Supporting Information for

Enantioselective Synthesis of 4,5,6,7-Tetrahydroindoles *via* Olefin

Cross-Metathesis/Intramolecular Friedel-Crafts Alkylation Reaction of Pyrroles

Jun-Wei Zhang,^{a,b} Xiao-Wei Liu,^a Qing Gu,^a Xiao-Xin Shi,^b and Shu-Li You^{a,b}*

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China Fax (+86) 21-54925087; E-mail: slyou@sioc.ac.cn

^b School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China

Table of Contents			
General Methods	S 2		
Experimental Sections			
General procedure for preparation of 1a-d	S2-S5		
General procedure for preparation of 1e-f	S5-S7		
General procedure for preparation of 1g, 1h, 1i			
General procedure for the enantioselective synthesis of	f		
4,5,6,7-tetrahydroindoles	S10-S19		
X-Ray structure of enantiopure 3k	S19-S22		
Copies of NMR Spectra and HPLC Chromatographs			

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protonic solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Experimental Sections:

General procedure for preparation of 1a-d

A dry three-necked flask was charged with 4-pentenoic acid (20 g, 200 mmol, 1.0 equiv), toluene (300 mL), 2, 2'-dithiodipyridine (52.8 g, 240 mmol, 1.2 equivs) and triphenylphosphine (62.9 g, 240 mmol, 1.2 equivs). The mixture was then stirred at room temperature for 1 hour. When the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 10: 1) to afford S-pyridin-2-yl pent-4-enethioate (20.4 g, 53% yield).

MeMgBr (1.5 equivs, 3M in Et₂O) was added dropwise to a solution of pyrrole

or 2-phenyl pyrrole (1.0 equiv, 0.1 M) in toluene at -78 °C in a dry three-necked flask. After the reaction was stirred at room temperature for 1 hour, S-pyridin-2-yl pent-4-enethioate (1.5 equiv, 1.0 mol/L) in toluene was added slowly to the reaction mixture at -78 °C. Then the reaction mixture was stirred at room temperature. When the reaction was complete (monitored by TLC), it was quenched by saturated NH₄Cl (aq.) at 0 °C and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50: 1) to afford acylated pyrrole.

The acylated pyrrole was dissolved in 'PrOH (0.5 mol/L), and then sodium borohydride (2.0 equiv) was added. The reaction mixture was refluxed until pyrrole was fully consumed (monitored by TLC). After the solvent was evaporated under reduced pressure, the crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 50: 1) to afford the alkylated pyrrole.

To a suspension of NaH (3.0 equivs) in THF (0.1 M) or DMF (0.1 M) in a dry three-necked flask was added alkylated pyrrole (1.0 equiv) in THF or DMF slowly at 0 °C. After the mixture was stirred at room temperature for 1 hour, MeI (3.0 equivs) or ArCH₂Br (1.5 equivs) was added dropwise at 0 °C. The reaction was stirred at room temperature until alkylated pyrrole was fully consumed (monitored by TLC). It was quenched by water at 0 °C and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/100-1/500) to afford **1a-d**.

N Me

N **1-Methyl-2-(pent-4-en-1-yl)-5-phenyl-1H-pyrrole (1a)**

^{iiie} Yellow liquid (1.2 g, 22% yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/100, v/v). Analytical data for **1a**: ¹H NMR (300 MHz, CDCl₃) δ 1.74-1.84 (m, 2H), 2.21 (dt, J_1 = 6.9 Hz, J_2 = 7.5 Hz, 2H), 2.62 (t, J = 8.1 Hz, 2H), 3.51 (s, 3H), 5.02 (d, J = 10.2 Hz, 1H), 5.07 (d, J = 17.1 Hz, 1H), 5.82-5.91 (m, 1H), 5.97 (d, J = 3.3 Hz, 1H), 6.15 (d, J = 3.6 Hz, 1H),

7.23-7.30 (m, 1H), 7.35-7.38 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 26.4, 27.7, 31.6, 33.5, 105.3, 107.4, 114.9, 126.4, 128.3, 128.7, 133.9, 134.1, 134.9, 138.4; IR (film) 2931, 1640, 1601, 1511, 1455, 1308, 992, 910, 749, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₆H₂₀N (M+H)⁺ requires *m/z* 226.1590, found *m/z* 226.1594.

1-Benzyl-2-(pent-4-en-1-yl)-5-phenyl-1H-pyrrole (1b)

^{Bn} Yellow solid (276 mg, 10% yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/250, v/v). Analytical data for **1b**: m.p. = 43-44 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.68-1.75 (m, 2H), 2.08 (dt, J_1 = 6.9 Hz, J_2 = 7.2 Hz, 2H), 2.43 (t, J = 7.8 Hz, 2H), 4.92 (d, J = 9.6 Hz, 1H), 4.97 (d, J = 16.8 Hz, 1H), 5.13 (s, 2H), 5.71-5.76 (m, 1H), 6.07 (d, J = 3.0 Hz, 1H), 6.25 (d, J = 3.9 Hz, 1H), 6.90 (d, J = 6.9 Hz, 2H), 7.20-7.31 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 26.0, 27.6, 33.4, 47.5, 106.0, 108.1, 114.7, 125.6, 126.6, 126.9, 128.3, 128.7, 128.8, 133.7, 134.5, 134.8, 138.4, 139.1; IR (film) 2931, 1601, 1495, 1450, 1360, 1312, 1074, 1027, 913, 749, 726, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₂H₂₄N (M+H)⁺ requires *m/z* 302.1903, found *m/z* 302.1910.

1-Benzyl-2-(pent-4-en-1-yl)-1H-pyrrole (1c)

Yellow liquid (1.1 g, 22% yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/300, v/v). Analytical data for **1c**: ¹H NMR (300 MHz, CDCl₃) δ 1.61-1.71 (m, 2H), 2.07 (dt, $J_1 = 7.2$ Hz, $J_2 = 6.9$ Hz, 2H), 2.46 (t, J = 7.5 Hz, 2H), 4.93 (d, J = 9.9 Hz, 1H), 4.98 (d, J = 16.8 Hz, 1H), 5.03 (s, 2H), 5.71-5.80 (m, 1H), 5.97 (s, 1H), 6.13 (t, J = 3.0 Hz, 1H), 6.61 (s, 1H), 6.98 (d, J = 7.5 Hz, 2H), 7.24-7.32 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 25.5, 27.9, 33.3, 50.2, 106.0, 107.1, 114.7, 120.8, 126.3, 127.3, 128.6, 133.2, 138.4, 138.5; IR (film) 2931, 2860, 1703, 1640, 1495, 1453, 1428, 1355, 1295, 1074, 1029, 992, 910, 695 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₆H₂₀N (M+H)⁺ requires *m/z* 226.1590, found *m/z* 226.1591.

1-(Naphthalen-1-ylmethyl)-2-(pent-4-en-1-yl)-1H-pyrrole (1d)

Yellow liquid (400 mg, 18% yield over three steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/300, v/v). Analytical data for **1d**: ¹H NMR (300 MHz, CDCl₃) δ 1.63-1.73 (m, 2H), 2.03 (dt, J_I = 6.9 Hz, J_2 = 7.5 Hz, 2H), 2.46 (t, J = 7.8 Hz, 2H), 4.88 (d, J = 11.1 Hz, 1H), 4.93 (d, J = 17.7 Hz, 1H), 5.39 (s, 2H), 5.64-5.78 (m, 1H), 6.04 (m, 1H), 6.16-6.18 (m, 1H), 6.55-6.59 (m, 2H), 7.30 (t, J = 7.8 Hz, 1H), 7.44-7.52 (m, 2H), 7.70 (d, J = 8.4 Hz, 1H), 7.82-7.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 25.4, 27.8, 33.2, 47.8, 105.9, 107.2, 114.7, 120.9, 122.2, 123.7, 125.6, 125.7, 126.3, 127.7, 128.8, 130.2, 133.2, 133.3, 133.9, 138.2; IR (film) 2929, 2858, 1639, 1486, 1428, 1297, 1076, 991, 910, 791, 769, 702 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₂N (M+H)⁺ requires *m*/*z* 276.1747, found *m*/*z* 276.1749.

Procedure for preparation of 1e-f

To a solution of **1c** (450 mg, 2 mmol) in DMF (10 mL) in a dry three-necked flask was added POCl₃ (367 mg, 2.4 mmol, 1.2 equiv) dropwise at 0 °C. After the reaction mixture was stirred at room temperature for 4 hours, it was slowly adjusted by the addition of saturated NaOH (aq.) to pH >7 at 0 °C. Then the reaction was stirred at 60 °C for 2 hours. After the reaction was complete (monitored by TLC), the mixture was extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtrated. The solvent was removed in vacuo to afford the crude product which was used in the next step without purification. KOH (400 mg, 7.1 mmol) and hydrazine hydrate (2 mL, 80%) were added to a solution of 1-benzyl-5-(pent-4-en-1-yl)-1H-pyrrole-2-carbaldehyde in diethylene glycol ether (5 mL). The reaction mixture was stirred at 180 °C. After the reaction was complete (monitored by TLC), it was quenched with H₂O and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtrated and concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/100) to afford pyrrole **1e** (274 mg, 57% yield over two steps).

1-Benzyl-2-methyl-5-(pent-4-en-1-yl)-1H-pyrrole (1e)

^{Bn} Yellow liquid (274 mg, 92% yield), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/100, v/v). Analytical data for **1e**: ¹H NMR (300 MHz, CDCl₃) δ 1.60-1.70 (m, 2H), 2.05 (dt, $J_1 = 6.9$ Hz, $J_2 = 7.8$ Hz, 2H), 2.12 (s, 3H), 2.45 (t, J = 7.5 Hz, 2H), 4.92 (d, J = 10.2 Hz, 1H), 4.97 (d, J = 17.4Hz, 1H), 5.01 (s, 2H), 5.71-5.80 (m, 1H), 5.89 (s, 2H), 6.86 (d, J = 7.5 Hz, 2H), 7.22-7.31 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 12.3, 26.0, 28.0, 33.3, 46.5, 104.5, 105.5, 114.6, 125.6, 127.0, 128.0, 128.7, 132.6, 138.5, 138.7; IR (film) 3102, 2930, 2859, 1640, 1495, 1416, 1354, 1299, 1029,1018, 991, 910, 727, 695 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₇H₂₂N (M+H)⁺ requires *m/z* 240.1747, found *m/z* 240.1749.

To a solution of **1c** (450 mg, 2 mmol) in toluene (10 mL) was added the enone **2a** (290 mg, 2.2 mmol) and racemic phosphoric acid (35 mg, 0.1 mmol, 5 mol%). The mixture was stirred at 40 °C for 12 hours. After the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/50) to afford **1f** (187 mg, 47% yield).

3-(1-Benzyl-5-(pent-4-en-1-yl)-1H-pyrrol-2-yl)-1-p henylpropan-1-one (1f)

Yellow solid (187 mg, 47% yield), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/25, v/v). Analytical data for **1f**: m.p. = 58-59 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.62-1.72 (m, 2H), 2.08 (app q, *J* = 7.2 Hz, 2H), 2.47 (t, *J* = 7.5 Hz, 2H), 2.89 (t, *J* = 8.4 Hz, 2H), 3.18-3.23 (m, 2H), 4.92 (d, *J* = 9.3 Hz, 1H), 4.97 (d, *J* = 17.4 Hz, 1H), 5.08 (s, 2H), 5.69-5.82 (m, 1H), 5.93-5.96 (m, 2H), 6.86 (d, *J* = 7.2 Hz, 2H), 7.17-7.29 (m, 3H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 20.8, 25.8, 27.8, 33.3, 37.7, 46.4, 104.4, 104.6, 114.7, 125.5, 127.0, 127.9, 128.4, 128.6, 131.2, 132.9, 136.6, 138.3, 138.4, 199.0; IR (film) 2928, 1682, 1494, 1418, 1351, 1273, 1193, 1006, 973, 909, 731, 697, 686, 642 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₅H₂₈NO(M+H)⁺ requires *m/z* 358.2165, found *m/z* 358.2167.

General procedure for preparation of 1g-i

In a dry three-necked flask, POCl₃ (2.0 equiv.) was added to a solution of *N*-Bn pyrrole (1.0 equiv, 0.7 M) in DMF at 0 °C. After the mixture was stirred at room temperature for 4 hours, it was slowly adjusted by the addition of saturated NaOH (aq.) to pH >7 at 0 °C. Then the mixture was stirred at 80 °C for 2 hours. After the reaction was complete (monitored by TLC), the mixture was quenched with water and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. After the solvent was removed in vacuo, the residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/100)

to afford pyrrole aldehyde.

The pyrrole aldehyde (1.0 equiv) was dissolved in toluene (0.3 mol/L) and methyl malonate (1.1 equivs), piperidine (1.0 equiv) and AcOH (0.1 equiv) were added. The mixture was stirred at 60 °C for 12 hours. After the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/5) to afford dimethyl (pyrrol-methylene)malonate.

The mixture of dimethyl (pyrrol-methylene)malonate (1.0 equiv, 0.4 mol/L) and Pd/C (10%, 0.1 equiv.) in ethyl acetate under 1 atm of H₂ was stirred at 40 $^{\circ}$ C. After the reaction was complete (monitored by TLC), the reaction mixture was filtered through a pad of celite and washed with ethyl acetate. The solvent was evaporated under reduced pressure to afford the crude product, which was directly used in the next step.

To a suspension of NaH (3.0 equivs) in THF (0.3 M) in a dry three-necked flask was added the aforementioned product in THF (1 mol/L) slowly at 0 °C. The mixture was stirred at room temperature for 1 hour. After allyl bromide (1.5 equivs) was added at 0 °C, the reaction was stirred at room temperature. When the reaction was complete (monitored by TLC), it was quenched with water at 0 °C and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. After the solvent was removed in vacuo, the crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 1/20) to afford **1**.

MeOOC COOMe Dimethyl 2-allyl-2-((1-benzyl-1H-pyrrol-2-yl)methyl) malonate (1g)

White solid (1.3 g, 40% yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v). Analytical data for **1g**: m.p. = 85-86°C; ¹H NMR (300 MHz, CDCl₃) δ 2.77 (d, J = 7.2 Hz, 2H), 3.13 (s, 2H), 3.69 (s, 6H), 5.02 (d, J = 10.8 Hz, 1H), 5.03 (d, J = 16.2 Hz, 1H), 5.05 (s, 2H), 5.50-5.61 (m, 1H), 6.03 (d, J = 3.6 Hz, 1H), 6.21 (d, J = 3.3 Hz, 1H), 6.79 (d, J = 6.9

Hz, 2H), 7.15-7.27 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 29.4, 37.1, 47.4, 52.5, 58.0, 108.3, 108.7, 119.1, 125.5, 126.9, 127.0, 128.2, 128.3, 128.7, 128.9, 132.5, 133.6, 135.2, 138.9, 171.3; IR (film) 2923, 2853, 1731, 1438, 1295, 1204, 1060, 1027, 943, 756, 738, 700 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₆H₂₈NO₄(M+H)⁺ requires *m/z* 418.2013, found *m/z* 418.1997.

MeOOC COOMe Dimethyl 2-allyl-2-((1-benzyl-5-methyl-1H-pyrrol-2-yl)methyl) malonate (1h)

White solid (36% yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v). Analytical data for **1h**: m.p. = 51-52 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.10 (s, 3H), 2.73 (d, *J* = 7.2 Hz, 2H), 3.14 (s, 2H), 3.68 (s, 6H), 5.00-5.05 (m, 2H), 5.03 (s, 2H), 5.53-5.59 (m, 1H), 5.85-5.88 (m, 2H), 6.89 (d, *J* = 7.2 Hz, 2H), 7.21-7.30 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 12.5, 29.2, 36.9, 46.4, 52.4, 58.0, 106.3, 106.8, 119.0, 125.5, 125.9, 127.0, 128.7, 132.5, 138.4, 171.3; IR (film) 2952, 1729, 1438, 1301, 1198, 1155, 1067, 1027, 1001, 934, 861, 748, 730, 695, 671 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₁H₂₆NO₄(M+H)⁺ requires *m/z* 356.1856, found *m/z* 356.1845.

MeOOC COOMe New York New York (11) Dimethyl 2-allyl-2-((1-benzyl-1H-pyrrol-2-yl)methyl) malonate

Colourless liquid (2.8 g, 23% yield over four steps), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/20, v/v). Analytical data for **1i**: ¹H NMR (300 MHz, CDCl₃) δ 2.71 (d, J = 7.2 Hz, 2H), 3.14 (s, 2H), 3.68 (s, 6H), 4.99-5.04 (m, 2H), 5.05 (s, 2H), 5.54-5.63 (m, 1H), 5.93 (d, J = 1.8 Hz, 2H), 6.10-6.12 (m, 1H), 6.60 (dd, J_I = 1.8 Hz, J_2 = 2.7 Hz, 1H), 6.93 (d, J = 6.9 Hz, 2H), 7.23-7.32 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 28.7, 36.9, 50.2, 52.5, 58.1, 107.5, 108.2, 119.1, 121.7, 126.2, 126.7, 127.3, 128.6, 132.4, 138.3, 171.2; IR (film) 2981, 1731, 1480, 1434, 1292, 1211, 1136, 1075, 923, 705 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₄NO₄(M+H)⁺ requires *m/z* 342.1700, found *m/z* 342.1691.

To a solution of pyrrole olefin **1** (0.2 mmol, 1.0 equiv) in toluene (2 mL) were added enone **2** (1.2 equivs or 2.0 equivs) and 3Å MS (100 mg), then chiral phosphoric acid (*S*)-**4c** (6.0 mg, 0.01 mmol, 5 mol%) and Zhan-1B (7.3 mg, 0.01 mmol, 5 mol%) were added in one portion. The reaction was stirred at 40 °C. After the reaction was complete (monitored by TLC), it was quenched with water and extracted with ethyl acetate. The organic layers were washed with brine, dried over anhydrous Na₂SO₄ and filtered. After the solvent was removed in vacuo, the crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/25 - 1/9) to afford tetrahydroindole **3**

gel column chromatography (ethyl acetate/petroleum ether = 1/30, v/v). Analytical data for **3a**: $[\alpha]_D{}^{20} = +29.2$ (c = 0.5 Acetone, 72% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.50 (m, 1H), 1.79-1.88 (m, 1H), 1.97-2.04 (m, 2H), 2.61 (t, J = 6.0 Hz, 2H), 3.09 (dd, $J_1 = 8.1$ Hz, $J_2 = 15.9$ Hz, 1H), 3.35-3.49 (m, 2H), 3.49 (s, 3H), 6.07 (s, 1H), 7.23-7.30 (m, 1H), 7.33-7.38 (m, 4H), 7.43-7.48 (m, 2H), 7.55 (t, J = 7.2 Hz, 1H), 8.01 (d, J = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.6, 22.3, 29.8, 30.0, 31.3, 45.5, 105.7, 120.7, 126.4, 128.1, 128.3, 128.5, 130.0, 132.9, 133.4, 133.5, 137.4, 200.0; IR (film) 2923, 2852, 1680, 1599, 1515, 1447, 1357, 1277, 1201, 988, 751, 689 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₄NO (M+H)⁺ requires *m/z* 330.1852, found *m/z* 330.1856. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major)

= 7.63 min, t (minor) = 6.99 min.

(*R*)-2-(1-Methyl-2-phenyl-4,5,6,7-tetrahydro-1H-indol-4-y l)-1-(naphthalen-2-yl)ethanone (3b)

Yellow solid (33.7 mg, 44% yield, 67% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/35, v/v). Analytical data for **3b**: m.p. = 55-56 °C; $[\alpha]_D^{20} = +89.7$ (c = 0.5 Acetone, 67% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.34-1.53 (m, 1H), 1.74-1.79 (m, 1H), 1.91-2.00 (m, 2H), 2.52-2.56 (m, 2H), 3.15 (dd, $J_I = 9.9$ Hz, $J_2 = 17.4$ Hz, 1H), 3.42-3.47 (m, 2H), 3.42 (s, 3H), 6.03 (s, 1H), 7.15-7.20 (m, 1H), 7.25-7.30 (m, 4H), 7.43-7.53 (m, 2H), 7.77-7.87 (m, 3H), 8.01 (d, J = 7.8 Hz, 1H), 8.44 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 21.7, 22.3, 29.9, 30.2, 31.3, 45.6, 105.7, 120.8, 124.0, 126.4, 126.7, 127.7, 128.3, 128.4, 128.5, 129.6, 129.8, 130.0, 132.5, 133.4, 133.6, 134.8, 135.5, 200.0; IR (film) 3056, 2922, 2851, 1674, 1626, 1599, 1514, 1467, 1358, 1280, 1178, 1122, 861, 818, 750, 699 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₇H₂₆NO(M+H)⁺ requires *m/z* 380.2009, found *m/z* 380.2008. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.24 min, t (minor) = 10.28 min.

(*R*)-2-(1-Benzyl-2-phenyl-4,5,6,7-tetrahydro-1H-indol-4-yl)-1-p henylethanone (3c)

Yellow solid (75.2 mg, 93% yield, 84% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/30,

v/v). Analytical data for **3c**: m.p. = 104-105 °C; $[\alpha]_D^{20} = +21.5$ (c = 0.5 Acetone, 84% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.42-1.45 (m, 1H), 1.70-1.77 (m, 1H), 1.86-2.02 (m, 2H), 2.37-2.41 (m, 2H), 3.10 (dd, $J_I = 8.1$ Hz, $J_2 = 15.9$ Hz, 1H), 3.39-3.46 (m, 2H), 5.09 (s, 2H), 6.14 (s,1H), 6.96 (d, J = 7.2 Hz, 2H), 7.22-7.33 (m, 8H), 7.47 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 6.9 Hz, 1H), 8.03 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.6, 22.2, 29.9, 30.1, 45.6, 47.4, 106.3, 121.3, 125.7, 126.5, 126.9, 128.1, 128.3, 128.4, 128.5, 128.6, 129.9, 132.8, 133.5, 133.8, 137.4, 139.0, 200.1; IR (film) 3028, 2916, 1686, 1598, 1494, 1447, 1401, 1358, 1199, 1027, 990, 918, 794, 761, 742,

685, 624 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{29}H_{28}NO (M+H)^+$ requires m/z406.2165, found m/z 406.2170. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.5 mL/min, λ = 254 nm, t (major) = 14.52 min, t (minor) = 15.40 min.

(*R*)-2-(1-Benzyl-2-methyl-4,5,6,7-tetrahydro-1H-indol-4-yl)-1-phe nylethanone (3d)

Yellow solid (38.6 mg, 56% yield, 84% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/30, v/v). Analytical data for **3d**: m.p. = 50-51 °C; $[\alpha]_D^{20} = +0.9$ (c = 0.5 Acetone, 84% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.34-1.44 (m, 1H), 1.68-1.77 (m, 1H), 1.87-1.99 (m, 2H), 2.12 (s, 3H), 2.38-2.41 (m, 2H), 3.04 (dd, $J_I = 8.4$ Hz, $J_2 = 15.6$ Hz, 1H), 3.32-3.38 (m,

2H), 4.95 (s, 2H), 5.79 (s, 1H), 6.91 (d, J = 7.2 Hz, 2H), 7.20-7.32 (m, 3H), 7.46 (t, J = 7.8 Hz, 2H), 7.53-7.58 (m, 1H), 8.02 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 12.0, 21.7, 22.0, 30.0, 30.1, 45.7, 46.5, 103.9, 119.7, 125.8, 126.9, 127.3, 128.1, 128.5, 128.6, 132.8, 137.4, 138.5, 200.2; IR (film) 2923, 2853, 1679, 1597, 1447, 1355, 1276, 1205, 1000, 752, 728, 690 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₄H₂₆NO (M+H)⁺ requires *m*/*z* 344.2009, found *m*/*z* 344.2016. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 27.66 min, t (minor) = 20.06 min.

(*R*)-3-(1-Benzyl-4-(2-oxo-2-phenylethyl)-4,5,6,7-tetrahydro-1H-indol-2-yl)-1-phenylpropan-1-one (3e)

Yellow solid (81.7 mg, 88% yield, 80% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3e**: m.p. = 102-103 °C; $[\alpha]_D^{20} = +15.2$ (c = 0.5 Acetone, 80% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.40-1.43 (m, 1H), 1.74-1.77 (m, 1H), 1.87-2.00 (m, 2H), 2.42-2.46 (m, 2H), 2.86-2.91 (m, 2H), 3.05 (dd, $J_I = 7.8$ Hz, $J_2 = 15.3$ Hz, 1H), 3.13-3.18 (m, 2H), 3.33-3.42 (m, 2H), 5.02 (s, 2H), 5.83 (s, 1H), 6.92 (d, J = 6.9 Hz, 2H), 7.19-7.32 (m, 3H), 7.39-7.58 (m, 6H), 7.85 (d, J = 7.2 Hz, 2H), 8.01 (d, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 20.7, 21.6, 21.9, 30.1, 30.2, 38.0, 45.7, 46.4, 103.1, 119.9, 125.7, 127.0, 127.8, 127.9, 128.2, 128.5, 128.7, 130.7, 132.8, 133.0, 136.7, 137.5, 138.5, 199.1, 200.2; IR (film) 2927, 1678, 1597, 1448, 1351, 1298, 1284, 1204, 1179, 973, 755, 726, 692 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{33}H_{32}NO_2$ (M+H)⁺ requires *m/z* 462.2428, found *m/z* 462.2430. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 25.34 min, t (minor) = 18.36 min.

(*R*)-3-(1-(Naphthalen-1-ylmethyl)-4-(2-oxo-2-phenylethyl)-4, 5,6,7-tetrahydro-1H-indol-2-yl)-1-phenylpropan-1-one (3f)

Yellow solid (75.7 mg, 74% yield, 82% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3f**: m.p. = 96-97 °C;

[α]_D²⁰ = +3.6 (c = 0.5 Acetone, 82% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.43-1.46 (m, 1H), 1.67-1.75 (m, 1H), 1.85-1.89 (m, 1H), 1.98-2.04 (m, 1H), 2.38-2.42 (m, 2H), 2.85-2.91 (m, 2H), 3.08 (dd, J_1 = 7.8 Hz, J_2 = 15.6 Hz, 1H), 3.20 (t, J = 7.2 Hz, 2H), 3.38-3.47 (m, 2H), 5.47 (s, 2H), 5.92 (s, 1H), 6.40 (d, J = 6.9 Hz, 1H), 7.34 (t, J = 7.5 Hz, 3H), 7.45-7.61 (m, 6H), 7.72-7.80 (m, 3H), 7.89 (d, J = 7.5 Hz, 1H), 7.99-8.05 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 20.6, 21.6, 30.1, 30.2, 38.0, 44.2, 45.7, 103.3, 120.1, 122.1, 122.4, 125.7, 125.8, 126.3, 127.5, 127.9, 128.1, 128.2, 128.4, 128.5, 128.9, 130.1, 130.9, 132.8, 132.9, 133.4, 133.8, 136.6, 137.5, 199.0, 200.3; IR (film) 2930, 1735, 1681, 1596, 1447, 1359, 1278, 1203, 973, 795, 771, 749, 690 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₆H₃₄NO₂ (M+H)⁺ requires *m/z* 512.2584, found *m/z* 512.2582. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 25.36 min, t (minor) = 20.16 min.

(*R*)-Dimethyl 1-benzyl-4-(2-oxo-2-phenylethyl)-2-(3oxo-3-phenylpropyl)-4,5-dihydro-1H-indole-6,6(7H)-dic arboxylate (3g)

^ö Yellow solid (56.6 mg, 49% yield, 85% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/5, v/v). Analytical data for **3g**: m.p. = 62-63 °C; $[\alpha]_D^{20} = +30.3$ (c = 0.5 Acetone, 85% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.80 (dd, $J_1 = 10.8$ Hz, $J_2 = 12.0$ Hz, 1H), 2.60-2.75 (m, 4H), 2.80-2.89 (m, 3H), 3.01-3.13 (m, 2H), 3.66-3.68 (m, 1H), 3.69 (s, 6H), 5.05 (s, 2H), 5.75 (s, 1H), 6.97 (d, J = 7.5 Hz, 2H), 7.20-7.33 (m, 3H), 7.38-7.59 (m, 6H), 7.81 (d, J = 8.1 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 20.5, 27.5, 27.9, 35.7, 37.8. 45.5, 46.6, 52.7, 52.8, 54.4, 102.9, 118.4, 124.2, 125.8, 127.2, 127.9, 128.1, 128.4, 128.5, 128.7, 131.8, 132.9, 133.0, 136.6, 137.2, 138.0, 170.7, 172.1, 199.0, 199.3; IR (film) 3674, 2988, 2901, 1732, 1681, 1448, 1250, 1205, 1066, 733, 690 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₆H₃₆NO₆(M+H)⁺ requires *m*/*z* 578.2537, found *m*/*z* 578.2535. The enantiomeric excess was determined by Phenomenex Lu X 5u Cellulose-2 (0.46cm x 25 cm), Hexanes / IPA = 70 / 30, 0.7 mL/min, $\lambda = 214$ nm, t (major) = 49.54 min, t (minor) = 59.21 min

(*R*)-Dimethyl 1-benzyl-4-(2-oxo-2-phenylethyl)-2-phenyl -4,5-dihydro-1H- indole-6,6(7H)-dicarboxylate (3h)

Yellow solid (61.2 mg, 59% yield, 92% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3h**: m.p. = 60-61 °C; [α]_D²⁰ = +52.8 (c = 0.5 Acetone, 92% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.85 (dd, J₁ = 10.5 Hz, J₂ = 13.2 Hz, 1H), 2.74 (dd, J₁ = 4.8 Hz, J₂ = 13.2 Hz, 1H), 2.80 (AB, J = 16.2 Hz, 1H), 3.10 (dd, J₁ = 7.5 Hz, J₂ = 16.5 Hz, 1H), 3.25 (AB, J = 15.6 Hz, 1H), 3.43-3.58 (m, 2H), 3.66 (s, 3H), 3.67 (s, 3H), 5.10 (s, 2H), 6.07 (s, 1H), 6.99 (d, J = 7.5 Hz, 2H), 7.17-7.35 (m, 8H), 7.44-7.49 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 8.02 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 27.4, 28.0, 35.6, 45.4, 47.5, 52.7, 52.8, 54.4, 105.9, 119.8, 125.7, 126.3, 126.7, 127.0, 128.1, 128.3, 128.5, 128.6, 128.7, 133.0, 133.1, 134.8, 137.1, 138.5, 170.7, 172.1, 199.1; IR (film) 2951, 1731, 1682, 1599, 1448, 1356, 1247, 1075, 757, 730, 691 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{33}H_{32}NO_5(M+H)^+$ requires m/z 552.2275, found m/z 552.2269. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 95 / 5, 0.8 mL/min, λ = 254 nm, t (major) = 60.75 min, t (minor) = 69.06 min.

(*R*)-Dimethyl 1-benzyl-4-(2-oxo-2-(p-tolyl)ethyl)-2-phenyl -4,5- dihydro-1H-indole-6,6(7H)-dicarboxylate (3i)

Yellow solid (63.9 mg, 60% yield, 90% ee), following

^b silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3i**: m.p. = 59-60 °C; $[\alpha]_D^{20}$ = +47.9 (c = 0.5 Acetone, 90% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.75-1.88 (m, 1H), 2.40 (s, 3H), 2.70-2.82 (m, 2H), 3.07 (dd, J_I = 7.5 Hz, J_2 = 16.5 Hz, 1H), 3.25 (d, J = 15.9 Hz, 1H), 3.40-3.57 (m, 2H), 3.66 (s, 3H), 3.67 (s, 3H), 5.09 (s, 2H), 6.06 (s, 1H), 6.99 (d, J = 7.2 Hz, 2H), 7.18-7.34 (m, 10H), 7.91 (d, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.6, 27.4, 28.0, 35.6, 45.2, 47.5, 52.6, 52.7, 54.4, 105.9, 119.9, 125.7, 126.2, 126.7, 127.0, 128.1, 128.2, 128.4, 128.6, 129.2, 133.1, 134.7, 134.8, 138.5, 143.7, 170.7, 172.1, 198.7; IR (film) 2952, 1731, 1679, 1433, 1246, 1201, 1176, 813, 758, 731, 697 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₄H₃₄NO₅(M+H)⁺ requires *m*/*z* 536.2431, found *m*/*z* 536.2433. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 33.7 min, t (minor) = 39.91 min.

^o Yellow solid (62.3 mg, 57% yield, 88% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3j**: m.p. = 56-57 °C; $[\alpha]_D^{20} = +37.8$ (c = 0.5 Acetone, 88% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.80-1.88 (m, 1H), 2.70-2.82 (m, 2H), 3.01-3.09 (m, 1H), 3.25 (d, *J* = 15.3 Hz, 1H), 3.06 (dd, *J_I* = 5.4 Hz, *J₂* = 16.5 Hz, 1H), 3.53-3.68 (m, 1H), 3.67 (s, 3H), 3.68 (s, 3H), 3.88 (s, 3H), 5.10 (s, 2H), 6.06 (s, 1H), 6.95 (d, *J* = 8.7 Hz,

2H), 7.01 (d, J = 8.1 Hz, 2H), 7.23-7.36 (m, 8H), 8.01 (d, J = 9.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 27.5, 28.0, 35.6, 44.9, 47.4, 52.6, 52.7, 54.4, 55.3, 105.9, 113.6, 119.9, 125.6, 126.2, 126.6, 127.0, 128.2, 128.4, 128.6, 128.8, 130.3, 133.1, 134.7, 138.5, 163.3, 170.6, 172.1, 197.6; IR (film) 3700, 2954, 2902, 1731, 1674, 1599, 1511, 1451, 1435, 1251, 1205, 1168, 1075, 1029, 982, 831, 759, 730, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₄H₃₄NO₆(M+H)⁺ requires *m/z* 552.2381, found *m/z* 552.2378. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 56.37 min, t (minor) = 65.28 min.

silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3k**: m.p. = 68-69 °C; $[\alpha]_D^{20} = +51.6$ (c = 0.5 Acetone, 93% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.83 (dd, $J_I = 10.8$ Hz, $J_2 = 12.9$ Hz, 1H), 2.69-2.82 (m, 2H), 3.06 (dd, $J_I = 7.5$ Hz, $J_2 = 17.1$ Hz, 1H), 3.25 (d, J = 16.2 Hz, 1H), 3.42 (dd, $J_I =$ 5.7 Hz, $J_2 = 17.1$ Hz, 1H), 3.53-3.54 (m, 1H), 3.67 (s, 3H), 3.68 (s, 3H), 5.09 (s, 2H), 6.02 (s, 1H), 6.99 (d, J = 7.2 Hz, 2H), 7.20-7.35 (m, 8H), 7.61 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 27.4, 28.0, 35.5, 45.3, 47.5, 52.7, 52.8, 54.4, 105.8, 119.6, 125.7, 126.3, 126.8, 127.1, 128.2, 128.3, 128.5, 128.7, 129.6, 131.9, 133.0, 134.9, 135.8, 138.5, 170.6, 172.1, 198.1; IR (film) 2928, 1729, 1680, 1434, 1247, 1205, 1173, 731, 697 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₃H₃₁BrNO₅(M+H)⁺ requires *m/z* 600.1380, found *m/z* 600.1379. The enantiomeric excess was determined by Daicel Chiralcel OD-H (25 cm), Hexanes / IPA = 95 / 5, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 75.35 min, t (minor) = 66.30 min.

(R)-Dimethyl 1-benzyl-4-(2-(4-chlorophenyl)-2-oxoethyl)2-phenyl -4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (3l)

Yellow solid (75.8 mg, 68% yield, 91% *ee*), following silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3l**: m.p. = 72-73 °C; $[\alpha]_D^{20} = +52.1$ (c = 0.5 Acetone, 91% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.83 (dd, $J_I = 8.1$ Hz, $J_2 = 12.9$ Hz, 1H), 2.69-2.82 (m, 2H), 3.07 (dd, $J_I = 7.8$ Hz, $J_2 = 17.1$ Hz, 1H), 3.25 (d, J = 16.2 Hz, 1H), 3.43 (dd, $J_I = 5.7$ Hz, $J_2 = 16.8$ Hz, 1H), 3.53-3.57 (m, 1H), 3.66 (s, 3H), 3.67 (s, 3H), 5.10 (s, 2H), 6.03 (s, 1H), 6.99 (d, J = 7.5 Hz, 2H), 7.19-7.27 (m, 6H), 7.33 (t, J = 7.2 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 27.4, 28.0, 35.5, 45.3, 47.5, 52.7, 52.8, 54.4, 105.8, 119.6, 125.6, 126.2, 126.8, 127.0, 128.3, 128.4, 128.6, 128.8, 129.5, 133.0, 134.9, 135.4, 138.4, 139.4, 170.6, 172.0, 197.9; IR (film) 2951, 1731, 1683, 1587, 1433, 1397, 1247, 1200, 1174, 1089, 983, 817, 759, 731, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₃₃H₃₁ClNO₅(M+H)⁺ requires m/z 556.1885, found m/z 556.1880. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 74.39 min, t (minor) = 80.71 min.

silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v). Analytical data for **3m**: m.p. = 63-64 °C; $[\alpha]_D^{20}$ = +58.7 (c = 0.5 Acetone, 90% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.85-1.93 (m, 1H), 2.76-2.84 (m, 2H), 3.20-3.30 (m, 2H), 3.57-3.67 (m, 2H), 3.63 (s, 6H), 5.11 (s, 2H), 6.11 (s, 1H), 7.00 (d, *J* = 7.2 Hz, 2H), 7.19-7.36 (m, 8H), 7.55-7.63 (m, 2H), 7.87-7.98 (m, 3H), 8.10 (d, *J* = 8.7 Hz, 1H), 8.53 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.6, 28.0, 35.6, 45.4, 47.5, 52.7, 52.8, 54.4, 105.9, 119.8, 123.9, 125.7, 126.3, 126.7, 127.0, 127.7, 128.3, 128.4, 128.5,

128.6, 128.8, 129.5, 129.7, 132.5, 133.1, 134.5, 134.9, 135.5, 138.5, 170.7, 172.1, 199.0; IR (film) 2951, 1730, 1680, 1448, 1246, 1202, 1174, 1030, 757, 730, 696 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{37}H_{34}NO_5(M+H)^+$ requires m/z 572.2431, found m/z 572.2430. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 95 / 5, 0.8 mL/min, λ = 254 nm, t (major) = 87.55 min, t (minor) = 97.88 min.

(R)-Dimethyl 1-benzyl-4-(2-oxopropyl)-2-phenyl-4,5dihydro-1H-indole-6,6(7H)-dicarboxylate (3n)

Yellow liquid (81.1mg, 88% yield, 88% ee), following silica gel column chromatography (ethyl acetate/petroleum

ether = 1/10, v/v). Analytical data for **3n**: $[\alpha]_D^{20} = +29.9$ (c = 0.5 Acetone, 88% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.71-1.79 (m, 1H), 2.22 (s, 3H), 2.53-2.66 (m, 2H), 2.79 (dd, $J_1 = 1.5$ Hz, $J_2 = 15.9$ Hz, 1H), 2.90 (dd, $J_1 = 6.0$ Hz, $J_2 = 17.1$ Hz, 1H), 3.23 (d, J = 15.3 Hz, 1H), 3.33-3.41 (m, 1H), 3.66 (s, 3H), 3.68 (s, 3H), 5.04 (AB, J = 17.1 Hz, 1H), 5.11 (AB, J = 17.1 Hz, 1H),6.00 (s, 1H), 6.97 (d, J = 7.2 Hz, 2H), 7.18-7.34 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 27.1, 27.9, 30.4, 35.4, 47.4, 50.3, 52.6, 52.7, 54.3, 105.7, 119.5, 125.6, 126.1, 126.8, 127.0, 128.2, 128.4, 128.6, 133.0, 134.8, 138.4, 170.6, 171.9, 208.0; IR (film) 2953, 2924, 1732, 1603, 1434, 1357, 1249, 1088, 1030, 973, 760, 731, 699, 665 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₈H₃₀NO₅ $(M+H)^+$ requires m/z 460.2118, found m/z 460.2120. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 97 / 3, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 31.74 min, t (minor) = 34.03 min.

(*R*)-Dimethyl 1-benzyl-2-methyl-4-(2-oxopropyl) -4,5-dihydro-1H-indole-6,6(7H)-dicarboxylate (30)

Yellow liquid (59.2 mg, 75% yield, 69% ee), following silica gel column chromatography (ethyl acetate/petroleum ether =

1/10, v/v). Analytical data for **30**: $[\alpha]_D^{20} = +8.8$ (c = 0.5 Acetone, 69% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.71 (dd, J_1 = 11.1 Hz, J_2 = 13.2 Hz, 1H), 2.07 (s, 3H), 2.21 (s,

3H), 2.46-2.64 (m, 2H), 2.76-2.85 (m, 2H), 3.23-3.28 (m, 2H), 3.66 (s, 3H), 3.69 (s, 3H), 4.97 (s, 2H), 5.65 (s, 1H), 6.94 (d, J = 7.5 Hz, 2H), 7.21-7.33 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 11.9, 27.2, 27.8, 30.3, 35.5, 46.5, 50.5, 52.6, 52.7, 54.4, 103.6, 117.9, 123.6, 125.7, 127.0, 128.4, 128.5, 138.0, 170.6, 172.1, 208.2; IR (film) 2952, 2925, 1732, 1496, 1432, 1401, 1357, 1249, 1086, 1050, 731, 698, 665 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₈NO₅(M+H)⁺ requires *m*/*z* 398.1962, found *m*/*z* 398.1969. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.51 min, t (minor) = 12.65 min.

X-Ray structure of enantiopure 3k

(*R*)-dimethyl 1-benzyl-4-(2-(4-bromophenyl)-2-oxoethyl)-2-phenyl-4,5-dihydro-1Hindole-6,6(7H)-dicarboxylate [CCDC 1045810 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk /data request/cif.]

Identification code	cd214165	
Empirical formula	C33 H30 Br N O5	
Formula weight	600.49	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	I 2 2 2	
Unit cell dimensions	a = 15.713(12) Å	= 90°.
	b = 28.08(2) Å	= 90°.
	c = 28.507(18) Å	= 90 °.
Volume	12578(15) Å ³	
Z	16	
Density (calculated)	1.268 Mg/m^3	
Absorption coefficient	1.346 mm ⁻¹	
F(000)	4960	
Crystal size	0.156 x 0.142 x 0.103 mm ³	
Theta range for data collection	1.018 to 25.499 °.	
Index ranges	0<=h<=19, -34<=k<=26, -34<=l<=34	
Reflections collected	18429	
Independent reflections	11716 [R(int) = 0.0600]	
Completeness to theta = 25.242 $^{\circ}$	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.5761	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11716 / 0 / 725	
Goodness-of-fit on F ²	0.891	
Final R indices [I>2sigma(I)]	R1 = 0.0686, wR2 = 0.1544	
R indices (all data)	R1 = 0.1326, $wR2 = 0.1759$	
Absolute structure parameter	0.031(9)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.715 and -0.377 e. Å ⁻³	

Table 1.Crystal data and structure refinement for cd214165.

¹H NMR and ¹³C NMR Spectra of **1b**

S26

¹H NMR and ¹³C NMR Spectra of **1c**

S28

¹H NMR and ¹³C NMR Spectra of **1d**

¹H NMR and ¹³C NMR Spectra of **1e**

¹H NMR and ¹³C NMR Spectra of **1f**

0 PPM

2

4

و

- 00

9

S**34**

 1 H NMR and 13 C NMR Spectra of **1g**

S**36**

¹H NMR and ¹³C NMR Spectra of **1h**

¹H NMR and ¹³C NMR Spectra of **1i**

M990 000'0-----▼07'L --707'L Ę 1.08 - 1,862 - 1,862 - 1,862 - 1,996 - 2,008 - 2,00 2,08 20 0.95 5,15 - 3,490 - 3,460 - 3,423 - 3,369 - 3,569 - 3,56 Ļ =0 Ph 0.88 و 6106 6106 7235 2.02 00 966'Z -

2

4

-,

¹H NMR and ¹³C NMR Spectra of **3a**

¹H NMR and ¹³C NMR Spectra of **3b**

¹H NMR and ¹³C NMR Spectra of **3c**

¹H NMR and ¹³C NMR Spectra of **3d**

9

¢

¹H NMR and ¹³C NMR Spectra of **3f**

¹H NMR and ¹³C NMR Spectra of **3g**

¹H NMR and ¹³C NMR Spectra of **3h**

¹H NMR and ¹³C NMR Spectra of **3i**

¹H NMR and ¹³C NMR Spectra of **3k**

¹H NMR and ¹³C NMR Spectra of **3**l

¹H NMR and ¹³C NMR Spectra of **3m**

¹H NMR and ¹³C NMR Spectra of **3n**

¹H NMR and ¹³C NMR Spectra of **30**

Total

	HPLC	Ch	romatograph	of	3t
--	------	----	-------------	----	----

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	10.278	151755. 094	2326352.000	16.4622
2	11.237	670158. 688	11805160.000	83. 5378
Total		821913. 781	14131512.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	14.517	1282834.625	24389950.000	91.8480
2	15.403	107808. 141	2164726.750	8.1520
Total		1390642.766	26554676.750	100.0000

HPLC Chromatograph of 3d

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.565	102504.070	3481336.750	49.8784
2	28.327	72086. 125	3498306.250	50. 1216
Total		174590. 195	6979643.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.058	68956.156	2213508. 250	8.1304
2	27.662	522879.969	25011430.000	91.8696
Total		591836. 125	27224938. 250	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	18.362	67416.938	1956712.375	10.0189
2	25.340	422568.156	17573402.000	89.9810
Total		489985.094	19530114.375	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20. 158	66185.547	2258200. 500	9.2074
2	25.358	515310.750	22267806.000	90. 7926
Total		581496. 297	24526006.500	100.0000

No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1	1	Unknown	49.960	38385.5	6991874.9	50. 6854
2	2	Unknown	59.543	33587.5	6802773.0	49.3146
Total				71973.1	13794647.9	100.0000

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2	Unknown Unknown	49. 543 59. 210	44528. 0 2797. 3	7172282.6 572986.1	92.6021 7.3979
Total	l			47325.3	7745268.7	100.0000

HPLC Chromatograph of 3h

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	60.745	106340.891	11745743.000	95. 8073
2	69.065	4203.947	514020. 625	4. 1927
Total		110544.838	12259763. 625	100.0000

HPLC Chromatograph of 3i

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	34. 588	453643.031	34809344. 000	50. 3315
2	40.663	356532.719	34350784. 000	49.6685
Total		810175.750	69160128.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	33. 700	531798. 500	38787344. 000	95. 2259
2	39.912	24402.662	1944589.000	4.7741
Total		556201.162	40731933.000	100.0000

HPLC Chromatograph of 3j

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	57.580	43708.070	5695279. 500	50. 2071
2	66.132	36177.227	5648286.500	49.7929
Total		79885.297	11343566.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	56.372	166133. 656	21694434. 000	94. 1665
2	65.275	9015.061	1343944. 625	5.8335
Total		175148.717	23038378. 625	100.0000

HPLC Chromatograph of 3k

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	65.232	25568.416	8740805.000	49. 3063
2	78.035	21537.629	8986759.000	50. 6937
Total		47106.045	17727564.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	66.297	7622.033	2506388. 250	3. 4773
2	75. 347	164784. 438	69572360.000	96. 5227
Total		172406. 470	72078748. 250	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	75.957	107664.406	16382757.000	50. 3222
2	81.900	98957.242	16172999.000	49.6778
Total		206621.648	32555756.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	74.392	225183.922	32867570. 000	95. 3988
2	80.713	9254.096	1585253. 000	4. 6012
Total		234438.018	34452823.000	100.0000

HPLC Chromatograph of 3m

ò

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	87.553	151237.656	23885472. 000	95.1186
2	97.878	6 988. 942	1225792.500	4.8814
Total		158226. 599	25111264. 500	100.0000

(min)

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	31.815	20447.604	1378868.750	50. 7072
2	34.082	19316. 811	1340405.750	49.2928
Total		39764.414	2719274. 500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	31.740	113780. 242	5621866.500	94.0474
2	34. 028	7160.040	355826. 281	5.9526
Total		120940. 282	5977692.781	100.0000

2	4	6	8 (mir	10 .)	12	14	16	
D.	R. Time		Peak He	ight	Pea	ak Area	Р	ercent
	12.387		623705.	000	129	27950. 000	4	9. 535
	2 .	2 4 D. R. Time 12. 387	2 4 6 D. R.Time 12.387	2 4 6 8 (min p. R. Time Peak He 12. 387 623705.	2 4 6 8 10 (min) 10 2 8 7 10 (min) 10 10 (min) 10 10 (min) 10 (min) 10 (min	2 4 6 8 10 12 (min) 2 12 0. R. Time Peak Height Pea 12. 387 623705. 000 129	2 4 6 8 10 12 14 (min) 10 12 14 D. R. Time Peak Height Peak Area 12. 387 623705. 000 12927950. 000	2 4 6 8 10 12 14 16 (min) 0 12 14 16 D. R. Time Peak Height Peak Area P 12. 387 623705. 000 12927950. 000 4

Total		1142732.188	26098286.000	100.0000
2	15. 250	519027.188	13170336.000	50.4644
1	12.387	623705.000	12927950.000	49. 5356

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.652	33594.027	637341.938	15. 5484
2	15.515	146662.516	3461745.000	84. 4516
Total		180256. 543	4099086.938	100.0000

HPLC Chromatograph of 30