Supporting Information for

> Enantioselective Synthesis of 4,5,6,7-Tetrahydroindoles via Olefin Cross-Metathesis/Intramolecular Friedel-Crafts Alkylation Reaction of Pyrroles

Jun-Wei Zhang, ${ }^{\text {a,b }}$ Xiao-Wei Liu, ${ }^{\text {a }}$ Qing Gu, ${ }^{\text {a }}$ Xiao-Xin Shi, ${ }^{\text {b }}$ and Shu-Li You ${ }^{\text {a,b* }}$
${ }^{\text {a }}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
Fax (+86) 21-54925087; E-mail: slyou@sioc.ac.cn
${ }^{\mathrm{b}}$ School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China

Table of Contents

General Methods S2
Experimental Sections
General procedure for preparation of $\mathbf{1 a - d}$ S2-S5
General procedure for preparation of $\mathbf{1 e}-\mathbf{f}$ S5-S7
General procedure for preparation of $\mathbf{1 g}, \mathbf{1 h}, \mathbf{1 i}$ S7-S10
General procedure for the enantioselective synthesis ofS10-S19
X-Ray structure of enantiopure $\mathbf{3 k}$ S19-S22
Copies of NMR Spectra and HPLC Chromatographs S23-S85

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian instrument (300 MHz and $75 \mathrm{MHz}, 400 \mathrm{MHz}$ and 100 MHz , respectively) and internally referenced to tetramethylsilane signal or residual protonic solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant(s) in Hz , integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm).

Experimental Sections:

General procedure for preparation of 1a-d

A dry three-necked flask was charged with 4-pentenoic acid (20 g, 200 mmol , 1.0 equiv), toluene (300 mL), 2, 2'-dithiodipyridine ($52.8 \mathrm{~g}, 240 \mathrm{mmol}, 1.2$ equivs) and triphenylphosphine ($62.9 \mathrm{~g}, 240 \mathrm{mmol}, 1.2$ equivs). The mixture was then stirred at room temperature for 1 hour. When the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=10: 1\right)$ to afford S-pyridin-2-yl pent-4-enethioate ($20.4 \mathrm{~g}, 53 \%$ yield).

MeMgBr (1.5 equivs, 3 M in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise to a solution of pyrrole
or 2-phenyl pyrrole (1.0 equiv, 0.1 M) in toluene at $-78^{\circ} \mathrm{C}$ in a dry three-necked flask. After the reaction was stirred at room temperature for 1 hour, S-pyridin-2-yl pent-4-enethioate (1.5 equiv, $1.0 \mathrm{~mol} / \mathrm{L}$) in toluene was added slowly to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature. When the reaction was complete (monitored by TLC), it was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) at $0{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After the solvent was removed under reduced pressure, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=50: 1\right)$ to afford acylated pyrrole.

The acylated pyrrole was dissolved in ${ }^{i} \mathrm{PrOH}(0.5 \mathrm{~mol} / \mathrm{L})$, and then sodium borohydride (2.0 equiv) was added. The reaction mixture was refluxed until pyrrole was fully consumed (monitored by TLC). After the solvent was evaporated under reduced pressure, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $=50: 1$) to afford the alkylated pyrrole .

To a suspension of NaH (3.0 equivs) in $\operatorname{THF}(0.1 \mathrm{M}$) or DMF $(0.1 \mathrm{M})$ in a dry three-necked flask was added alkylated pyrrole (1.0 equiv) in THF or DMF slowly at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 1 hour, MeI (3.0 equivs) or $\mathrm{ArCH}_{2} \mathrm{Br}$ (1.5 equivs) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature until alkylated pyrrole was fully consumed (monitored by TLC). It was quenched by water at $0{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed under reduced pressure, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 100-1 / 500\right)$ to afford 1a-d.

1-Methyl-2-(pent-4-en-1-yl)-5-phenyl-1H-pyrrole (1a)

Yellow liquid ($1.2 \mathrm{~g}, 22 \%$ yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 100, \mathrm{v} / \mathrm{v}$). Analytical data for 1a: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.74-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.21\left(\mathrm{dt}, J_{l}=6.9 \mathrm{~Hz}, J_{2}\right.$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$,
7.23-7.30 (m, 1H), 7.35-7.38 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.4,27.7,31.6$, $33.5,105.3,107.4,114.9,126.4,128.3,128.7,133.9,134.1,134.9,138.4$; IR (film) 2931, 1640, 1601, 1511, 1455, 1308, 992, 910, $749,698 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 226.1590$, found $m / z 226.1594$.

1-Benzyl-2-(pent-4-en-1-yl)-5-phenyl-1H-pyrrole (1b)

Yellow solid ($276 \mathrm{mg}, 10 \%$ yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 250$, v/v). Analytical data for 1b: m.p. $=43-44{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68-1.75(\mathrm{~m}$, $2 \mathrm{H}), 2.08\left(\mathrm{dt}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.71-5.76(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.31(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.0,27.6,33.4,47.5,106.0,108.1,114.7,125.6,126.6$, 126.9, 128.3, 128.7, 128.8, 133.7, 134.5, 134.8, 138.4, 139.1; IR (film) 2931, 1601, 1495, 1450, 1360, 1312, 1074, 1027, 913, 749, 726, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 302.1903$, found $m / z 302.1910$.

[^0]

1-(Naphthalen-1-ylmethyl)-2-(pent-4-en-1-yl)-1H-pyrrole (1d)

Yellow liquid ($400 \mathrm{mg}, 18 \%$ yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 300$, v/v). Analytical data for 1d: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.63-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.03\left(\mathrm{dt}, J_{I}\right.$ $\left.=6.9 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 5.64-5.78(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.18(\mathrm{~m}, 1 \mathrm{H})$, 6.55-6.59 (m, 2H), 7.30 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44-7.52 (m, 2H), 7.70 (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.4,27.8,33.2,47.8,105.9$, 107.2, 114.7, 120.9, 122.2, 123.7, 125.6, 125.7, 126.3, 127.7, 128.8, 130.2, 133.2, 133.3, 133.9, 138.2; IR (film) 2929, 2858, 1639, 1486, 1428, 1297, 1076, 991, 910, $791,769,702 \mathrm{~cm}^{-1} ;$ HRMS (ESI) exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 276.1747, found $m / z 276.1749$.

Procedure for preparation of $1 \mathrm{e}-\mathrm{f}$

To a solution of $\mathbf{1 c}(450 \mathrm{mg}, 2 \mathrm{mmol})$ in DMF (10 mL) in a dry three-necked flask was added $\mathrm{POCl}_{3}\left(367 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2\right.$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temperature for 4 hours, it was slowly adjusted by the addition of saturated NaOH (aq.) to $\mathrm{pH}>7$ at $0{ }^{\circ} \mathrm{C}$. Then the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 hours. After the reaction was complete (monitored by TLC), the mixture was extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The solvent was removed in vacuo to afford the crude product which was used in the next step without purification.
$\mathrm{KOH}(400 \mathrm{mg}, 7.1 \mathrm{mmol})$ and hydrazine hydrate ($2 \mathrm{~mL}, 80 \%$) were added to a solution of 1-benzyl-5-(pent-4-en-1-yl)-1H-pyrrole-2-carbaldehyde in diethylene glycol ether (5 mL). The reaction mixture was stirred at $180^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), it was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 100\right)$ to afford pyrrole $\mathbf{1 e}$ ($274 \mathrm{mg}, 57 \%$ yield over two steps).

1-Benzyl-2-methyl-5-(pent-4-en-1-yl)-1H-pyrrole (1e)

Yellow liquid ($274 \mathrm{mg}, 92 \%$ yield), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 100, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{1 e}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.05\left(\mathrm{dt}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 2.12$ (s, 3H), 2.45 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.92$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 5.71-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22-7.31 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.3,26.0,28.0,33.3,46.5,104.5$, $105.5,114.6,125.6,127.0,128.0,128.7,132.6,138.5,138.7$; IR (film) 3102, 2930, 2859, 1640, 1495, 1416, 1354, 1299, 1029,1018, 991, 910, 727, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 240.1747, found m / z 240.1749 .

1c

2a

1f, 47% yield

rac-CPA

To a solution of $\mathbf{1 c}(450 \mathrm{mg}, 2 \mathrm{mmol})$ in toluene (10 mL) was added the enone 2a ($290 \mathrm{mg}, 2.2 \mathrm{mmol}$) and racemic phosphoric acid ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 hours. After the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 50\right)$ to afford $\mathbf{1 f}$ ($187 \mathrm{mg}, 47 \%$ yield).

3-(1-Benzyl-5-(pent-4-en-1-yl)-1H-pyrrol-2-yl)-1-p henylpropan-1-one (1f)

Yellow solid ($187 \mathrm{mg}, 47 \%$ yield), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 25, \mathrm{v} / \mathrm{v}$). Analytical data for 1f: m.p. $=58-59{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.08$ (app q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.18-3.23$ $(\mathrm{m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 5.69-5.82$ $(\mathrm{m}, 1 \mathrm{H}), 5.93-5.96(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.8,25.8,27.8,33.3,37.7,46.4,104.4,104.6,114.7,125.5,127.0,127.9$, $128.4,128.6,131.2,132.9,136.6,138.3,138.4,199.0$; IR (film) 2928, 1682, 1494, 1418, 1351, 1273, 1193, 1006, 973, 909, 731, 697, 686, $642 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 358.2165$, found $m / z 358.2167$.

General procedure for preparation of $\mathbf{1 g - i}$

In a dry three-necked flask, POCl_{3} (2.0 equiv.) was added to a solution of N - Bn pyrrole (1.0 equiv, 0.7 M) in DMF at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for 4 hours, it was slowly adjusted by the addition of saturated NaOH (aq.) to $\mathrm{pH}>7$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours. After the reaction was complete (monitored by TLC), the mixture was quenched with water and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 100\right)$
to afford pyrrole aldehyde.
The pyrrole aldehyde (1.0 equiv) was dissolved in toluene ($0.3 \mathrm{~mol} / \mathrm{L}$) and methyl malonate (1.1 equivs), piperidine (1.0 equiv) and AcOH (0.1 equiv) were added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. After the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 5\right)$ to afford dimethyl (pyrrol-methylene)malonate.

The mixture of dimethyl (pyrrol-methylene)malonate (1.0 equiv, $0.4 \mathrm{~mol} / \mathrm{L}$) and $\mathrm{Pd} / \mathrm{C}\left(10 \%, 0.1\right.$ equiv.) in ethyl acetate under 1 atm of H_{2} was stirred at $40^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), the reaction mixture was filtered through a pad of celite and washed with ethyl acetate. The solvent was evaporated under reduced pressure to afford the crude product, which was directly used in the next step.

To a suspension of NaH (3.0 equivs) in THF (0.3 M) in a dry three-necked flask was added the aforementioned product in THF ($1 \mathrm{~mol} / \mathrm{L}$) slowly at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 hour. After allyl bromide (1.5 equivs) was added at $0{ }^{\circ} \mathrm{C}$, the reaction was stirred at room temperature. When the reaction was complete (monitored by TLC), it was quenched with water at $0{ }^{\circ} \mathrm{C}$ and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed in vacuo, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=1 / 20\right)$ to afford 1.

White solid ($1.3 \mathrm{~g}, 40 \%$ yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 20, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{1 g}$: m.p. $=85-86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H})$, 3.69 (s, 6H), 5.02 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, $5.50-5.61(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=6.9$
$\mathrm{Hz}, 2 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.4,37.1,47.4,52.5,58.0$, 108.3, 108.7, 119.1, 125.5, 126.9, 127.0, 128.2, 128.3, 128.7, 128.9, 132.5, 133.6, 135.2, 138.9, 171.3; IR (film) 2923, 2853, 1731, 1438, 1295, 1204, 1060, 1027, 943, $756,738,700 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 418.2013$, found $m / z 418.1997$.

Dimethyl 2-allyl-2-((1-benzyl-5-methyl-1H-pyrrol-2-yl)methyl) malonate (1h)

White solid (36\% yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 20, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{1 h}: \mathrm{m} . \mathrm{p} .=51-52{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H})$, $3.68(\mathrm{~s}, 6 \mathrm{H}), 5.00-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.53-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.88(\mathrm{~m}, 2 \mathrm{H})$, $6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5,29.2$, $36.9,46.4,52.4,58.0,106.3,106.8,119.0,125.5,125.9,127.0,128.7,132.5,138.4$, 171.3; IR (film) 2952, 1729, 1438, 1301, 1198, 1155, 1067, 1027, 1001, 934, 861, 748, 730, 695, $671 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$ requires $m / z 356.1856$, found $m / z 356.1845$.

Dimethyl 2-allyl-2-((1-benzyl-1H-pyrrol-2-yl)methyl) malonate (1i)

Colourless liquid ($2.8 \mathrm{~g}, 23 \%$ yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 20, v / v$). Analytical data for $1 \mathbf{1}:{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 2.71$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.14 (s, 2H), 3.68 (s, 6H), 4.99-5.04 (m, 2H), 5.05 (s, 2H), 5.54-5.63 (m, 1H), 5.93 (d, J=1.8 Hz, 2H), 6.10-6.12 $(\mathrm{m}, 1 \mathrm{H}), 6.60\left(\mathrm{dd}, J_{l}=1.8 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.32$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.7,36.9,50.2,52.5,58.1,107.5,108.2$, 119.1, 121.7, 126.2, 126.7, 127.3, 128.6, 132.4, 138.3, 171.2; IR (film) 2981, 1731, 1480, 1434, 1292, 1211, 1136, 1075, 923, $705 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 342.1700$, found $m / z 342.1691$.

General procedure for the enantioselective synthesis of 4,5,6,7-tetrahydroindole

To a solution of pyrrole olefin 1 ($0.2 \mathrm{mmol}, 1.0$ equiv) in toluene (2 mL) were added enone 2 (1.2 equivs or 2.0 equivs) and $3 \AA$ MS (100 mg), then chiral phosphoric $\operatorname{acid}(S)-\mathbf{4 c}(6.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and Zhan-1B ($7.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added in one portion. The reaction was stirred at $40^{\circ} \mathrm{C}$. After the reaction was complete (monitored by TLC), it was quenched with water and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After the solvent was removed in vacuo, the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 25-1 / 9$) to afford tetrahydroindole 3

(R)-2-(1-Methyl-2-phenyl-4,5,6,7-tetrahydro-1H-indol-4-yl)-1-ph enylethanone (3a)

Yellow liquid ($39.5 \mathrm{mg}, 60 \%$ yield, $72 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 30, \mathrm{v} / \mathrm{v}$). Analytical data for 3a: $[\alpha]_{\mathrm{D}}{ }^{20}=+29.2(\mathrm{c}=0.5$ Acetone, $72 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.40-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.09\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.35-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H})$, 7.23-7.30 (m, 1H), 7.33-7.38 (m, 4H), 7.43-7.48 (m, 2H), 7.55 (t, J=7.2 Hz, 1H), $8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,22.3,29.8,30.0,31.3$, 45.5, 105.7, 120.7, 126.4, 128.1, 128.3, 128.5, 130.0, 132.9, 133.4, 133.5, 137.4, 200.0; IR (film) 2923, 2852, 1680, 1599, 1515, 1447, 1357, 1277, 1201, 988, 751, $689 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 330.1852, found m / z 330.1856. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major)
$=7.63 \mathrm{~min}, \mathrm{t}($ minor $)=6.99 \mathrm{~min}$.

(R)-2-(1-Methyl-2-phenyl-4,5,6,7-tetrahydro-1H-indol-4-y 1)-1-(naphthalen-2-yl)ethanone (3b)

Yellow solid ($33.7 \mathrm{mg}, 44 \%$ yield, $67 \% \mathrm{ee}$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 35, \mathrm{v} / \mathrm{v})$. Analytical data for 3b: m.p. $=55-56{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+89.7(\mathrm{c}=0.5$ Acetone, 67% ee $).{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.79(\mathrm{~m}$, $1 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.15\left(\mathrm{dd}, J_{l}=9.9 \mathrm{~Hz}, J_{2}=17.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.42-3.47 (m, 2H), 3.42 ($\mathrm{s}, 3 \mathrm{H}$), $6.03(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 4 \mathrm{H})$, 7.43-7.53 (m, 2H), 7.77-7.87 (m, 3H), $8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,22.3,29.9,30.2,31.3,45.6,105.7,120.8,124.0$, 126.4, 126.7, 127.7, 128.3, 128.4, 128.5, 129.6, 129.8, 130.0, 132.5, 133.4, 133.6, 134.8, 135.5, 200.0; IR (film) 3056, 2922, 2851, 1674, 1626, 1599, 1514, 1467, 1358, 1280, 1178, 1122, 861, 818, 750, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 380.2009, found m / z 380.2008. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = $90 / 10$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=11.24 \mathrm{~min}, \mathrm{t}($ minor $)=10.28 \mathrm{~min}$.

(R)-2-(1-Benzyl-2-phenyl-4,5,6,7-tetrahydro-1H-indol-4-yl)-1-p henylethanone (3c)

Yellow solid ($75.2 \mathrm{mg}, 93 \%$ yield, $84 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 30$, $\mathrm{v} / \mathrm{v})$. Analytical data for 3 c : m.p. $=104-105{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+21.5(\mathrm{c}=0.5$ Acetone, 84% $e e) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.86-2.02$ $(\mathrm{m}, 2 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.10\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39-3.46(\mathrm{~m}$, $2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.6,22.2,29.9,30.1,45.6,47.4,106.3,121.3,125.7,126.5,126.9,128.1$, 128.3, 128.4, 128.5, 128.6, 129.9, 132.8, 133.5, 133.8, 137.4, 139.0, 200.1; IR (film) 3028, 2916, 1686, 1598, 1494, 1447, 1401, 1358, 1199, 1027, 990, 918, 794, 761, 742,

685, $624 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 406.2165, found $m / z 406.2170$. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA $=90 / 10,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=14.52 \mathrm{~min}, \mathrm{t}($ minor $)=15.40 \mathrm{~min}$.

(R)-2-(1-Benzyl-2-methyl-4,5,6,7-tetrahydro-1H-indol-4-yl)-1-phe nylethanone (3d)

Yellow solid ($38.6 \mathrm{mg}, 56 \%$ yield, $84 \% \mathrm{ee}$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 30, \mathrm{v} / \mathrm{v}$). Analytical data for 3d: m.p. $=50-51{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.9(\mathrm{c}=0.5$ Acetone, $84 \% e e) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.99(\mathrm{~m}, 2 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.41(\mathrm{~m}, 2 \mathrm{H}), 3.04\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32-3.38(\mathrm{~m}$, $2 \mathrm{H}), 4.95$ (s, 2H), 5.79 ($\mathrm{s}, 1 \mathrm{H}$), 6.91 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (t, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.0,21.7,22.0,30.0,30.1,45.7,46.5,103.9,119.7,125.8,126.9,127.3$, 128.1, 128.5, 128.6, 132.8, 137.4, 138.5, 200.2; IR (film) 2923, 2853, 1679, 1597, 1447, 1355, 1276, 1205, 1000, 752, 728, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 344.2009$, found m / z 344.2016. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA $=90 / 10$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=27.66 \mathrm{~min}, \mathrm{t}($ minor $)=20.06 \mathrm{~min}$.

(R)-3-(1-Benzyl-4-(2-oxo-2-phenylethyl)-4,5,6,7-tetrahydro-

 1H-indol-2-yl)-1-phenylpropan-1-one (3e)Yellow solid ($81.7 \mathrm{mg}, 88 \%$ yield, $80 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for 3e: m.p. $=102-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+15.2(\mathrm{c}=0.5$ Acetone, $80 \% e e$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.87-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.05\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}\right.$, $\left.J_{2}=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.13-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.42(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H})$, 6.92 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.7,21.6,21.9,30.1$,
$30.2,38.0,45.7,46.4,103.1,119.9,125.7,127.0,127.8,127.9,128.2,128.5,128.7$, 130.7, 132.8, 133.0, 136.7, 137.5, 138.5, 199.1, 200.2; IR (film) 2927, 1678, 1597, 1448, 1351, 1298, 1284, 1204, 1179, 973, 755, 726, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$requires $\mathrm{m} / \mathrm{z} 462.2428$, found m / z 462.2430. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=25.34 \mathrm{~min}, \mathrm{t}($ minor $)=18.36 \mathrm{~min}$.

(R)-3-(1-(Naphthalen-1-ylmethyl)-4-(2-oxo-2-phenylethyl)-4,

 5,6,7-tetrahydro-1H-indol-2-yl)-1-phenylpropan-1-one (3f)Yellow solid ($75.7 \mathrm{mg}, 74 \%$ yield, $82 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for 3f: m.p. $=96-97{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+3.6(\mathrm{c}=0.5$ Acetone, $82 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43-1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.42(\mathrm{~m}, 2 \mathrm{H})$, 2.85-2.91 (m, 2H), $3.08\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.38-3.47 (m, 2H), $5.47(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 7.45-7.61$ (m, 6H), 7.72-7.80 (m, 3H), 7.89 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99-8.05 (m, 3 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.6,21.6,30.1,30.2,38.0,44.2,45.7,103.3$, 120.1, 122.1, 122.4, 125.7, 125.8, 126.3, 127.5, 127.9, 128.1, 128.2, 128.4, 128.5, 128.9, 130.1, 130.9, 132.8, 132.9, 133.4, 133.8, 136.6, 137.5, 199.0, 200.3; IR (film) 2930, 1735, 1681, 1596, 1447, 1359, 1278, 1203, 973, 795, 771, 749, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$requires $\mathrm{m} / \mathrm{z} 512.2584$, found $m / z 512.2582$. The enantiomeric excess was determined by Daicel Chiralpak AD-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=25.36 \mathrm{~min}, \mathrm{t}$ $($ minor $)=20.16 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-4-(2-oxo-2-phenylethyl)-2-(3-oxo-3-phenylpropyl)-4,5-dihydro-1H-indole-6,6(7H)-dic arboxylate (3g)

Yellow solid ($56.6 \mathrm{mg}, 49 \%$ yield, $85 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 5, \mathrm{v} / \mathrm{v}$). Analytical data for 3 g : m.p. $=62-63{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+30.3(\mathrm{c}=0.5$ Acetone, $85 \% e e) .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.80\left(\mathrm{dd}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.60-2.75(\mathrm{~m}$, $4 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 3 \mathrm{H}), 3.01-3.13(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 5.05(\mathrm{~s}$, $2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.81$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.5,27.5$, $27.9,35.7,37.8 .45 .5,46.6,52.7,52.8,54.4,102.9,118.4,124.2,125.8,127.2,127.9$, $128.1,128.4,128.5,128.7,131.8,132.9,133.0,136.6,137.2,138.0,170.7,172.1$, 199.0, 199.3; IR (film) 3674, 2988, 2901, 1732, 1681, 1448, 1250, 1205, 1066, 733, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 578.2537, found m / z 578.2535. The enantiomeric excess was determined by Phenomenex Lu X 5u Cellulose-2 ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), Hexanes $/ \mathrm{IPA}=70 / 30,0.7$ $\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}($ major $)=49.54 \mathrm{~min}, \mathrm{t}($ minor $)=59.21 \mathrm{~min}$

(R)-Dimethyl 1-benzyl-4-(2-oxo-2-phenylethyl)-2-phenyl -4,5-dihydro-1H- indole-6,6(7H)-dicarboxylate (3h)

Yellow solid ($61.2 \mathrm{mg}, 59 \%$ yield, $92 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for 3h: m.p. $=60-61{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+52.8(\mathrm{c}=0.5$ Acetone, 92% ee). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.85\left(\mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=13.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.74\left(\mathrm{dd}, J_{l}=4.8 \mathrm{~Hz}, J_{2}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80(\mathrm{AB}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10\left(\mathrm{dd}, J_{l}\right.$ $\left.=7.5 \mathrm{~Hz}, J_{2}=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25(\mathrm{AB}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.35(\mathrm{~m}$, 8H), 7.44-7.49 (m, 2H), $7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.4,28.0,35.6,45.4,47.5,52.7,52.8,54.4,105.9,119.8,125.7$, 126.3, 126.7, 127.0, 128.1, 128.3, 128.5, 128.6, 128.7, 133.0, 133.1, 134.8, 137.1, 138.5, 170.7, 172.1, 199.1; IR (film) 2951, 1731, 1682, 1599, 1448, 1356, 1247, 1075,

757, 730, $691 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 552.2275$, found $m / z 552.2269$. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA $=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=60.75 \mathrm{~min}, \mathrm{t}($ minor $)=69.06 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-4-(2-oxo-2-(p-tolyl)ethyl)-2-phenyl -4,5- dihydro-1H-indole-6,6(7H)-dicarboxylate (3i)

Yellow solid ($63.9 \mathrm{mg}, 60 \%$ yield, $90 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for 3i: m.p. $=59-60{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+47.9(\mathrm{c}=0.5$ Acetone, $90 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.70-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.07\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.40-3.57 (m, 2H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H}$), 5.09 (s, 2H), 6.06 (s, 1H), 6.99 (d, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.34 (m, 10H), 7.91 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,27.4,28.0,35.6,45.2,47.5,52.6,52.7,54.4,105.9,119.9,125.7,126.2,126.7$, 127.0, 128.1, 128.2, 128.4, 128.6, 129.2, 133.1, 134.7, 134.8, 138.5, 143.7, 170.7, 172.1, 198.7; IR (film) 2952, 1731, 1679, 1433, 1246, 1201, 1176, 813, 758, 731, 697 cm^{-1}; HRMS (ESI) exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires $\mathrm{m} / \mathrm{z} 536.2431$, found m / z 536.2433. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ (major $)=33.7$ $\min , \mathrm{t}($ minor $)=39.91 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-4-(2-(4-methoxyphenyl)-2-oxoethyl)-2-phenyl-4,5-dihydro-1H-indole-6,6(7H)dicarboxylate (3j)

Yellow solid ($62.3 \mathrm{mg}, 57 \%$ yield, 88% ee), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{3 j}$: m.p. $=56-57^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+37.8(\mathrm{c}=0.5$ Acetone, $88 \% e e) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.09(\mathrm{~m}, 1 \mathrm{H})$, $3.25(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06\left(\mathrm{dd}, J_{l}=5.4 \mathrm{~Hz}, J_{2}=16.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.53-3.68(\mathrm{~m}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 8 \mathrm{H}), 8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.5,28.0,35.6,44.9,47.4,52.6,52.7,54.4,55.3,105.9,113.6$, 119.9, 125.6, 126.2, 126.6, 127.0, 128.2, 128.4, 128.6, 128.8, 130.3, 133.1, 134.7, 138.5, 163.3, 170.6, 172.1, 197.6; IR (film) 3700, 2954, 2902, 1731, 1674, 1599, 1511, 1451, 1435, 1251, 1205, 1168, 1075, 1029, 982, 831, 759, 730, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 552.2381$, found $m / z 552.2378$. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=56.37 \mathrm{~min}, \mathrm{t}($ minor $)=$ 65.28 min .

(R)-Dimethyl 1-benzyl-4-(2-(4-bromophenyl)-2-oxoethyl)-2-phenyl -4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (3k)

Yellow solid ($90.8 \mathrm{mg}, 76 \%$ yield, $93 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{3 k}$: m.p. $=68-69{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+51.6(\mathrm{c}=0.5$ Acetone, $93 \% e e) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83\left(\mathrm{dd}, J_{I}=10.8 \mathrm{~Hz}, J_{2}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 2.69-2.82 (m, $2 \mathrm{H}), 3.06\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42\left(\mathrm{dd}, J_{l}=\right.$ $\left.5.7 \mathrm{~Hz}, J_{2}=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.53-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, $6.02(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.4,28.0,35.5,45.3,47.5$, 52.7, 52.8, 54.4, 105.8, 119.6, 125.7, 126.3, 126.8, 127.1, 128.2, 128.3, 128.5, 128.7, 129.6, 131.9, 133.0, 134.9, 135.8, 138.5, 170.6, 172.1, 198.1; IR (film) 2928, 1729, 1680, 1434, 1247, 1205, 1173, 731, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{BrNO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 600.1380$, found $m / z 600.1379$. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA $=95 / 5,0.8$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=75.35 \mathrm{~min}, \mathrm{t}($ minor $)=66.30 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-4-(2-(4-chlorophenyl)-2-oxoethyl)-

2-phenyl -4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (31)

Yellow solid ($75.8 \mathrm{mg}, 68 \%$ yield, $91 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}$). Analytical data for 31: m.p. $=72-73{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+52.1(\mathrm{c}=0.5$ Acetone, $91 \% e e) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83\left(\mathrm{dd}, J_{l}=8.1 \mathrm{~Hz}, J_{2}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.69-2.82(\mathrm{~m}$, $2 \mathrm{H}), 3.07\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43\left(\mathrm{dd}, J_{l}=\right.$ $\left.5.7 \mathrm{~Hz}, J_{2}=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.53-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, $6.03(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.4,28.0$, 35.5, 45.3, 47.5, 52.7, 52.8, 54.4, 105.8, 119.6, 125.6, 126.2, 126.8, 127.0, 128.3, 128.4, 128.6, 128.8, 129.5, 133.0, 134.9, 135.4, 138.4, 139.4, 170.6, 172.0, 197.9; IR (film) 2951, 1731, 1683, 1587, 1433, 1397, 1247, 1200, 1174, 1089, 983, 817, 759, $731,698 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{ClNO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 556.1885, found $m / z 556.1880$. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = $95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=74.39 \mathrm{~min}, \mathrm{t}($ minor $)=80.71 \mathrm{~min}$.
 silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v}$). Analytical data for $\mathbf{3 m}$: m.p. $=63-64{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+58.7(\mathrm{c}=0.5$ Acetone, $90 \% e e) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.85-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 2 \mathrm{H})$, 3.57-3.67 (m, 2H), 3.63 ($\mathrm{s}, 6 \mathrm{H}$), 5.11 ($\mathrm{s}, 2 \mathrm{H}$), 6.11 ($\mathrm{s}, 1 \mathrm{H}$), $7.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.19-7.36 (m, 8H), 7.55-7.63 (m, 2H), 7.87-7.98 (m, 3H), $8.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.6,28.0,35.6,45.4,47.5,52.7,52.8$, 54.4, 105.9, 119.8, 123.9, 125.7, 126.3, 126.7, 127.0, 127.7, 128.3, 128.4, 128.5,
128.6, 128.8, 129.5, 129.7, 132.5, 133.1, 134.5, 134.9, 135.5, 138.5, 170.7, 172.1, 199.0; IR (film) 2951, 1730, 1680, 1448, 1246, 1202, 1174, 1030, 757, 730, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires $\mathrm{m} / \mathrm{z} 572.2431$, found m / z 572.2430. The enantiomeric excess was determined by Daicel Chiralpak AD-H $(25 \mathrm{~cm})$, Hexanes $/$ IPA $=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=87.55 \mathrm{~min}, \mathrm{t}$ $($ minor $)=97.88 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-4-(2-oxopropyl)-2-phenyl-4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (3n)

Yellow liquid ($81.1 \mathrm{mg}, 88 \%$ yield, $88 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for $3 \mathrm{n}:[\alpha]_{\mathrm{D}}{ }^{20}=+29.9(\mathrm{c}=0.5$ Acetone, $88 \% e e)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.66(\mathrm{~m}, 2 \mathrm{H})$, $2.79\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.90\left(\mathrm{dd}, J_{l}=6.0 \mathrm{~Hz}, J_{2}=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.23$ $(\mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.04(\mathrm{AB}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{AB}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.34$ (m, 8H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.1,27.9,30.4,35.4,47.4,50.3,52.6,52.7$, 54.3, 105.7, 119.5, 125.6, 126.1, 126.8, 127.0, 128.2, 128.4, 128.6, 133.0, 134.8, 138.4, 170.6, 171.9, 208.0; IR (film) 2953, 2924, 1732, 1603, 1434, 1357, 1249, 1088, 1030, 973, 760, 731, 699, $665 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{5}$ $(\mathrm{M}+\mathrm{H})^{+}$requires $m / z 460.2118$, found $m / z 460.2120$. The enantiomeric excess was determined by Daicel Chiralpak AD-H $(25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=97 / 3,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=31.74 \mathrm{~min}, \mathrm{t}($ minor $)=34.03 \mathrm{~min}$.

(R)-Dimethyl 1-benzyl-2-methyl-4-(2-oxopropyl) -4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (30)

Yellow liquid ($59.2 \mathrm{mg}, 75 \%$ yield, $69 \% e e$), following silica gel column chromatography (ethyl acetate/petroleum ether $=$ $1 / 10, \mathrm{v} / \mathrm{v})$. Analytical data for 3o: $[\alpha]_{\mathrm{D}}{ }^{20}=+8.8(\mathrm{c}=0.5$ Acetone, $69 \% e e) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71\left(\mathrm{dd}, J_{l}=11.1 \mathrm{~Hz}, J_{2}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}$,
$3 \mathrm{H}), 2.46-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.9,27.2,27.8,30.3,35.5,46.5,50.5,52.6,52.7,54.4,103.6$, $117.9,123.6,125.7,127.0,128.4,128.5,138.0,170.6,172.1,208.2$; IR (film) 2952, 2925, 1732, 1496, 1432, 1401, 1357, 1249, 1086, 1050, 731, 698, $665 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}$requires $\mathrm{m} / \mathrm{z} 398.1962$, found m / z 398.1969. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}($ major $)=15.51 \mathrm{~min}, \mathrm{t}$ $(\operatorname{minor})=12.65 \mathrm{~min}$.

X-Ray structure of enantiopure $3 \mathbf{k}$

(R)-dimethyl 1-benzyl-4-(2-(4-bromophenyl)-2-oxoethyl)-2-phenyl-4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate [CCDC 1045810 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk /data request/cif.]

Table 1. Crystal data and structure refinement for cd214165.

Identification code	cd214165
Empirical formula	C33 H30 Br N O5
Formula weight	600.49
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	I 222
Unit cell dimensions	$\mathrm{a}=15.713(12) \AA \quad=90^{\circ}$.
	$\mathrm{b}=28.08(2) \AA \quad=90^{\circ}$.
	$\mathrm{c}=28.507(18) \AA \quad=90^{\circ}$.
Volume	12578(15) \AA^{3}
Z	16
Density (calculated)	$1.268 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.346 \mathrm{~mm}^{-1}$
F(000)	4960
Crystal size	$0.156 \times 0.142 \times 0.103 \mathrm{~mm}^{3}$
Theta range for data collection	1.018 to 25.499°.
Index ranges	$0<=\mathrm{h}<=19,-34<=\mathrm{k}<=26,-34<=1<=34$
Reflections collected	18429
Independent reflections	11716 [R(int) $=0.0600]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.5761
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11716 / 0 / 725
Goodness-of-fit on F^{2}	0.891
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0686, \mathrm{wR} 2=0.1544$
R indices (all data)	$\mathrm{R} 1=0.1326, \mathrm{wR} 2=0.1759$
Absolute structure parameter	0.031(9)
Extinction coefficient	n/a
Largest diff. peak and hole	0.715 and -0.377 e. \AA^{-3}

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 1a

0LG'

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 1 c

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 1d

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 e}$ 0000 ——|

$866^{\circ} \mathrm{t}$
$966^{\circ} \mathrm{t}$
2.
802.9
$Z \nabla L \angle G$
$G 9 \angle G$
$66 \angle .9$

988'9

$$
9 \forall g^{\prime} 9 \downarrow
$$

089．92
00022
0でンLL

Gらt゙カロレ
SSt $\forall 0$
009 GO \qquad
$6 ャ 9 \downarrow$ レー
999＇9Z1
996.9 に।

8998てし
てSc゙てE1
てLけ 8 にし
£99＇8\＆

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 f}$

-
$06 \angle 0 Z$
1189
$\varepsilon 9 \angle L Z —$
$0<$ で $\varepsilon \varepsilon$
$6 \angle 9 \angle \varepsilon$ —
$89 \varepsilon 9 t \longrightarrow$
089.92
$000 \angle L$
$18+\angle L$

が七ロー
899゙カ01－

15からZ1
＜96．921 —
198 L Z ا
とをが8てレ
LZ9．8Z1
8しでしをレ
ャマ6 て\＆レ
Z69＇981
LEt 8 に
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 g}$
00000 $92 \vdash \cdot$

889 \&

26E62——
$990<\varepsilon$
$90 t<t$
ZLGZS
Z66 $\angle 9 \longrightarrow$

$68 て ゙ 1 \angle 1$ \qquad

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 h}$

とんかてしい
$681 \div 6 Z \longrightarrow$
$19898 \longrightarrow$
$90 t 9 t \longrightarrow$
ع6\＆$て \varsigma \longrightarrow$
$9 \not 7089 \longrightarrow$

し6で901
89 ／90।

$00 \varepsilon^{\prime} レ \angle \square$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 i}$

789ε
$686 . \downarrow$
$866{ }^{\circ} \downarrow$
200 G
870 g
809
$699^{\circ} \rightarrow \geq$
GLG＇ 9
0699^{9}
$69^{\circ} \mathrm{G}$
5299
9Z6．9
てع6．9
p01． 9
9 เ．＇9
$+69.9 —$
6699
2099
8099 —
8099
6169
เャ6：9
$\angle Z Z ゚ ᄂ$

ع92
$\angle 8 Z^{\circ} \angle-$
$01 \varepsilon^{\circ} \angle-$
$\angle 1 \varepsilon^{\prime} \angle$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 3a

응

$18 t 5 t$

$98 \angle \circ 0 Z 1$
8989 1．
0て1．8Zに－
$0 \angle$ 0゙8Z
L09：8Z1
066 6て1
\＆98てとし

\＆98てとし－

809 ε \＆
，
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR Spectra of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 3d
$9 \downarrow 6.7 \longrightarrow$
$\angle 8 L G \square$

$\angle \varepsilon 0^{\circ}$ そー

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 i}$

Zgs＇に
 9がくて
 $10 \cdot 82 —$
 $6 \angle \varsigma \subseteq \mathcal{L}$

$199^{\circ} 0 \angle 1$
$880^{\circ} \mathrm{ZL}$
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 j}$

$119 \angle Z$
20.82
$\angle 99^{\circ} 9 \varepsilon$ \qquad

[^1]

かと91———
$09 \angle 0 \angle 1 —$
GL゙てLL

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 k}$

\qquad

$68 \varepsilon \cdot \angle Z$
686 L
$\varepsilon \varepsilon \varsigma \subseteq \varepsilon$

カレト86ト \qquad

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of 31

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 n}$

229

0009

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{3 o}$

으

HPLC Chromatograph of 3a

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	6.948	874963.000	9054563.000	50.2750
2	7.565	807482.813	8955519.000	49.7250
Total		1682445.813	18010082.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	6.993	111384.266	1109007.500	13.9978
2	7.630	618690.750	6813725.500	86.0022
Total		730075.016	7922733.000	100.0000

HPLC Chromatograph of 3b

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	10.308	419986.875	6630831.000	49.2029
2	11.278	386581.531	6845678.000	50.7971
Total		806568.406	13476509.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	10.278	151755.094	2326352.000	16.4622
2	11.237	670158.688	11805160.000	83.5378
Total		821913.781	14131512.000	100.0000

HPLC Chromatograph of 3c

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	14.515	841126.813	16380837.000	49.8906
2	15.332	783242.500	16452659.000	50.1094
Total		1624369.313	32833496.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	14.517	1282834.625	24389950.000	91.8480
2	15.403	107808.141	2164726.750	8.1520
Total		1390642.766	26554676.750	100.0000

HPLC Chromatograph of 3d

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.058	68956.156	2213508.250	8.1304
2	27.662	522879.969	25011430.000	91.8696
Total		591836.125	27224938.250	100.0000

HPLC Chromatograph of 3 e

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	18.293	111326.563	3328729.750	49.2491
2	25.287	78488.508	3430229.250	50.7509
Total		189815.070	6758959.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	18.362	67416.938	1956712.375	10.0189
2	25.340	422568.156	17573402.000	89.9810
Total		489985.094	19530114.375	100.0000

HPLC Chromatograph of $3 f$

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.818	44671.621	1460307.875	49.8882
2	24.965	35003.121	1466855.000	50.1118
Total		79674.742	2927162.875	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.158	66185.547	2258200.500	9.2074
2	25.358	515310.750	22267806.000	90.7926
Total		581496.297	24526006.500	100.0000

HPLC Chromatograph of $\mathbf{3 g}$

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	PerCent
1	1	Unknown	49.960	38385.5	6991874.9	50.6854
2	2	Unknown	59.543	33587.5	6802773.0	49.3146
Total				71973.1	13794647.9	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	49.543	44528.0	7172282.6	92.6021
2	2	Unknown	59.210	2797.3	572986.1	7.3979
Total				47325.3	7745268.7	100.0000

HPLC Chromatograph of 3h

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	61.048	23056.500	2530019.250	49.7122
2	69.182	20290.648	2559312.250	50.2878
Total		43347.148	5089331.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	60.745	106340.891	11745743.000	95.8073
2	69.065	4203.947	514020.625	4.1927
Total		110544.838	12259763.625	100.0000

HPLC Chromatograph of 3i

Peak No.

1	34.588	453643.031	34809344.000	50.3315
2	40.663	356532.719	34350784.000	49.6685
Total		810175.750	69160128.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	33.700	531798.500	38787344.000	95.2259
2	39.912	24402.662	1944589.000	4.7741
Total		556201.162	40731933.000	100.0000

HPLC Chromatograph of 3j

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	57.580	43708.070	5695279.500	50.2071
2	66.132	36177.227	5648286.500	49.7929
Total		79885.297	11343566.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	56.372	166133.656	21694434.000	94.1665
2	65.275	9015.061	1343944.625	5.8335
Total		175148.717	23038378.625	100.0000

HPLC Chromatograph of 3k

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	65.232	25568.416	8740805.000	49.3063
2	78.035	21537.629	8986759.000	50.6937
Total		47106.045	17727564.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	66.297	7622.033	2506388.250	3.4773
2	75.347	164784.438	69572360.000	96.5227
Total		172406.470	72078748.250	100.0000

HPLC Chromatograph of 31

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	75.957	107664.406	16382757.000	50.3222
2	81.900	98957.242	16172999.000	49.6778
Total		206621.648	32555756.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	74.392	225183.922	32867570.000	95.3988
2	80.713	9254.096	1585253.000	4.6012
Total		234438.018	34452823.000	100.0000

HPLC Chromatograph of 3m

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	93.980	40626.441	6679924.000	49.8489
2	104.122	35979.207	6720421.500	50.1511
Total		76605.648	13400345.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	87.553	151237.656	23885472.000	95.1186
2	97.878	6988.942	1225792.500	4.8814
Total		158226.599	25111264.500	100.0000

HPLC Chromatograph of 3n

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	31.815	20447.604	1378868.750	50.7072
2	34.082	19316.811	1340405.750	49.2928
Total		39764.414	2719274.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	31.740	113780.242	5621866.500	94.0474
2	34.028	7160.040	355826.281	5.9526
Total		120940.282	5977692.781	100.0000

HPLC Chromatograph of 30

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.387	623705.000	12927950.000	49.5356
2	15.250	519027.188	13170336.000	50.4644
Total		1142732.188	26098286.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.652	33594.027	637341.938	15.5484
2	15.515	146662.516	3461745.000	84.4516
Total		180256.543	4099086.938	100.0000

[^0]: 1-Benzyl-2-(pent-4-en-1-yl)-1H-pyrrole (1c)
 Yellow liquid ($1.1 \mathrm{~g}, 22 \%$ yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether $=1 / 300, \mathrm{v} / \mathrm{v}$). Analytical data for 1c: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.61-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.07\left(\mathrm{dt}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=\right.$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.71-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.5$, $27.9,33.3,50.2,106.0,107.1,114.7,120.8,126.3,127.3,128.6,133.2,138.4,138.5 ;$ IR (film) 2931, 2860, 1703, 1640, 1495, 1453, 1428, 1355, 1295, 1074, 1029, 992, 910, $695 \mathrm{~cm}^{-1}$; HRMS (ESI) exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$requires m / z 226.1590, found $m / z 226.1591$.

[^1]: 50 PPM

