-tetraphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₂H₂₄Si Exact Mass: 436.1647 Molecular Weight: 436.6290

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-diphenylethyne (53.4 mg, 0.30 mmol, 1.5 eq.) as starting material, PhCF₃ as solvent. **5a** was obtained as a white-yellow solid (58.5 mg, 67%).

¹H NMR (400 MHz, CDCl₃): δ ppm 6.92-6.94 (m, 2H), 7.00-7.06 (m, 3H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.16-7.36 (m, 12H), 7.43 (t, *J* = 7.6, 2H), 7.63 (d, *J* = 7.2 Hz, 3H), 7.71 (d, *J* = 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 124.6, 126.0, 127.4, 127.4, 128.0, 128.3, 128.6, 129.3, 129.9, 130.3, 130.4, 132.5, 133.1, 135.7, 135.9, 138.1, 139.8, 140.1, 151.7, 155.8.

HRMS (EI⁺): Calculated for $C_{32}H_{24}Si$ (M⁺): 436.1647, Found: 436.1650.

IR (cm⁻¹): 3050, 2923, 1584, 1483, 1439, 1428, 1111, 762, 739, 695, 669.

(5b) 1,1-diphenyl-2,3-di-p-tolyl-1*H*-benzo[*b*]silole

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-di-p-tolylethyne (61.9 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5b** was obtained as white solid (65.7 mg, 71%).

¹H NMR (400 MHz, CDCl₃): δ ppm 2.20 (s, 3H), 2.38 (s, 3H), 6.75-6.92 (m, 4H), 7.10-7.19 (m, 5H), 7.23 (t, J = 7.2 Hz, 1H), 7.28-7.43 (m, 8H), 7.63 (dd, J = 6.8, 1.2 Hz, 3H), 7.68 (d, J = 6.8 Hz, 1H).

Exact Mass: 464.1960 ¹³ Molecular Weight: 464.6830 ₁

¹³C NMR (100 MHz, CDCl₃): δ ppm 21.2, 21.5, 124.5, 127.1, 128.3, 128.8, 129.3, 129.4, 129.7, 130.2, 130.3, 132.8, 133.0, 135.3, 135.5, 135.7,

135.9, 136.8, 136.9, 139.4, 152.1, 155.4.

HRMS (EI⁺): Calculated for $C_{34}H_{28}Si$ (M⁺): 464.1960, Found: 464.1965.

IR (cm⁻¹): 3062, 2920, 1583, 1511, 1428, 1111, 837, 818, 773, 739, 726, 697.

(5c) 2,3-bis(4-chlorophenyl)-1,1-diphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₂H₂₂Cl₂Si Exact Mass: 504.0868 Molecular Weight: 505.5130

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(4-chlorophenyl)ethyne (74.1 mg, 0.30 mmol, 1.5 eq.) as starting material, PhCF₃ as solvent. **5c** was obtained as white solid (71.4 mg, 71%).

¹H NMR (100 MHz, CDCl₃): δ ppm 6.83-6.85 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.35-7.40 (m, 7H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.61 (dd, *J* = 8.0, 1.2 Hz, 4H), 7.74 (d, *J* = 6.8 Hz, 1H).

¹³C NMR (CDCl₃, 100 MHz): δ ppm 124.5, 127.7, 128.4, 128.4, 129.0, 130.4, 130.5, 130.6, 131.2, 131.8, 131.9, 133.4, 133.5, 135.4, 135.8, 136.0,

138.1, 139.8, 150.9, 155.0.

HRMS (EI⁺): Calculated for $C_{32}H_{22}Cl_2Si$ (M⁺): 504.0868, Found: 504.0864. IR (cm⁻¹): 3066, 2924, 1588, 1559, 1467, 1112, 773, 746, 695.

(5d) 2,3-bis(4-fluorophenyl)-1,1-diphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₂H₂₂F₂Si Exact Mass: 472.1459 Molecular Weight: 472.6098

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(4-fluorophenyl)ethyne (64.3 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5d** was obtained as white-yellow solid (76.4 mg, 81%).

¹H NMR (400 MHz, CDCl₃): δ ppm 6.75 (t, J = 8.4 Hz, 2H), 6.84-6.88 (m, 2H), 7.07 (t, J = 8.8 Hz, 2H), 7.12 (d, J = 7.6 Hz, 1H), 7.21 (dd, J = 8.4, 5.6 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.34-7.38 (m, 5H), 7.43-7.49 (m, 2H), 7.60 (d, J = 6.8 Hz, 4H), 7.72 (d, J = 6.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 115.2 (d, J = 21 Hz), 115.7 (d, J = 21

Hz), 124.4, 127.6, 128.4, 130.5, 130.5, 130.7 (d, *J* = 8 Hz), 131.6 (d, *J* = 8

Hz), 132.1, 133.3, 133.6 (d, *J* = 4 Hz), 135.4, 135.7 (d, *J* = 4 Hz), 135.8, 139.7, 151.3, 154.8, 161.3 (d, *J* = 245

Hz), 162.2 (d, J = 245 Hz). ¹⁹F NMR (377 MHz, CDCl3): δ ppm -116.19, -114.34. HRMS (EI⁺): Calculated for C₃₂H₂₂F₂Si (M⁺): 472.1459, Found: 472.1461. IR (cm⁻¹): 3049, 2927, 1601, 1507, 1496, 1223, 1112, 835, 818, 741, 729.

(5e) 1,1-diphenyl-2,3-bis(4-(trifluoromethyl)phenyl)-1H-benzo[b]silole

Chemical Formula: C₃₄H₂₂F₆S Exact Mass: 572.1395 Molecular Weight: 572.6254 The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(4-(trifluoromethyl)phenyl)ethyne (94.3 mg, 0.30 mmol, 1.5 eq.) as starting material, PhCF₃ as solvent. **5e** was obtained as a colorless liquid (71.0 mg, 62%).

¹H NMR (400 MHz, CDCl₃): δ ppm 6.98 (d, J = 8.0 Hz, 2H), 7.08 (d, J =

7.2 Hz, 1H), 7.16-7.23 (m, 1H), 7.30-7.48 (m, 12H), 7.60-7.65 (m, 5H), 7.77 (dd, *J* = 6.4, 1.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 124.6, 125.1 (q, *J* = 3 Hz), 125.6 (q, *J* = 3 Hz), 126.8 (q, *J* = 271 Hz), 126.9 (q, *J* = 271 Hz), 127.8, 128.0, 128.4, 128.7 (q, *J* = 28 Hz), 129.0, 130.0, 130.6, 130.6, 131.3, 133.4, 135.3, 135.7,

136.2, 140.4, 141.2, 143.2, 150.4, 155.5.

¹⁹F NMR (377 MHz, CDCl3): δ ppm -62.48, -62.45.

HRMS (EI⁺): Calculated for $C_{34}H_{22}F_6Si$ (M⁺): 572.1395, Found: 572.1398.

IR (cm⁻¹): 3052, 1614, 1429, 1320, 1164, 1106, 852, 742, 709, 696.

(5f) 2,3-bis(4-methoxyphenyl)-1,1-diphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₄H₂₈O₂Si Exact Mass: 496.1859 Molecular Weight: 496.6810 The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(4-methoxyphenyl)ethyne (71.5 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5f** was obtained as white solid (55.6 mg, 56%).

¹H NMR (400 MHz, CDCl₃): δ ppm 3.69 (s, 3H), 3.84 (s, 3H), 6.58 (d, J = 8.8 Hz, 2H), 6.90 (t, J = 8.8 Hz, 4H), 7.13 (d, J = 7.6 Hz, 1H), 7.17-7.23 (m, 3H), 7.29-7.36 (m, 5H), 7.42 (t, J = 7.2 Hz, 2H), 7.63 (d, J = 7.2 Hz, 4H), 7.67 (d, J = 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 55.2, 55.4, 113.5, 114.2, 124.3, 127.0, 128.3, 130.2, 130.3, 130.6, 130.7, 131.1, 132.3, 132.8, 133.0, 135.6, 135.9,

138.9, 152.2, 154.2, 157.8, 158.9.

HRMS (EI⁺): Calculated for C₃₄H₂₈O₂Si (M⁺): 496.1859, Found: 496.1864. IR (cm⁻¹): 3011, 2957, 1606, 1497, 1244, 1116, 1100, 833, 746, 725, 698.

(5g) 2,3-bis(3-chlorophenyl)-1,1-diphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₂H₂₂Cl₂Si Exact Mass: 504.0868 Molecular Weight: 505.5130

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(3-chlorophenyl)ethyne (74.1 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5g** was obtained as white solid (67.7 mg, 67%). ¹H NMR (400 MHz, CDCl₃): δ ppm 6.78 (d, J = 7.2 Hz, 1H), 6.86 (s, 1H), 6.95-7.02 (m, 2H), 7.09-7.12 (m, 2H), 7.25 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 6.8 Hz, 3H), 7.36 (t, J = 7.6 Hz, 5H), 7.45 (t, J = 7.2 Hz, 2H), 7.60 (d, J = 6.8 Hz, 4H), 7.72 (d, J = 6.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 124.7, 126.4, 127.3, 127.9, 128.1, 128.5, 128.9, 129.4, 129.6, 130.0, 130.6, 130.6, 131.6, 133.4, 133.9, 134.6, 135.4, 135.8,

136.3, 139.4, 140.0, 141.4, 150.7, 155.2.

HRMS (EI⁺): Calculated for C₃₂H₂₂Cl₂Si (M⁺): 504.0868, Found: 504.0874. IR (cm⁻¹): 3067, 2922, 2851, 1468, 1112, 1100, 780, 738, 725, 696.

(5h) 1,1-diphenyl-2,3-bis(3-(trifluoromethyl)phenyl)-1*H*-benzo[*b*]silole

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-bis(3-(trifluoromethyl)phenyl)ethyne (94.3 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5h** was obtained as white solid (97.3 mg, 85%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.04-7.22 (m, 4H), 7.23-7.41 (m, 8H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 6.4 Hz, 2H), 7.60 (t, *J* = 8.2 Hz, 5H), 7.76 (d, *J* = 6.8 Hz, 1H).

Chemical Formula: C₃₄H₂₂F₆Si Exact Mass: 572.1395 Molecular Weight: 572.6254 ¹³C NMR (100 MHz, CDCl₃): δ ppm 122.9 (q, J = 4 Hz), 124.6, 124.6 (q, J = 4 Hz), 125.8 (q, J = 4 Hz), 126.6 (q, J = 4 Hz), 126.7 (q, J = 272 Hz), 126.8 (q, J = 272 Hz), 127.9, 128.1, 128.6, 128.7, 129.3, 129.7, 130.3 (q, J = 32 Hz), 130.7, 130.8, 131.4, 132.2, 133.1, 133.6, 135.3, 135.8, 136.2,

138.2, 140.2, 140.6, 150.5, 155.5.

¹⁹F NMR (377 MHz, CDCl3): δ ppm -62.78, -63.15.

HRMS (EI⁺): Calculated for C₃₄H₂₂F₆Si (M⁺): 572.1395, Found: 572.1399. IR (cm⁻¹): 3048, 2997, 2954, 1497, 1177, 1110, 833, 737, 699.

(5i) 1-methyl-1,2,3-triphenyl-1*H*-benzo[*b*]silole,³ CAS: 1309154-21-9

Chemical Formula: C₂₇H₂₂ Exact Mass: 374.1491

139.7, 141.5, 151.5, 154.7.

The general procedure C was followed using methyldiphenylsilane (39.7 mg, 0.20 mmol, 1.0 eq.) and 1,2-diphenylethyne (53.5 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5i** was obtained as white solid (44.9 mg, 60%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.76 (s, 3H), 6.91 (d, J = 6.8 Hz, 2H), 6.97-7.00 (m, 3H), 7.10 (d, J = 7.2 Hz, 1H), 7.21-7.30 (m, 10H), 7.58 (d, J = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm -5.6, 124.3, 125.9, 127.1, 127.3, 128.0, 128.3, 128.6, 129.0, 129.8, 130.0, 130.2, 132.4, 134.3, 134.7, 136.9, 138.2,

(5j) 1-(*tert*-butyl)-1,2,3-triphenyl-1*H*-benzo[*b*]silole

Chemical Formula: C₃₀H₂₈Si Exact Mass: 416.1960 Molecular Weight: 416.6390

The general procedure C was followed using *tert*-butyldiphenylsilane (48.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-diphenylethyne (53.5 mg, 0.30 mmol, 1.5 eq.) as starting material, PhH as solvent. **5j** was obtained as white solid (18.3 mg, 22%).

¹H NMR (400 MHz, CDCl₃): δ ppm 1.07 (s, 9H), 6.93-6.95 (m, 2H), 6.99-7.10 (m, 4H), 6.21-7.41 (m, 10H), 7.73 (td, *J* = 6.4, 1.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 18.8, 27.3, 124.5, 125.6, 126.9, 127.1, 127.9, 128.1, 129.1, 129.8, 129.9, 130.0, 132.8, 133.3, 135.7, 135.9, 138.0, 141.2, 141.4, 151.7, 155.9.

HRMS (EI⁺): Calculated for $C_{30}H_{28}Si$ (M⁺): 416.1960, Found: 416.1964. IR (cm⁻¹): 3066, 2925, 2855, 1598, 1437, 1109, 820, 741, 698, 679.

(5k) 1,1-diphenyl-2,3-di(thiophen-2-yl)-1*H*-benzo[*b*]silole

The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and 1,2-di(thiophen-2-yl)ethyne (57.1 mg, 0.30 mmol, 1.5 eq.) as starting material. **5k** was obtained as yellow solid (14.4 mg, 16%). ¹H NMR (400 MHz, CDCl₃): δ ppm 6.80 (dd, J = 5.2, 3.6 Hz, 1H), 6.98 (dd, J = 3.6, 0.8 Hz, 1H), 7.05-7.07 (m, 2H), 7.12 (dd, J = 5.2, 0.8 Hz, 1H), 7.21-7.26 (m, 2H), 7.31-7.47 (m, 7H), 7.59 (dd, J = 4.8, 0.8 Hz, 1H), 7.64 (d, J = 6.8 Hz, 1H), 7.72 (dd, J = 8.0, 1.6 Hz, 4H).

Chemical Formula: C₂₈H₂₀S₂Si Exact Mass: 448.0776 Molecular Weight: 448.6730

Molecular Weight: 448.6730 ¹³C NMR (100 MHz, CDCl₃): δ ppm 124.3, 126.3, 127.4, 127.5, 127.6, 128.2, 128.4, 128.5, 129.9, 130.5, 130.8, 131.9, 132.7, 134.2, 136.1, 136.6, 137.7, 142.1, 145.0, 152.3.

HRMS (EI⁺): Calculated for C₂₈H₂₀S₂Si (M⁺): 448.0776, Found: 448.0774.

IR (cm⁻¹): 3066, 2920, 2850, 1583, 1427, 1262, 1109, 848, 820, 773, 733, 694.

(5l) 1,1-diphenyl-2,3-dipropyl-1*H*-benzo[*b*]silole

Chemical Formula: C₂₆H₂₈Si Exact Mass: 368.1960 Molecular Weight: 368.5950 The general procedure C was followed using triphenylsilane (52.1 mg, 0.20 mmol, 1.0 eq.) and oct-4-yne (33.1 mg, 0.30 mmol, 1.5 eq.) as starting material. **51** was obtained as white solid (22.9 mg, 31%).

¹H NMR (400 MHz, CDCl₃): δ ppm 0.79 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H), 1.34 (qt, J = 8.0 Hz, 2H), 1.62 (qt, J = 7.6 Hz, 2H), 2.50 (t, J = 8.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H), 7.15-7.19 (m, 1H), 7.33-7.43 (m, 8H), 7.54 (d, J = 6.8 Hz, 1H), 7.62 (dd, J = 8.0, 1.2 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 13.6, 13.7, 21.3, 23.0, 28.5, 31.6, 120.6, 125.3, 127.1, 128.9, 129.2, 131.8, 132.4, 134.7, 135.0, 138.4, 150.4, 153.6.

HRMS (EI⁺): Calculated for $C_{26}H_{28}Si$ (M⁺): 368.1960, Found: 368.1956.

(1) T. Ureshino, T. Yoshida, Y. Kuninobu and K. Takai, J. Am. Chem. Soc., 2010, 132, 14324.

(2) Y. Yabusaki, N. Ohshima, H. Kondo, T. Kusamoto, Y. Yamanoi and H. Nishihara, Chem.-Eur. J., 2010, 16, 5581.

(3) M. Onoe, K. Baba, Y. Kim, Y. Kita, M. Tobisu and N. Chatani, J. Am. Chem. Soc., 2012, 134, 19477.

Table S5. Crystal data and structure refinement for 5c.

Identification code	2	
Empirical formula	$C_{32} H_{22} Cl_2 Si$	
Formula weight	505.49	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P2(1)/c	
Unit cell dimensions	a = 9.9590(11) Å alpha = 90 deg.	
	b = 24.396(3) Å beta = 108.6020(10) deg.	
	c = 11.0384(12) Å gamma = 90 deg.	
Volume	2541.8(5) Å^3	
Z, Calculated density	4, 1.321 Mg/m^3	
Absorption coefficient	0.322 mm^-1	
F(000)	1048	
Crystal size	? x ? x ? mm	
Theta range for data collection	1.67 to 27.64 deg.	
Limiting indices	-12<=h<=12, -31<=k<=31, -14<=l<=14	
Reflections collected / unique	41982 / 5888 [R(int) = 0.0356]	
Completeness to theta $= 27.64$	99.6 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5888 / 0 / 316	
Goodness-of-fit on F^2	1.037	
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.0883	
R indices (all data)	R1 = 0.0494, $wR2 = 0.0941$	
Largest diff. peak and hole	0.409 and -0.334 e.A^-3	

	х	у	Z	U(eq)
CI (1)	3857(1)	4568(1)	1183(1)	26(1)
Cl(1)	11081(1)	3363(1)	3450(1)	20(1) 36(1)
CI(2)	6652(1)	1227(1)	3439(1)	16(1)
C(1)	4271(2)	3882(1)	1579(2)	10(1)
C(1)	42/1(2)	3742(1)	1379(2) 2810(2)	19(1)
C(2)	5438(2)	3/42(1)	2010(2)	22(1)
C(3)	5458(2) 4000(2)	2702(1)	3062(2)	21(1)
C(4)	4990(2)	2/95(1)	2141(2)	18(1)
C(5)	4100(2)	2940(1)	914(2)	22(1)
C(0)	5292(2)	3493(1)	023(2)	23(1)
C(7)	5392(2)	2205(1)	2393(1)	18(1)
C(8)	4255(2)	1/9/(1)	2328(1)	18(1)
C(9)	2850(2)	1934(1)	2179(2)	21(1)
C(10)	1881(2)	1521(1)	2156(2)	25(1)
C(11)	2299(2)	9/8(1)	2294(2)	24(1)
C(12)	3707(2)	837(1)	2468(2)	21(1)
C(13)	4701(2)	1244(1)	2484(1)	17(1)
C(14)	7671(2)	925(1)	4336(1)	17(1)
C(15)	7030(2)	821(1)	5271(2)	21(1)
C(16)	7778(2)	589(1)	6439(2)	25(1)
C(17)	9205(2)	465(1)	6713(2)	25(1)
C(18)	9874(2)	567(1)	5806(2)	24(1)
C(19)	9114(2)	789(1)	4628(2)	21(1)
C(20)	7240(2)	897(1)	1499(2)	21(1)
C(21)	8064(2)	1160(1)	860(2)	25(1)
C(22)	8588(2)	875(1)	8(2)	32(1)
C(23)	8276(2)	326(1)	-224(2)	33(1)
C(24)	7440(3)	59(1)	373(2)	41(1)
C(25)	6925(3)	341(1)	1226(2)	37(1)
C(26)	6727(2)	2005(1)	2669(1)	17(1)
C(27)	8008(2)	2343(1)	2817(2)	17(1)
C(28)	8064(2)	2761(1)	1962(2)	22(1)
C(29)	9283(2)	3073(1)	2154(2)	23(1)
C(30)	10454(2)	2971(1)	3209(2)	23(1)
C(31)	10440(2)	2558(1)	4064(2)	27(1)
C(32)	9223(2)	2246(1)	3855(2)	23(1)

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S7.	Bond lengths [Å] and angles [deg] for b.

Cl(1)-C(1)	1.7446(16)	
Cl(2)-C(30)	1.7435(16)	
Si(1)-C(13)	1.8671(16)	
Si(1)-C(14)	1.8692(16)	
Si(1)-C(20)	1.8721(16)	
Si(1)-C(26)	1.8799(16)	
C(1)-C(2)	1.385(2)	
C(1)-C(6)	1.385(2)	
C(2)-C(3)	1.393(2)	
C(3)-C(4)	1.391(2)	
C(4)-C(5)	1.396(2)	
C(4)-C(7)	1.491(2)	
C(5)-C(6)	1.387(2)	
C(7)-C(26)	1.357(2)	
C(7)-C(8)	1.492(2)	
C(8)-C(9)	1.397(2)	
C(8)-C(13)	1.414(2)	
C(9)-C(10)	1.389(2)	
C(10)-C(11)	1.383(2)	
C(11)-C(12)	1.397(2)	
C(12)-C(13)	1.397(2)	
C(14)-C(15)	1.399(2)	
C(14)-C(19)	1.408(2)	
C(15)-C(16)	1.387(2)	
C(16)-C(17)	1.389(2)	
C(17)-C(18)	1.389(2)	
C(18)-C(19)	1.390(2)	
C(20)-C(21)	1.397(2)	
C(20)-C(25)	1.402(2)	
C(21)-C(22)	1.398(2)	
C(22)-C(23)	1.380(3)	
C(23)-C(24)	1.379(3)	
C(24)-C(25)	1.390(3)	
C(26)-C(27)	1.484(2)	
C(27)-C(32)	1.396(2)	
C(27)-C(28)	1.401(2)	
C(28)-C(29)	1.391(2)	
C(29)-C(30)	1.382(2)	
C(30)-C(31)	1.384(2)	
C(31)-C(32)	1.387(2)	
C(13)-Si(1)-C(14)	112.70(7)	
C(13)-Si(1)-C(20)	115.91(7)	
C(14)-Si(1)-C(20)	107.82(7)	

C(13)-Si(1)-C(26)	92.26(7)
C(14)-Si(1)-C(26)	115.97(7)
C(20)-Si(1)-C(26)	111.84(7)
C(2)-C(1)-C(6)	121.77(15)
C(2)-C(1)-Cl(1)	120.09(13)
C(6)-C(1)-Cl(1)	118.12(13)
C(1)-C(2)-C(3)	118.60(15)
C(4)-C(3)-C(2)	120.99(15)
C(3)-C(4)-C(5)	118.91(15)
C(3)-C(4)-C(7)	122.18(14)
C(5)-C(4)-C(7)	118.89(14)
C(6)-C(5)-C(4)	120.91(15)
C(1)-C(6)-C(5)	118.80(15)
C(26)-C(7)-C(4)	125.01(14)
C(26)-C(7)-C(8)	116.42(14)
C(4)-C(7)-C(8)	118.57(13)
C(9)-C(8)-C(13)	120.46(14)
C(9)-C(8)-C(7)	124.23(14)
C(13)-C(8)-C(7)	115.26(13)
C(10)-C(9)-C(8)	119.54(15)
C(11)-C(10)-C(9)	120.65(15)
C(10)-C(11)-C(12)	120.25(15)
C(11)-C(12)-C(13)	120.29(15)
C(12)-C(13)-C(8)	118.78(14)
C(12)-C(13)-Si(1)	133.74(12)
C(8)-C(13)-Si(1)	107.39(11)
C(15)-C(14)-C(19)	117.43(14)
C(15)-C(14)-Si(1)	121.21(12)
C(19)-C(14)-Si(1)	121.36(12)
C(16)-C(15)-C(14)	121.57(15)
C(15)-C(16)-C(17)	120.00(16)
C(16)-C(17)-C(18)	119.81(16)
C(17)-C(18)-C(19)	120.00(15)
C(18)-C(19)-C(14)	121.17(15)
C(21)-C(20)-C(25)	117.57(16)
C(21)-C(20)-Si(1)	123.17(13)
C(25)-C(20)-Si(1)	119.13(13)
C(20)-C(21)-C(22)	121.06(17)
C(23)-C(22)-C(21)	119.88(18)
C(24)-C(23)-C(22)	120.24(17)
C(23)-C(24)-C(25)	119.90(19)
C(24)-C(25)-C(20)	121.31(19)
C(7)-C(26)-C(27)	124.78(14)
C(7)-C(26)-Si(1)	108.53(11)
C(27)-C(26)-Si(1)	126.65(11)
C(32)-C(27)-C(28)	117.75(14)

C(32)-C(27)-C(26)	119.01(14)
C(28)-C(27)-C(26)	123.24(14)
C(29)-C(28)-C(27)	121.08(15)
C(30)-C(29)-C(28)	119.36(15)
C(29)-C(30)-C(31)	121.10(15)
C(29)-C(30)-Cl(2)	119.57(13)
C(31)-C(30)-Cl(2)	119.33(13)
C(30)-C(31)-C(32)	118.97(15)
C(31)-C(32)-C(27)	121.72(15)

Symmetry transformations used to generate equivalent atoms:

Table S8. Anisotropic displacement parameters ($\mathring{A}^2 \ge 10^3$) for b. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U11	U22	U33	U23	U13	U12	
Cl(1)	26(1)	14(1)	42(1)	4(1)	15(1)	3(1)	
Cl(2)	22(1)	32(1)	52(1)	3(1)	12(1)	-11(1)	
Si(1)	17(1)	14(1)	18(1)	0(1)	6(1)	0(1)	
C(1)	17(1)	12(1)	33(1)	3(1)	12(1)	2(1)	
C(2)	20(1)	19(1)	28(1)	-5(1)	9(1)	-3(1)	
C(3)	18(1)	21(1)	22(1)	1(1)	4(1)	-1(1)	
C(4)	13(1)	15(1)	25(1)	1(1)	6(1)	-2(1)	
C(5)	20(1)	19(1)	23(1)	-1(1)	2(1)	-2(1)	
C(6)	21(1)	19(1)	25(1)	4(1)	4(1)	0(1)	
C(7)	18(1)	16(1)	18(1)	0(1)	4(1)	-1(1)	
C(8)	18(1)	17(1)	17(1)	-1(1)	3(1)	-2(1)	
C(9)	18(1)	19(1)	23(1)	-1(1)	2(1)	0(1)	
C(10)	16(1)	28(1)	28(1)	-1(1)	3(1)	-2(1)	
C(11)	21(1)	22(1)	28(1)	-3(1)	5(1)	-8(1)	
C(12)	23(1)	15(1)	24(1)	-2(1)	5(1)	-3(1)	
C(13)	18(1)	17(1)	17(1)	-1(1)	3(1)	-1(1)	
C(14)	18(1)	11(1)	20(1)	-2(1)	6(1)	0(1)	
C(15)	18(1)	21(1)	23(1)	0(1)	7(1)	0(1)	
C(16)	25(1)	30(1)	22(1)	3(1)	8(1)	-1(1)	
C(17)	27(1)	21(1)	23(1)	3(1)	3(1)	4(1)	
C(18)	20(1)	19(1)	31(1)	-2(1)	6(1)	6(1)	
C(19)	22(1)	19(1)	25(1)	-2(1)	12(1)	3(1)	
C(20)	24(1)	22(1)	17(1)	1(1)	6(1)	5(1)	
C(21)	19(1)	33(1)	22(1)	-5(1)	5(1)	-3(1)	
C(22)	21(1)	54(1)	23(1)	-7(1)	9(1)	-3(1)	
C(23)	35(1)	44(1)	18(1)	-3(1)	7(1)	17(1)	
C(24)	75(2)	23(1)	28(1)	0(1)	22(1)	12(1)	
C(25)	68(1)	22(1)	32(1)	0(1)	30(1)	0(1)	

C(26)	18(1)	15(1)	18(1)	1(1)	5(1)	-1(1)
C(27)	17(1)	15(1)	21(1)	-1(1)	8(1)	1(1)
C(28)	21(1)	22(1)	24(1)	4(1)	6(1)	-1(1)
C(29)	26(1)	19(1)	28(1)	3(1)	13(1)	-3(1)
C(30)	17(1)	21(1)	32(1)	-3(1)	11(1)	-5(1)
C(31)	18(1)	28(1)	30(1)	4(1)	1(1)	-3(1)
C(32)	21(1)	21(1)	25(1)	7(1)	5(1)	-1(1)

Table S9. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for b.

	X	У	Z	U(eq)
H(2)	5391	4013	3456	26
H(3)	5995	3090	3922	25
H(5)	3840	2677	267	26
H(6)	3233	3597	-213	27
H(9)	2559	2307	2095	25
H(10)	922	1613	2043	30
H(11)	1625	699	2271	29
H(12)	3990	464	2575	26
H(15)	6060	911	5102	25
H(16)	7314	515	7051	31
H(17)	9723	312	7517	30
H(18)	10851	484	5992	29
H(19)	9575	850	4008	25
H(21)	8271	1539	1006	30
H(22)	9157	1058	-410	39
H(23)	8639	131	-797	39
H(24)	7216	-318	202	49
H(25)	6349	154	1632	45
H(28)	7257	2831	1240	27
H(29)	9311	3354	1566	28
H(31)	11251	2490	4784	33
H(32)	9216	1958	4432	27

Figure 1. UV absorption of compounds 1-5 in CH₂Cl₂.

Figure 2. UV absorption of compounds 6-10 in CH₂Cl₂.

Figure 3. Fluorescence emission of compounds 1-5 in CH_2Cl_2 with excitation wavelength 250 nm.

Figure 4. Fluorescence emission of compounds 6-10 in CH_2Cl_2 with excitation wavelength 250 nm.

Figure 5. Fluorescence emission of compounds 1-5 in CH_2Cl_2 with excitation wavelength 320 nm.

Figure 6. Fluorescence emission of compounds 6-10 in CH_2Cl_2 with excitation wavelength 320 nm.

∠0

-0.726

20	-404040000-000
22.23	000000000000000000000000000000000000000
6.6	
5	

---0.760

ου

-1.071

N 80 L- 0	401400040-00000000000
- 6 6 -	40004000000400000-
<u>~ ~ ~ ~</u>	444 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
アフィア	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Si Ph Ph **CDCl**₃

Si Ph Ph CDCI₃

--2.382 --2.197

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100) 95 fl(ppm) 25 20

170 165 160 155 150 145 140 135 130 125 120 115 110 105 fl (ppm) 35 30

/ð

ðυ

Т