Supporting Information

Oxidative Cross S-H/S-H Coupling: Selective Synthesis of

Unsymmetrical Aryl tert-Alkyl Disulfides

Jiwen Yuan^{*a*}, Chao Liu^{*a*} and Aiwen Lei^{*a,b**}

 ^a College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei 430072, P. R. China
^b National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China

E-mail: aiwenlei@whu.edu.cn

Table of Contents

General information	S2
General procedure of the selective cross S-H/S-H coupling	S3
Condition Screening of the oxidative cross S-H/S-H coupling	S4
Procedure of the synthesis of cumene mercaptan 2d	S5
Procedure of the control experiments	S6
Detailed descriptions for products	S8
Copies of product ¹ H NMR and ¹³ C NMR	S12
Reference	S28

General information

The reactions were conducted in Schlenk tube under N₂ atmosphere. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). GC-MS spectra were recorded on a Varian GC-MS 3900-2100T. GC analyses were performed on Varian GC 2000 gas chromatography instrument with a FID detector. ¹H and ¹³C NMR data were recorded with Bruker ADVANCE III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks. High resolution mass spectra (HRMS) were measured with a Thermo Fisher Scientific LTQ FT Ultra, accurate masses are reported for the molecular ion ([M+H]⁺).

General procedure of the oxidative cross S-H/S-H coupling

To a Schlenk tube charged with mercapto arene (0.5 mmol) was added CH_2Cl_2 (1.0 mL), alkyl mercaptan (0.5 mmol) and TBHP (0.55 mmol, 70% solution in water) under N₂ atmosphere. After 30 seconds, NIS (0.05 mmol) was added in one batch. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was quenched by water (3.0 mL) and extracted with ethyl acetate (3 × 3.0 mL). The organic layers were combined and evaporated under vacuum. The pure product was obtained by flash chromatography on silicagel using petroleum ether and ethyl acetate as the eluent.

Condition Screening of the oxidative cross S-H/S-H coupling

N S 1a	H + HS ^{-t} Bu 2a 1 equiv	nt (1.1 equiv) st (10 mol%) Cl ₂ (1 mL) 25 °C, 1 h	∫ S−S−'Bu S 3aa
Entry	Oxidant	Catalyst	$\operatorname{Yield}^{b}(\%)$
1	TBHP	none	35%
2	TBHP	I_2	83%
3	TBHP	NIS	89%
4	TBHP	KI	86%
5	TBHP	ⁿ Bu ₄ NI	86%
6	TBHP	PhI	35%
7	DTBP	NIS	5%
8	CHP	NIS	87%

Table S1. Condition screening of the cross S-H/S-H coupling^a

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), oxidant (0.55 mmol), catalyst (0.05 mmol), CH₂Cl₂ (1 mL) at 25 °C for 1 h under N₂, ^{*b*} The yields were determined by GC analysis with biphenyl as the internal standard. TBHP = *tert*-butyl hydroperoxide, NIS = N-iodosuccinimide, DTBP = di-*tert*-butyl peroxide, CHP = cumene hydroperoxide.

Procedure of the synthesis of cumene mercaptan 2d¹

To a Schlenk tube charged with Lawesson's reagemt (3.3 mmol) was added 3.0 mL dimethoxy ethane (DME) under N_2 atmosphere. After stirring for 3 minutes at 25 °C, cumene alcohol (3 mmol) was added in 1 batch. Then the Schlenk tube was allowed to react for 18 h at 25 °C. After the completion of the reaction, the solvent was removed under vacuum. Then flash chromatography was performed to obtain the product using petroleum ether as the eluent.

Procedure of the control experiments

Procedure of eq. 1

To a Schlenk tube charged with 2-mercapto-benzothiazole **1a** (0.5 mmol) was added CH_2Cl_2 (1.0 mL) and TBHP (0.55 mmol, 70% solution in water) under N₂ atmosphere. After 30 seconds, NIS (0.05 mmol) was added in one batch. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was analyzed by GC.

Procedure of eq. 2

To a Schlenk tube was added CH_2Cl_2 (1.0 mL), *tert*-butyl mercaptan **2** (0.5 mmol) and TBHP (0.55 mmol, 70% solution in water) under N₂ atmosphere. After 30 seconds, NIS (0.05 mmol) was added in one batch. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was analyzed by GC.

Procedure of eq. 3

To a Schlenk tube charged with 2-benzothiazolyl disulfide **4** (0.25 mmol) was added CH_2Cl_2 (1.0 mL), alkyl mercaptan (0.5 mmol) and TBHP (0.55 mmol, 70% solution in water) under N₂ atmosphere. After 30 seconds, NIS (0.05 mmol) was added in one batch. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was analyzed by GC.

Procedure of eq. 4

To a Schlenk tube charged with 2-mercapto-benzothiazole **1a** (0.5 mmol) was added CH_2Cl_2 (1.0 mL), *tert*-butyl disulfide **5** (0.25 mmol) and TBHP (0.55 mmol, 70% solution in water) under N₂ atmosphere. After 30 seconds, NIS (0.05 mmol) was added

in one batch. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was analyzed by GC.

Procedure of eq. 5

To a Schlenk tube charged with 2-benzothiazolyl disulfide **4** (0.5 mmol) was added CH_2Cl_2 (1.0 mL), *tert*-butyl mercaptan **2** (0.5 mmol) under N₂ atmosphere. Then the Schlenk tube was allowed to react for 1 h at 25 °C. After the completion of the reaction, it was analyzed by GC.

Detailed descriptions for products

2-*(tert*-**butyldisulfanyl)benzothiazole** (**3aa**)²: product was obtained with 89% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.91 – 7.86 (m, 1H), 7.83 – 7.78 (m, 1H), 7.49 – 7.42 (m, 1H), 7.37 – 7.32 (m, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.5, 154.9, 135.7, 126.2, 124.5, 122.1, 121.1, 50.3, 29.8. HRMS (EI) calculated for C₁₁H₁₄NS₃ [M+H]⁺: 257.0283; found: 257.0280.

2-(*tert***-butyldisulfanyl)benzoxazole (3ba):** product was obtained with 82% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.70 – 7.64 (m, 1H), 7.52 – 7.47 (m, 1H), 7.34 – 7.27 (m, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 163.9, 152.2, 142.0, 124.6, 124.6, 119.3, 110.2, 49.6, 29.6. HRMS (EI) calculated for C₁₁H₁₄ONS₂ [M+H]⁺: 240.0511; found: 240.0510.

2-(*tert***-butyldisulfanyl)-1-methyl-imidazole (3ca):** product was obtained with 85% yield. Eluent: petroleum ether: ethyl acetate = 4:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.01 (d, *J* = 1.3 Hz, 1H), 6.97 (d, *J* = 1.2 Hz, 1H), 3.75 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.2, 129.1, 123.7, 49.1, 34.2, 29.9. HRMS (EI) calculated for C₈H₁₅N₂S₂ [M+H]⁺: 203.0671; found: 203.0670.

5-(*tert*-butyldisulfanyl)-1-methyl- tetrazole (3da): product was obtained with 90% yield. Eluent: petroleum ether: ethyl acetate = 4:1. ¹H NMR (400 MHz, CDCl₃) δ = 4.11 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 153.5, 50.5, 34.6, 29.6. HRMS (EI) calculated for C₆H₁₃N₄S₂ [M+H]⁺: 205.0576; found: 205.0575.

6-chloro-2-(*tert*-butyldisulfanyl)benzoxazole (3ea): product was obtained with 84% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.55 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 1.9 Hz, 1H), 7.30 – 7.25 (m, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 164.8, 152.2, 140.8, 130.3, 125.2, 119.7, 110.9, 49.7, 29.6. HRMS (EI) calculated for C₁₁H₁₃ClNOS₂ [M+H]⁺: 274.0122; found: 274.0119.

2-(*tert***-butyldisulfanyl)-5-methyl-1,3,4-thiadiazole (3fa):** product was obtained with 80% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 2.74 (s, 3H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.2, 166.4, 50.6, 29.8, 15.9. HRMS (EI) calculated for C₇H₁₃N₂S₃ [M+H]⁺: 221.0235; found: 221.0234.

2-(*tert***-butyldisulfanyl)-pyridine (3ga)³:** product was obtained with 75% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 8.41 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.61 (ddd, *J* = 8.1, 7.4, 1.8 Hz, 1H), 7.04 (ddd, *J* = 7.4, 4.8, 1.1 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 161.6, 149.2, 136.8, 120.4, 119.6, 49.3, 29.8. HRMS (EI) calculated for C₉H₁₄NS₂ [M+H]⁺: 200.0562; found: 200.0560.

2-(*tert***-butyldisulfanyl)-pyrazine (3ha):** product was obtained with 77% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 8.98 – 8.94 (m, 1H), 8.41 – 8.35 (m, 1H), 8.34 – 8.30 (m, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 158.3, 143.4, 142.3, 140.8, 49.6, 29.7. HRMS (EI) calculated for C₈H₁₃N₂S₂ [M+H]⁺: 201.0515; found: 201.0514.

2-(*tert***-butyldisulfanyl)-4,6-dimethylpyrimidine (3ia):** product was obtained with 77% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 6.78 (s, 1H), 2.44 (s, 6H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.7, 167.5, 117.1, 48.9, 29.8, 23.9. HRMS (EI) calculated for C₁₀H₁₇N₂S₂ [M+H]⁺: 229.0828; found: 229.0826.

2,5-di(*tert*-butyldisulfanyl)-1,3,4-thiadiazole (3ja): product was obtained with 87% yield. Eluent: petroleum ether: ethyl acetate = 40:1. ¹H NMR (400 MHz, CDCl₃) δ = 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 175.1, 50.8, 29.7. HRMS (EI) calculated for C₁₀H₁₉N₂S₅ [M+H]⁺: 327.0146; found: 327.0144.

2-(isopropyldisulfanyl)-1-methyl-imidazole (3db): product was obtained with 61% yield. Eluent: petroleum ether: ethyl acetate = 3:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.06 (d, *J* = 1.3 Hz, 1H), 7.02 (d, *J* = 1.3 Hz, 1H), 3.78 (s, 3H), 3.24 (hept, *J* = 6.7 Hz, 1H), 1.34 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.1, 129.6, 123.9, 41.5, 34.2, 22.3. HRMS (EI) calculated for C₇H₁₃N₂S₂ [M+H]⁺: 189.0515; found: 189.0513.

2-(isopropyldisulfanyl)-1-methyl-imidazole (3dc): product was obtained with 50% yield. Eluent: petroleum ether: ethyl acetate = 3:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.06 (d, *J* = 1.2 Hz, 1H), 7.01 (d, *J* = 1.2 Hz, 1H), 3.77 (s, 3H), 3.05 – 2.95 (m, 1H), 2.12 – 2.04 (m, 2H), 1.79 – 1.71 (m, 2H), 1.64 – 1.56 (m, 1H), 1.43 – 1.21 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ = 141.3, 129.5, 123.8, 49.6, 34.2, 32.4, 25.9, 25.6. HRMS (EI) calculated for C₁₀H₁₇N₂S₂ [M+H]⁺: 229.0828; found: 229.0825.

2-(cumenedisulfanyl)-1-methyl-imidazole (3dd): product was obtained with 84% yield. Eluent: petroleum ether: ethyl acetate = 3:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.50 – 7.44 (m, 2H), 7.33 – 7.24 (m, 2H), 7.24 – 7.18 (m, 1H), 7.03 (d, *J* = 1.2 Hz, 1H), 6.90 (d, *J* = 1.2 Hz, 1H), 3.59 (s, 3H), 1.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 144.2, 140.9, 129.4, 128.3, 127.3, 126.7, 123.6, 54.2, 34.1, 28.8. HRMS (EI) calculated for C₁₃H₁₇N₂S₂ [M+H]⁺: 265.0833; found: 265.0830.

2-[(triphenylmethyl)disulfanyl]-1-methyl-imidazole (3de): product was obtained with 80% yield. Eluent: petroleum ether: ethyl acetate = 1:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.27 – 7.20 (m, 15H), 7.08 (d, *J* = 1.3 Hz, 1H), 6.82 (d, *J* = 1.2 Hz, 1H), 3.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 143.4, 140.4, 130.3, 130.1, 127.8, 127.2, 122.9, 72.5, 33.6. HRMS (EI) calculated for C₂₃H₂₁N₂S₂ [M+H]⁺: 389.1141; found: 389.1136.

2-(*tert***-nonyldisulfanyl-1-methyl-imidazole, mixture of isomers (3df):** product was obtained with 87% yield. Eluent: petroleum ether: ethyl acetate = 3:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.15 – 6.89 (m, 2H), 3.94 – 3.59 (m, 3H), 1.85 – 0.63 (m, 19H). HRMS (EI) calculated for C₁₃H₂₅N₂S₂ [M+H]⁺: 273.1459; found: 273.1455.

$$\underbrace{ \left< \begin{array}{c} N \\ N \\ N \end{array} \right> }_{I} S^{\bullet} S^{-t} C_{12} H_{25}$$

2-(*tert*-dedecyldisulfanyl-1-methyl-imidazole, mixture of isomers (3dg): product was obtained with 81% yield. Eluent: petroleum ether: ethyl acetate = 3:1. ¹H NMR (400 MHz, CDCl₃) δ = 7.07 – 6.93 (m, 2H), 4.01 – 3.62 (m, 3H), 1.84 – 0.60 (m, 25H). HRMS (EI) calculated for C₁₆H₃₁N₂S₂ [M+H]⁺: 315.1923; found: 315.1919.

Copies of NMR spectrums

¹H NMR of **2-(***tert***-butyldisulfanyl)benzothiazole (3aa)**

¹H NMR of 2-(*tert*-butyldisulfanyl)-1-methyl-imidazole (3ca)

¹H NMR of **5**-(*tert*-butyldisulfanyl)-1-methyl-tetrazole (3da)

S15

¹H NMR of 2-(*tert*-butyldisulfanyl)-5-methyl-1,3,4- thiadiazole (3fa)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

¹H NMR of 2,5-di(*tert*-butyldisulfanyl)-1,3,4- thiadiazole (3ja)

¹H NMR of 2-(isopropyldisulfanyl)-1-methyl-imidazole (3db)

¹³C NMR of 2-(isopropyldisulfanyl)-1-methyl-imidazole (3db)

¹H NMR of **2-(cyclohexyldisulfanyl)-1-methyl-imidazole (3dc)**

¹³C NMR of 2-(cyclohexyldisulfanyl)-1-methyl-imidazole (3dc)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR of 2-(cumenedisulfanyl)-1-methyl-imidazole (3dd)

¹H NMR of **2-[(triphenylmethyl)disulfanyl]-1-methyl-imidazole (3de)**

¹³C NMR of **2-[(triphenylmethyl)disulfanyl]-1-methyl-imidazole (3de)**

Reference

- (1) Nishio, T. J. Chem. Soc., Chem. Commun. 1989, 205.
- (2) Brzezinska, E.; Ternay, A. L., Jr. J. Org. Chem. 1994, 59, 8239.
- (3) Hunter, R.; Caira, M.; Stellenboom, N. J. Org. Chem. 2006, 71, 8268.