# **Supporting Information**

# An Efficient Synthsis of gem-Diiodoolefins and (E)-iodoalkenes from Propargylic Amides with Cu(I)/Cu(III) Cycle

Shuo Zhang,<sup>[a]</sup>Ying Chen,<sup>[a]</sup> Jianwu Wang,<sup>\*[a]</sup>Yue Pan,<sup>[a]</sup> Zhenghu Xu<sup>\*[a,b]</sup> and Chen-Ho Tung<sup>[a]</sup>

[a] Key Lab for Colloid and Interface Chemistry of Education Ministry School of chemistry and Chemical Engineering, Shandong University Jinan 250100, PR China.

E-mail: xuzh@sdu.edu.cn; jwwang@sdu.edu.cn

[b]State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032, PR China

[c] Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.

| General information                 | S2  |
|-------------------------------------|-----|
| Synthesis of the starting materials | S2  |
| Synthetic applications              | S8  |
| Optimization of reaction conditions | S11 |
| Characterization Data               | S12 |
| NMR spectra for the products        | S21 |

t

# **General information**

Unless otherwise noted, all the reagents were obtained commercially and used without further purification and reactions were monitored by TLC. All NMR spectra were recorded on Bruker-400 MHz spectrometer or Bruker-300 MHz. HRMS were measured on the Q-TOF6510 instruments.

# Synthesis of the starting materials



Yield: ( 2.10g, 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.31 (m, 2H), 7.22-7.17 (m, 2H), 5.98 (s, 1H), 4.36 (d, *J* = 5.3 Hz,2H), 2.43 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.46, 136.43, 135.36, 131.15, 130.24, 126.77, 125.78, 89.54, 31.43, 19.82, 0.03. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H] <sup>+</sup> 299.9880, found 299.9882.



Yield: (2.15g, 72%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.85 (s, 1H), 7.65-7.61 (m, 2H), 7.32 (d, *J* = 4.1 Hz, 2H), 4.14 (d, *J* = 5.4 Hz, 2H), 2.33 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.41, 138.09, 134.18, 132.48, 128.70, 128.31, 124.86, 90.67, 30.84, 21.39, 8.04. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H] <sup>+</sup> 299.9880, found 299.9886.



Yield: (2.0g, 67%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.82 (s, 1H), 7.73 (d, *J* = 7.5 Hz, 2H), 7.24 (d, *J* = 6.8 Hz, 2H), 4.14 (d, *J* = 5.3 Hz, 2H), 2.32 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.19, 141.85, 131.38, 129.35, 127.76, 90.75, 30.81, 21.44, 8.07. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H] <sup>+</sup> 299.9880, found 299.9885.



Yield: (1.73g, 1.55%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.7 Hz, 2H), 6.92 (d,

J = 8.8Hz, 2H), 6.25 (s, 1H), 4.40 (d, J = 5.2 Hz,2H), 3.85 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.35, 161.69, 129.11, 125.85, 113.49, 90.36, 55.29, 30.32, 7.47. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO<sub>2</sub> [M+H] <sup>+</sup> 315.9829, found 315.9836.



Yield: (1.44g, 45%). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.86 (s, 1H), 7.48-7.34 (m, 4H), 4.13 (d, J = 5.5 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  165.94, 136.11, 130.94, 129.91, 129.63, 128.84, 127.06, 89.49, 30.21, 8.12. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>7</sub>ClINO [M+H] <sup>+</sup> 319.9334, found 319.9334.



Yield: (1.88g, 62%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (t, *J* = 6.8 Hz, 2H), 7.11 (d, *J* = 8.1Hz, 2H), 6.35 (s, 1H), 4.39 (d, *J* = 4.6 Hz,2H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  165.80, 164.97,162.51, 130.29, 130.25, 130.17, 130.05, 115.57, 115.28, 90.18, 30.62, 8.03. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>7</sub>FINO [M+H] <sup>+</sup> 303.9629, found 303.9628.



Yield: (1.77g, 57%). <sup>1</sup>H NMR (400 MHz,DMSO-d<sub>6</sub>)  $\delta$  8.54 (s, 1H), 7.53 (d, J = 6.7 Hz, 2H), 7.41-7.35 (m, 4H), 6.59 (d, J = 15.8 Hz, 1H), 4.10 (d, J = 5.1 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.10, 139.91, 135.19, 130.08, 129.41, 128.06, 121.86, 90.36, 30.42, 8.59. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>10</sub>INO [M+H]<sup>+</sup>311.9880, found 311.9881.



Yield: (1.89g, 65%). <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.97 (t, J = 5.4 Hz, 1H), 7.79-7.77 (m, 2H), 7.17-7.14 (m, 1H), 4.17 (d, J = 5.7 Hz, 2H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  160.77, 139.11, 131.17, 128.45, 127.97, 89.90, 30.21, 8.10. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>6</sub>INOS [M+H] <sup>+</sup> 291.9288, found 291.9289.



Yield: (1.93g, 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (s, 1H), 7.12 (d, J = 3.4Hz, 1H), 6.63 (s, 1H), 6.49 (dd,  $J_I = 3.2$  Hz,  $J_2 = 1.5$  Hz, 1H), 4.36 (d, J = 5.6 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.84, 147.37, 144.22, 112.24, 89.33, 33.98, 30.68, 0.19. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>6</sub>INO<sub>2</sub> [M+H] <sup>+</sup> 275.9516, found 275.9518.



Yield: (2.36g, 65%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.71 (s, 1H), 4.20 (d, *J* = 5.3 Hz, 2H), 2.18 (t, *J* = 7.5 Hz, 2H), 1.62 (t, *J* = 6.8 Hz, 2H), 1.28-1.25 (m, 16H), 0.87 (t, *J* = 6.4 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.67, 100.06, 89.85, 36.48, 32.76, 31.90, 30.99, 29.60, 29.47, 29.33, 29.26, 25.55, 22.68, 14.11. HRMS (ESI, m/z) calcd for C<sub>15</sub>H<sub>26</sub>INO [M+H] <sup>+</sup> 364.1132, found 364.1141.



Yield: (2.47g, 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 7.2 Hz, 2H), 7.49-7.40 (m, 3H), 6.09 (s, 1H), 3.09-3.05 (m, 2H), 2.23-1.93 (m, 2H), 1.71-1.60 (m, 5H), 1.42-1.35 (m, 1H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  165.82, 134.96, 131.06, 128.04, 127.50, 95.62, 52.65, 36.41, 24.91, 22.01, 6.95. HRMS (ESI, m/z) calcd for C<sub>15</sub>H<sub>16</sub>INO [M+H] <sup>+</sup> 354.0349, found 354.0345.



Yield: (2.13g, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 7.2 Hz, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 6.21 (s, 1H), 1.76 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.35, 134.88, 131.50, 128.54, 126.89, 97.38, 50.17, 29.03, -2.05. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>12</sub>INO [M+H] <sup>+</sup> 314.0036, found 314.0026.

General procedure for the synthesis of alkynyl amides 4a-4n.

The corresponding Propynylamine (10 mmol) was dissolved in DCM, (30 mL). The solution was added triethylamine (24 mmol), chloride (12 mmol) and 4-dimethylaminopyridine (0.8 mmol), the resulting solution

was allowed to reach room temperature. The reaction was stired at room temperature for 3h. And then was successively diluted with water. The aqueous layer was extracted with  $CH_2Cl_2$ , and the combined organic layers were washed with satd. NaHCO<sub>3</sub> followed by water and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to obtain the crude alkynyl amides. Silica gel chromatography gave the desired alkynyl amides **4a-4n**.



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, *J* = 7.4 Hz, 2H), 7.50-7.40 (m, 3H), 6.39 (s, 1H), 4.24 (dd, *J*<sub>1</sub> = 5.1 Hz, *J*<sub>2</sub> = 2.5 Hz, 2H), 2.27 (t, *J* = 2.4 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38-7.30 (m, 2H), 7.23-7.18 (m, 2H), 5.97 (s, 1H), 4.23 (dd,  $J_1 = 5.1$  Hz,  $J_2 = 2.4$  Hz, 2H), 2.45 (s, 3H), 2.27 (t, J = 2.4 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61-7.55 (m, 2H), 7.32-7.31 (m, 2H), 6.28 (s, 1H), 4.25 (dd,  $J_1$  = 5.2Hz,  $J_2$  = 2.5 Hz, 2H), 2.40(s, 3H), 2.28 (t, J = 2.4 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 8.1 Hz, 2H), 7.23 (d. *J* = 8.1 Hz, 2H), 6.36 (s, 1H), 4.24 (dd, *J*<sub>1</sub> = 5.2 Hz, *J*<sub>2</sub>= 2.5 Hz, 2H), 2.39 (s, 3H), 2.27

$$(t, J = 2.4 \text{ Hz}, 1\text{H}).$$



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 1.4 Hz, 1H), 7.68-7.30 (m, 3H), 6.46 (s, 1H), 4.27 (dd,  $J_1 = 5.2$  Hz,  $J_2 = 2.5$  Hz, 2H), 2.29 (t, J = 2.6 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 6.38 (s, 1H), 4.24 (dd, *J*<sub>1</sub>= 5.1 Hz, *J*<sub>2</sub> = 2.5 Hz, 2H), 2.28 (t, *J* =2.5 Hz, 1 H)



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82-7.79 (m, 2H), 7.09 (t, *J* = 8.6 Hz, 2H), 6.62 (s, 1H) 4.22 (dd,  $J_1$  = 5.2 Hz,  $J_2$  = 2.5 Hz, 2H), 2.27 (d, *J* = 2.6 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.3 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 6.45 (s, 1H), 4.26 (dd,  $J_1$  = 5.2 Hz,  $J_2$  = 2.6 Hz, 2H), 2.30 (t, J = 2.5 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.30 (s, 1H), 4.23 (dd, *J*<sub>1</sub> = 5.1 Hz, *J*<sub>2</sub> = 2.4 Hz, 2H), 3.84 (s, 3H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 15.9 Hz, 1H),

7.51-7.46 (m, 2H), 7.37-7.31 (m, 3H), 6.45 (d, J = 15.9 Hz, 1H), 6.18 (s, 1H), 4.20 (dd,  $J_1 = 5.2$  Hz,  $J_2 = 2.5$  Hz, 2H), 2.26 (t, J = 2.5 Hz, 1H)



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, J = 0.8 Hz, 1H), 7.14 (d, J = 3.4 Hz, 1H), 6.50 (dd,  $J_1 = 3.4$  Hz,  $J_2 = 1.7$  Hz, 2H), 4.23 (dd,  $J_1 = 5.4$  Hz,  $J_2 = 2.6$  Hz, 2H), 2.27 (t, J = 2.5 Hz, 1H),



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, J = 3.7 Hz, 1H), 7.49 (d, 5.0 Hz, 1H), 7.08 (t, J = 4.1 Hz, 1H), 6.22 (s, 1H), 4.22 (dd,  $J_1 = 5.1$  Hz,  $J_2 = 2.4$  Hz, 2H), 2.28 (t, J = 2.4 Hz, 1H).



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.76-7.74 (m, 2H), 7.48-7.38 (m, 3H), 6.14 (s, 1H), 2.44 (s, 1H), 2.24-2.20 (m, 2H), 1.98-1.91 (m, 2H), 1.76-1.63 (m, 5H), 1.60-1.58 (m, 1H)



Known compound. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75-7.73 (m, 2H), 7.50-7.39 (m, 3H), 6.20 (s, 1H), 2.38 (s, 1H), 1.76 (s, 6H).

### Synthetic applications:

Procedure for Synthesis of compound 11



To a mixture of  $Pd_2(dba)_3$  (0.01 mmol),  $P(O-tol)_3$  (0.04 mmol), compound **10** (0.2 mmol) in CH<sub>3</sub>CN (2 ml) under N<sub>2</sub> atmosphere, methyl acrylate (0.4 mmol) and Et<sub>3</sub>N (0.5 mmol) was added. The system was stirred at 80°C overnight. The resulting mixture was washed with water and extracted with DCM. The organic layer was filtered on celite and evaporated under reduced pressure. Purification by flash column chromatography afforded the desired product **11** (47.27 mg, 76%).

Procedure for Synthesis of compound 12



To a mixture of  $Pd_2dba_3$  (0.01 mmol),  $Cs_2CO_3$  (0.5 mmol), 4-Methoxyphenylboronic acid (0.24 mmol), compound **10** (0.2 mmol)

in dioxane (2 ml) under  $N_2$  atmosphere was stirred at 90°C overnight. The resulting mixture was washed with water and extracted with DCM. The organic layer was filtered on celite and evaporated under reduced pressure. Purification by flash column chromatography afforded the desired product **12** (46.62 mg, 70%).

#### Procedure for Synthesis of compound 13



To a mixture of  $Pd_2dba_3$  (0.02 mmol),  $Cs_2CO_3$  (1 mmol), 4-Methoxyphenylboronic acid (0.5 mmol), compound **31** (0.2 mmol) in dioxane (2 ml) under N<sub>2</sub> atmosphere was stirred at 90°C overnight. The resulting mixture was washed with water and extracted with DCM. The organic layer was filtered on celite and evaporated under reduced pressure. Purification by flash column chromatography afforded the desired product **13** (57.07 mg, 65%).

Procedure for Synthesis of compound 14



To a mixture of  $Pd_2(dba)_3$  (0.02 mmol),  $P(O-tol)_3$  (0.08 mmol), compound **2l** (0.2 mmol) in CH<sub>3</sub>CN (2 ml) under N<sub>2</sub> atmosphere, compound **6** (0.24 mmol) and Et<sub>3</sub>N (1 mmol) was added. The system was stirred at 80°C overnight. The resulting mixture was washed with water and extracted with DCM. The organic layer was filtered on celite and evaporated under reduced pressure. Purification by flash column chromatography afforded the desired product **14** (55.3 mg, 70%).

#### Procedure for Synthesis of compound 15



To a mixture of Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.02 mmol), CuI (0.04 mmol), K<sub>2</sub>CO<sub>3</sub> (1 mmol), compound **3l** (0.2 mmol) in THF (2 ml) under N<sub>2</sub> atmosphere, 4-Methoxyphenylacetylene (0.6 mmol) was added. The system was stirred at 65 °C overnight. The resulting mixture was washed with water and extracted with DCM. The organic layer was filtered on celite and evaporated under reduced pressure. Purification by flash column chromatography afforded the desired product **15** (58.44 mg, 62%).

# **Optimization of reaction conditions:**

| CuX 10 mol%       |       |
|-------------------|-------|
| Solvent, 70 °C,3h | ✓N 2a |

#### **Table 1. Optimization of Reaction Conditions**

| Entry | Catalyst                                               | Solvent            | Yield(%) <sup>a</sup> |
|-------|--------------------------------------------------------|--------------------|-----------------------|
| 1     | CuI                                                    | DCE                | 90                    |
| 2     | CuCl                                                   | DCE                | 86                    |
| 3     | CuBr                                                   | DCE                | 72                    |
| 4     | $Cu(acac)_2$                                           | DCE                | 75                    |
| 5     | $CuSO_4$                                               | DCE                | 95                    |
| 6     | 1,10-Phen-CuI                                          | DCE                | 83                    |
| 7     | IPRCuI                                                 | DCE                | 69                    |
| 8     | $CuCl_2$                                               | DCE                | 79                    |
| 9     | $Cu(OAc)_2$                                            | DCE                | 75                    |
| 10    | Cu(PF <sub>4</sub> ) (CH <sub>3</sub> CN) <sub>4</sub> | DCE                | 50                    |
| 11    | $Cu(PF_4)_2$                                           | DCE                | 46                    |
| 12    | $Cu(NO_3)_2$                                           | DCE                | 40                    |
| 13    | $Cu(ClO_4)_2$                                          | DCE                | 43                    |
| 14    | $CuSO_4$                                               | CH <sub>3</sub> CN | 26                    |
| 15    | $CuSO_4$                                               | Dioxane            | 76                    |
| 16    | $CuSO_4$                                               | THF                | 84                    |
| 17    | $CuSO_4$                                               | Toluene            | 75                    |

a: Isolated yields were reported. Reaction conditions: **1a** (0.1 mmol) , CuX (0.01 mmol) in solvent (1 mL) was stirred at 70  $^{\circ}$ C for 3 h.

# **Characterization Data**



<sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>) δ 7.89-7.86 (m, 2H), 7.62-7.57 (m, 1H), 7.54-7.49 (m, 2H), 5.44 (t, J= 2.4 Hz, 1H), 4.67 (d, J = 2.4 Hz, 2H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>) δ 161.14, 159.58, 132.77, 129.41, 128.05, 126.24, 58.45, 43.72. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>8</sub>INO [M+H]<sup>+</sup> 285.9723, found 285.9719.

Condition A:



[a] Reaction conditions: **1** (0.2 mmol), CuSO<sub>4</sub> (0.02 mmol) in DCE (2 mL) was stirred at 70 °C for 3 h. Isolated yields were reported.

Condition B:



[a] Reaction conditions: **1a** (0.2 mmol), CuI (0.2 mmol), selectfluor (0.24 mmol), in CH<sub>3</sub>CN (2 mL) was stirred at 70 °C for 3 h. Isolated yields were reported.



Yield: condition A (41.13 mg,97%), condition B (75.47 mg, 89%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.79-7.76 (m, 1H), 7.52-7.46 (m, 1H), 7.36, (t, *J* = 7.2 Hz, 2H), 4.64 (s, 2H), 2.57 (s, 3H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  161.13, 158.50, 138.60, 131.64, 131.61, 129.21, 126.11, 125.03, 61.41, 21.50, -16.01. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 425.8846, found 425.8845.



Yield: condition A (40.28 mg, 95%), condition B(77.17 mg, 91%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78-7.75 (m, 2H), 7.35 (d, *J* = 5.3 Hz, 2H), 4.61 (s, 2H), 2.41 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  160.99, 158.71, 138.38, 133.09, 128.91, 127.72, 125.86, 124.66, 61.11, 20.86, -15.53. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 425.8846, found 425.8845.



Yield: condition A (41.13 mg, 97%), condition B (74.63 mg, 88%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 7.7 Hz, 2H), 4.61 (s, 2H), 2.42 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  160.91, 158.76, 142.62, 129.58, 127.40, 123.15, 61.07, 21.14, -15.72. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 425.8846, found 425.8850.



Yield: condition A (38.28 mg, 87%), condition B (79.21 mg, 91%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.78 (d, *J* = 8.7 Hz, 2H), 7.07 (d, *J* = 8.7 Hz, 2H), 4.54, (s, 2H), 3.80 (s, 3H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.39, 160.66, 158.83, 129.30, 118.09, 114.44, 61.01, 55.46, -15.92. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 441.8795, found 441.8793.



Yield: condition A (32.49 mg, 73%), condition B (71.11 mg, 80%)<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.87-7.85 (m, 1H), 7.49-7.43, (m, 2H), 7.39-7.34 (m, 1H), 4.68 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  159.83, 158.91, 133.64, 132.69, 131.79,

131.44, 128.03, 125.89, 61.91, -14.62. HRMS (ESI, m/z) calcd for  $C_{10}H_6CII_2NO$   $[M+H]^+$  445.8300, found 445.8300.



Yield: condition A (30.89 mg, 72%), condition B (64.35 mg, 75%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.92-7.88 (m, 2H), 7.41-7.35, (m, 2H), 4.58, (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  166.15, 163.66, 160.54, 159.08, 130.63, 130.54, 122.99, 122.97, 116.83, 116.61, 61.67, -14.87. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>6</sub>FI<sub>2</sub>NO [M+H]<sup>+</sup> 429.8596, found 429.8578.



Yield: condition A (38.02 mg, 87%), condition B (71.67 mg, 82%) <sup>1</sup>H NMR (400 MHz,DMSO-d<sub>6</sub>)  $\delta$  7.68-7.67 (m, 2H), 7.40-7.38 (m, 4H), 6.79 (d, *J* = 16.3 Hz, 1H), 4.50 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  161.50, 158.97, 141.11, 134.78, 130.59, 129.41, 128.46, 114.46, 61.73, -15.77. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>9</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 437.8846, found 437.8843.



Yield: condition A (39.20 mg, 94%), condition B (75.06 mg, 90%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.91 (s, J = 3.8Hz, 1H), 7.64 (d, J = 3.9 Hz, 1H), 7.23 (t, J = 3.9 Hz, 1H), 4.57, (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  158.89, 157.31, 132.80, 131.65, 128.87, 128.45, 61.57, -14.70. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>5</sub>I<sub>2</sub>NOS [M+H]<sup>+</sup> 417.8254, found 417.8254.



Yield: condition A (39.28 mg, 98%), condition B (73.78 mg, 92%) <sup>1</sup>H NMR (400

MHz, DMSO-d<sub>6</sub>)  $\delta$  7.97 (s, 1H), 7.12 (d, J = 3.3 Hz, 1H), 6.69 (q, J = 1.5 Hz, 1H), 4.55 (s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  158.53, 153.81, 147.69, 141.28, 116.34, 112.77, 61.47, -14.74. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>5</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 401.8482, found 401.8485.



Yield: condition A (27.38 mg, 56%), condition B (76.28 mg, 78%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  4.31 (s, 2H), 2.30 (t, *J* = 6.9 Hz, 2H), 1.53 (t, *J* = 6.6 Hz, 2H), 1.28-1.21 (m, 16H), 0.83 (t, J= 5.8 Hz, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  61.14, 31.78, 29.47, 29.33, 29.21, 29.08, 28.76, 27.93, 25.23, 22.59, 14.44, -16.48. HRMS (ESI, m/z) calcd for C<sub>15</sub>H<sub>25</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 490.0098, found 490.0099.



Yield: condition B (84.30 mg, 88%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00-7.97 (m, 2H), 7.51-7.42, (m, 3H), 2.59-2.52, (m, 2H), 1.94- 1.58 (m, 7H), 1.41-1.35 (m, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  163.77, 155.69, 131.89, 128.53, 128.34, 126.20, 77.43, 77.11, 76.79, 75.53, 33.95, 25.48, 22.34, -24.04. HRMS (ESI, m/z) calcd for C<sub>15</sub>H<sub>15</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 479.9316, found 479.9327.



Yield: condition B (72.87 mg, 83%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95-7.93 (m, 2H), 7.54-7.42, (m, 3H), 1.69 (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  163.32, 155.92, 132.88, 129.47, 128.08, 125.81, 71.83, 26.10, -14.55. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>11</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 439.9003, found 439.8956.



Yield: (55.02 mg, 92%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>) δ 7.72-7.69 (m, 2H),

7.43-7.41(m, 2H), 6.05 (t, J = 4.0 Hz, 1H), 4.61(d, J = 4.0 Hz, 2H), 2.37(s, 3H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.45, 157.46, 138.34, 132.90, 128.84, 127.86, 126.03, 124.68, 60.44, 49.20, 20.78. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H]<sup>+</sup> 299.9880, found 299.9879.



Yield: (49.64 mg, 83%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.72-7.69 (m, 2H), 7.43-7.41, (m, 2H), 6.05 (t, *J* = 3.1 Hz, 1H), 4.61(d, *J* =3.3 Hz, 2H), 2.37 (s, 3H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.45, 157.46, 138.34, 132.90, 128.84, 127.86, 126.03, 124.68, 60.43, 20.77. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H]<sup>+</sup> 299.9880, found 299.9885.



Yield: (53.22 mg, 89%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.79 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.04 (t, *J* = 3.0 Hz, 1H), 4.59 (d, *J* = 3.3Hz, 2H), 2.38 (s, 3H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.39, 157.49, 142.40, 129.49, 127.46, 123.33, 60.40, 49.08, 21.10. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H]<sup>+</sup> 299.9880, found 299.98790.



Yield: (46.08 mg, 72%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.77 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 6.7 Hz, 2H), 7.45(t, J = 7.4 Hz, 1H), 6.02 (t, J = 2.9 Hz, 1H). 4.62(d, J = 3.0 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  161.24, 157.51, 133.49, 132.58, 131.79, 131.30, 127.98, 126.24, 61.33, 50.10. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>7</sub>ClINO [M+H]<sup>+</sup> 319.9334, found 319.9334.



Yield: (53.14 mg, 73%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.79 (d, J = 8.4 Hz, 2H),

7.72 (d, J = 8.4 Hz, 2H), 6.05 (t, J = 3.0 Hz, 1H), 4.58 (d, J = 3.0 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.21, 157.74, 132.55, 129.91, 126.53, 125.76, 61.02, 50.13. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>7</sub>BrINO [M+H]<sup>+</sup> 363.8828, found 363.8828.



Yield: (41.21 mg, 68%) <sup>1</sup>H NMR (300 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.99-7.92 (m, 2H), 7.42-7.34 (m, 2H), 6.07 (t, *J* = 3.3 Hz, 1H), 4.61 (d, *J*= 3.3 Hz, 2H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  165.99, 162.67, 161.52, 157.38, 130.24, 130.12, 122.71, 122.67, 116.30, 116.00, 60.45, 49.45. HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>7</sub>FINO [M+H]<sup>+</sup> 303.9629, found 303.9627.



Yield: (45.88 mg, 74%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.21-8.01 (m, 4H), 6.11 (s, 1H), 4.65(s, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  161.81, 157.51, 133.39, 130.62, 128.69, 118.53, 114.96, 61.14, 50.51. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>7</sub>IN<sub>2</sub>O [M+H]<sup>+</sup> 310.9676, found 310.9686.



Yield: (51.66 mg, 82%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 5.74 (t, *J* = 3.0 Hz, 1H), 4.60 (d, *J* = 3.0 Hz, 2H), 3.86(s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.27, 162.18, 157.56, 129.36, 118.28, 114.33, 60.32, 55.43, 48.91. HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO<sub>2</sub> [M+H]<sup>+</sup> 315.9829, found 315.9828.



Yield: (57.85 mg, 93%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 1.4 Hz, 2H), 7.37 (m, 4H), 6.77 (d, J = 16.4 Hz, 1H), 5.92, (t, J = 3.0 Hz, 1H), 4.49, (d, J = 2.7 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  167.68, 162.39, 145.81, 139.66, 135.23, 134.11, 133.15, 119.17, 65.78, 53.88. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>10</sub>INO [M+H]<sup>+</sup>

311.9880, found 311.9888.



Yield: (50.6 mg, 92%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.95 (s, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 6.68 (t, *J* = 1.6 Hz, 1H), 6.02 (t, *J* = 2.9 Hz, 1H), 4.55 (d, *J* = 2.9 Hz, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  157.21, 155.17, 147.59, 141.44, 116.16, 112.71, 60.69, 50.07. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>6</sub>INO<sub>2</sub> [M+H]<sup>+</sup> 275.9516, found 275.9515.



Yield: (52.38 mg, 90%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.88 (d, J = 5.0 Hz, 1H), 7.65 (d, J = 3.6 Hz, 1H), 7.20 (t, J = 4.0 Hz, 1H), 6.04 (t, J = 2.8 Hz, 1H), 4.56 (d, J = 3.0 Hz, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  163.50, 162.38, 137.31, 136.29, 133.56, 133.46, 65.62, 54.74. HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>6</sub>INOS [M+H]<sup>+</sup> 291.9288, found 291.9307



Yield: (52.25 mg, 74%) <sup>1</sup>H NMR (400 MHz,CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.0 Hz, 2H), 7.52-7.43 (m, 3H), 5.06, (s, 1H), 1.88-1.59, (m, 10H). <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)  $\delta$  167.49, 156.87, 132.15, 128.85, 127.68, 125.97, 73.48, 44.44, 24.85, 21.76. HRMS (ESI, m/z) calcd for C<sub>15</sub>H<sub>16</sub>INO [M+H]<sup>+</sup> 354.0349, found 354.0346.



Yield: (56.34 mg, 90%) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  7.85-7.83 (m, 2H), 7.56-7.45 (m, 3H), 5.98, (s, 1H), 1.56, (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>)  $\delta$  162.79, 157.96, 132.57, 129.28, 128.11, 126.08, 71.21, 48.37, 26.09. HRMS (ESI, m/z) calcd for C<sub>12</sub>H<sub>12</sub>INO [M+H]<sup>+</sup> 314.0036, found 314.0029.



Yield: (47.27 mg, 76%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 7.2Hz, 2H), 7.81-7.75, (m, 1H), 7.53-7.45 (m, 3H), 5.83 (d, J=15.4 Hz, 1H), 5.44 (d, J = 11.4 Hz, 1H), 3.77 (s, 3H), 1.92-1.38 (m, 10H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.01, 167.82, 158.52, 138.82, 131.84, 128.52, 128.33, 126.68, 116.85, 97.88, 73.64, 51.43, 38.57, 25.53, 22.06. HRMS (ESI, m/z) calcd for C<sub>19</sub>H<sub>21</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 312.1594, found 312.1590.



Yield: (46.62 mg, 70%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 6.9 Hz, 2H), 7.61-7.47, (m, 5H), 6.95 (d, J = 8.7 Hz, 2H), 5.47 (s, 1H), 3.84 (s, 1H), 1.97-1.41 (m, 10H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.79, 159.11, 157.83, 131.50, 129.11, 128.48, 128.27, 128.14, 127.49, 113.99, 98.94, 73.65, 55.31, 39.45, 25.80, 22.42. HRMS (ESI, m/z) calcd for C<sub>22</sub>H<sub>23</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 334.1802, found 334.1803.



Yield: (57.18 mg, 65%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04-8.02 (m, 2H), 7.50-7.43, (m, 5H), 7.40-7.38 (m, 2H), 7.21 (d, *J*= 8.6 Hz, 1H), 6.94-6.85 (m, 4H), 3.87 (s, 3H), 3.81 (s, 3H)1.90-1.84 (m, 2H), 1.86-1.83 (m, 3H), 1.67-1.44 (s, 5H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.78, 158.02, 157.82, 156.76, 133.16, 132.96, 131.27, 130.00, 128.39, 128.16, 127.71, 114.84, 113.25, 113.12, 74.38, 55.24, 37.68, 29.71, 25.78, 22.39. HRMS (ESI, m/z) calcd for C<sub>29</sub>H<sub>29</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 440.2220, found 440.2227.



Yield: (55.44 mg, 70%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 7.3 Hz, 2H), 7.90 (d, J = 15.8 Hz, 1H), 7.68 (d, J = 16.2 Hz, 1H), 7.54-7.46 (m, 3H), 6.34 (d, J = 16.2 Hz, 1H), 6.13(d, J = 15.7 Hz, 1H), 3.82-3.81 (m, 6H), 2.13-1.96 (m, 6H), 1.92-1.73 (m, 4H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.91, 167.68, 167.49, 157.44, 138.37, 137.75, 132.07, 128.65, 128.31, 126.15, 121.07, 118.24, 107.74, 76.29, 51.67, 36.75, 29.69, 25.52, 22.28. HRMS (ESI, m/z) calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>5</sub> [M+H]<sup>+</sup> 396.1805, found 396.1807.



Yield: (60.51 mg, 62%) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 7.5 Hz, 2H), 7.53-7.46, (m, 7H), 6.91-6.89 (m, 4H), 3.84 (s, 6H), 2.62-2.56 (m, 2H), 1.95-1.87 (m, 3H), 1.73-1.37 (m, 5H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  173.52, 158.54, 156.96, 131.96, 131.36, 130.78, 127.46, 127.33, 125.53, 114.59, 114.52, 113.07, 112.92, 91.54, 91.50, 79.38, 74.95, 54.30, 54.28, 33.35, 24.86, 21.29. HRMS (ESI, m/z) calcd for C<sub>33</sub>H<sub>29</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 488.2220, found 488.2219.

# NMR spectra for the products





#### Chemical Formula: C<sub>10</sub>H<sub>8</sub>INO Exact Mass: 284.9651 Molecular Weight: 285.0811 m/z: 353.0277 : 284.9651 (100.0%), 285.9684 (11.1%) Elemental Analysis: C, 42.13; H, 2.83; I, 44.52; N, 4.91; O, 5.61



HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>8</sub>INO [M+H]<sup>+</sup> **285.9723**, found **285.9719**.





Chemical Formula: C<sub>15</sub>H<sub>16</sub>INO Exact Mass: 353.0277 Molecular Weight: 353.1981 m/z: 353.0277 (100.0%), 354.0310 (16.2%), 355.0344 (1.2%) Elemental Analysis: C, 51.01; H, 4.57; I, 35.93; N, 3.97; O, 4.53



HRMS (ESI, m/z) calcd for  $C_{15}H_{16}INO [M+H]^+$  **354.0349**, found **354.0346**.





Chemical Formula: C<sub>10</sub>H<sub>7</sub>I<sub>2</sub>NO Exact Mass: 410.86 Molecular Weight: 410.98 m/z: 410.86 (100.0%), 411.87 (10.9%) Elemental Analysis: C, 29.22; H, 1.72; I, 61.76; N, 3.41; O, 3.89



HRMS (ESI, m/z) calcd for  $C_{10}H_7I_2NO [M+H]^+$  **411.8690**, found **411.8675**.



S27



Chemical Formula: C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO Exact Mass: 424.88 Molecular Weight: 425.00 m/z: 424.88 (100.0%), 425.88 (12.0%) Elemental Analysis: C, 31.09; H, 2.13; I, 59.72; N, 3.30; O, 3.76



HRMS (ESI, m/z) calcd for  $C_{11}H_9I_2NO[M+H]^+$  **425.8846**, found **425.8845**.





#### Chemical Formula: C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO Exact Mass: 424.88 Molecular Weight: 425.00 m/z: 424.88 (100.0%), 425.88 (12.0%) Elemental Analysis: C, 31.09; H, 2.13; I, 59.72; N, 3.30; O, 3.76



HRMS (ESI, m/z) calcd for  $C_{11}H_9I_2NO [M+H]^+$  425.8846, found 425.8845.





#### Chemical Formula: C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO Exact Mass: 424.88 Molecular Weight: 425.00 m/z: 424.88 (100.0%), 425.88 (12.0%) Elemental Analysis: C, 31.09; H, 2.13; I, 59.72; N, 3.30; O, 3.76



HRMS (ESI, m/z) calcd for  $C_{11}H_9I_2NO[M+H]^+$  **425.8846**, found **425.8850**.





#### Chemical Formula: C<sub>11</sub>H<sub>9</sub>I<sub>2</sub>NO<sub>2</sub> Exact Mass: 440.87 Molecular Weight: 441.00 m/z: 440.87 (100.0%), 441.88 (12.1%), 442.88 (1.1%) Elemental Analysis: C, 29.96; H, 2.06; I, 57.55; N, 3.18; O, 7.26



HRMS (ESI, m/z) calcd for  $C_{11}H_9I_2NO_2[M+H]^+$  441.8795, found 441.8793.





Chemical Formula: C<sub>10</sub>H<sub>6</sub>Cll<sub>2</sub>NO Exact Mass: 444.82 Molecular Weight: 445.42 m/z: 444.82 (100.0%), 446.82 (32.0%), 445.83 (10.9%), 447.82 (3.6%) Elemental Analysis: C, 26.96; H, 1.36; Cl, 7.96; I, 56.98; N, 3.14; O, 3.59



HRMS (ESI, m/z) calcd for C<sub>10</sub>H<sub>6</sub>ClI<sub>2</sub>NO [M+H]<sup>+</sup> **445.8300**, found **445.8300**.




## Chemical Formula: C<sub>10</sub>H<sub>6</sub>FI<sub>2</sub>NO Exact Mass: 428.85 Molecular Weight: 428.97 m/z: 428.85 (100.0%), 429.86 (10.9%) Elemental Analysis: C, 28.00; H, 1.41; F, 4.43; I, 59.17; N, 3.27; O, 3.73



HRMS (ESI, m/z) calcd for  $C_{10}H_6FI_2NO[M+H]^+$  **429.8596**, found **429.8578**.





# Chemical Formula: C<sub>12</sub>H<sub>9</sub>I<sub>2</sub>NO Exact Mass: 436.88 Molecular Weight: 437.01 m/z: 436.88 (100.0%), 437.88 (13.1%), 438.88 (1.0%) Elemental Analysis: C, 32.98; H, 2.08; I, 58.08; N, 3.21; O, 3.66



HRMS (ESI, m/z) calcd for  $C_{12}H_9I_2NO[M+H]^+$  **437.8846**, found **437.8843**.



S41



## Chemical Formula: C<sub>8</sub>H<sub>5</sub>I<sub>2</sub>NOS Exact Mass: 416.8181 Molecular Weight: 417.0053 m/z: 416.8181 (100.0%), 417.8215 (8.7%), 418.8139 (4.5%) Elemental Analysis: C, 23.04; H, 1.21; I, 60.86; N, 3.36; O, 3.84; S, 7.69



HRMS (ESI, m/z) calcd for  $C_8H_5I_2NOS[M+H]^+$  417.8254, found 417.8254.





Chemical Formula: C<sub>8</sub>H<sub>5</sub>I<sub>2</sub>NO<sub>2</sub> Exact Mass: 400.84 Molecular Weight: 400.94 m/z: 400.84 (100.0%), 401.84 (9.0%) Elemental Analysis: C, 23.97; H, 1.26; I, 63.30; N, 3.49; O, 7.98



HRMS (ESI, m/z) calcd for  $C_8H_5I_2NO[M+H]^+$  **401.8482**, found **401.8485**.





Chemical Formula: C<sub>15</sub>H<sub>25</sub>I<sub>2</sub>NO Exact Mass: 489.0026 Molecular Weight: 489.1740 m/z: 489.0026 (100.0%), 490.0059 (16.2%), 491.0093 (1.2%) Elemental Analysis: C, 36.83; H, 5.15; I, 51.89; N, 2.86; O, 3.27



HRMS (ESI, m/z) calcd for  $C_{15}H_{25}I_2NO[M+H]^+$  **490.0098**, found **490.0099**.





## Chemical Formula: C<sub>15</sub>H<sub>15</sub>I<sub>2</sub>NO Exact Mass: 478.92 Molecular Weight: 479.09 m/z: 478.92 (100.0%), 479.93 (16.4%), 480.93 (1.5%) Elemental Analysis: C, 37.60; H, 3.16; I, 52.98; N, 2.92; O, 3.34



HRMS (ESI, m/z) calcd for  $C_{15}H_{15}I_2NO[M+H]^+$  **479.9316**, found **479.9327**.





#### Chemical Formula: C<sub>12</sub>H<sub>11</sub>I<sub>2</sub>NO Exact Mass: 438.89 Molecular Weight: 439.03 m/z: 438.89 (100.0%), 439.90 (13.1%) Elemental Analysis: C, 32.83; H, 2.53; I, 57.81; N, 3.19; O, 3.64



HRMS (ESI, m/z) calcd for  $C_{12}H_{11}I_2NO [M+H]^+$  **439.9003**, found **439.8956**.





Chemical Formula: C<sub>10</sub>H<sub>8</sub>INO Exact Mass: 284.97 Molecular Weight: 285.08 m/z: 284.97 (100.0%), 285.97 (10.9%) Elemental Analysis: C, 42.13; H, 2.83; I, 44.52; N, 4.91; O, 5.61



HRMS (ESI, m/z) calcd for  $C_{10}H_8INO [M+H]^+$  **285.9723**, found **285.9723**.





Chemical Formula: C<sub>11</sub>H<sub>10</sub>INO Exact Mass: 298.98 Molecular Weight: 299.11 m/z: 298.98 (100.0%), 299.98 (12.3%) Elemental Analysis: C, 44.17; H, 3.37; I, 42.43; N, 4.68; O, 5.35



HRMS (ESI, m/z) calcd for C<sub>11</sub>H<sub>10</sub>INO [M+H]<sup>+</sup> 299.9880, found 299.9879.





Chemical Formula: C<sub>11</sub>H<sub>10</sub>INO Exact Mass: 298.98 Molecular Weight: 299.11 m/z: 298.98 (100.0%), 299.98 (12.3%) Elemental Analysis: C, 44.17; H, 3.37; I, 42.43; N, 4.68; O, 5.35



HRMS (ESI, m/z) calcd for  $C_{11}H_{10}INO [M+H]^+$  299.9880, found 299.9885.





Chemical Formula: C<sub>11</sub>H<sub>10</sub>INO Exact Mass: 298.98 Molecular Weight: 299.11 m/z: 298.98 (100.0%), 299.98 (12.3%) Elemental Analysis: C, 44.17; H, 3.37; I, 42.43; N, 4.68; O, 5.35



HRMS (ESI, m/z) calcd for  $C_{11}H_{10}INO [M+H]^+$  **299.9880**, found **299.9879**.





### Chemical Formula: C<sub>10</sub>H<sub>7</sub>CIINO Exact Mass: 318.9261 Molecular Weight: 319.5261 m/z: 318.9261 (100.0%), 320.9231 (32.0%), 319.9294 (10.8%), 321.9265 (3.5%) Elemental Analysis: C, 37.59; H, 2.21; Cl, 11.10; I, 39.72; N, 4.38; O, 5.01

| Sample Name<br>Inj Vol<br>Data Filename | 2014-1215-25-122-2<br>-1<br>2014-1215-25-122-2.4 | Position<br>InjPosition<br>ACQ Method | P1-A1<br>0103.m | Instrument Name<br>SampleType<br>Comment | Instrument 1<br>Sample | User Name<br>IRM Calibration Status<br>Acquired Time | Success<br>12/15/2014 11:01:22 A |
|-----------------------------------------|--------------------------------------------------|---------------------------------------|-----------------|------------------------------------------|------------------------|------------------------------------------------------|----------------------------------|
|                                         |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 6.4                                     |                                                  |                                       |                 | 210.0004                                 |                        |                                                      |                                  |
| 6.2                                     |                                                  |                                       |                 | 319.9334                                 |                        |                                                      |                                  |
| 6                                       |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 5.8                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 5.4                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 5.2                                     |                                                  |                                       |                 |                                          |                        | //                                                   |                                  |
| 5                                       |                                                  |                                       |                 |                                          | CI O-                  | ~                                                    |                                  |
| 4.8                                     |                                                  |                                       |                 |                                          | T' T                   |                                                      |                                  |
| 4.6                                     |                                                  |                                       |                 |                                          | 人人                     | N.                                                   |                                  |
| 4.4                                     |                                                  |                                       |                 |                                          | í Y                    | N                                                    |                                  |
| 4.2                                     |                                                  |                                       |                 |                                          |                        | ie                                                   |                                  |
| 4                                       |                                                  |                                       |                 |                                          | ~ `                    |                                                      |                                  |
| 3.6                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 3.4                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 3.2                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 3                                       |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 2.8                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 2.6                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 2.4                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 2.2                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 12                                      |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 1.6                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 1.4                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 1.2                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 1                                       |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 0.8                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 0.6                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 0.4                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 0.2                                     |                                                  |                                       |                 |                                          |                        |                                                      |                                  |
| 0+                                      | 50 100                                           | 150 20                                | 0 250           | 300 350 400                              | 450 50                 | 0 550 600 650                                        | 0 700                            |

HRMS (ESI, m/z) calcd for  $C_{10}H_7CIINO [M+H]^+$  **319.9334**, found **319.9334**.





Chemical Formula: C<sub>10</sub>H<sub>7</sub>BrINO Exact Mass: 362.88 Molecular Weight: 363.98 m/z: 362.88 (100.0%), 364.87 (97.3%), 363.88 (10.9%), 365.88 (10.7%) Elemental Analysis: C, 33.00; H, 1.94; Br, 21.95; I, 34.87; N, 3.85; O, 4.40



HRMS (ESI, m/z) calcd for  $C_{10}H_7BrINO [M+H]^+$  **363.8828**, found **363.8828**.









HRMS (ESI, m/z) calcd for  $C_{10}H_7FINO [M+H]^+$  **303.9629**, found **303.9627**.





Chemical Formula: C<sub>11</sub>H<sub>7</sub>IN<sub>2</sub>O Exact Mass: 309.96 Molecular Weight: 310.09 m/z: 309.96 (100.0%), 310.96 (12.7%) Elemental Analysis: C, 42.61; H, 2.28; I, 40.92; N, 9.03; O, 5.16



HRMS (ESI, m/z) calcd for  $C_{11}H_7IN_2O[M+H]^+$  **310.9676**, found **310.9686**.





Chemical Formula: C<sub>11</sub>H<sub>10</sub>INO<sub>2</sub> Exact Mass: 314.98 Molecular Weight: 315.11 m/z: 314.98 (100.0%), 315.98 (12.1%), 316.98 (1.1%) Elemental Analysis: C, 41.93; H, 3.20; I, 40.27; N, 4.45; O, 10.15



HRMS (ESI, m/z) calcd for  $C_{11}H_{10}INO_2[M+H]^+$  315.9829, found 315.9828.





## Chemical Formula: C<sub>12</sub>H<sub>10</sub>INO Exact Mass: 310.98 Molecular Weight: 311.12 m/z: 310.98 (100.0%), 311.98 (13.4%) Elemental Analysis: C, 46.33; H, 3.24; I, 40.79; N, 4.50; O, 5.14



HRMS (ESI, m/z) calcd for  $C_{12}H_{10}INO [M+H]^+$  **311.9880**, found **311.9888**.





Chemical Formula: C<sub>8</sub>H<sub>6</sub>INO<sub>2</sub> Exact Mass: 274.9443 Molecular Weight: 275.0432 m/z: 274.9443 (100.0%), 275.9477 (8.7%) Elemental Analysis: C, 34.93; H, 2.20; I, 46.14; N, 5.09; O, 11.63



HRMS (ESI, m/z) calcd for  $C_8H_6INO_2 [M+H]^+$  275.9516, found 275.9515.




## Chemical Formula: C<sub>8</sub>H<sub>6</sub>INOS Exact Mass: 290.92 Molecular Weight: 291.11 m/z: 290.92 (100.0%), 291.92 (9.8%), 292.92 (4.6%) Elemental Analysis: C, 33.01; H, 2.08; I, 43.59; N, 4.81; O, 5.50; S, 11.01



HRMS (ESI, m/z) calcd for C<sub>8</sub>H<sub>6</sub>INOS [M+H]<sup>+</sup> **291.9288**, found **291.9307**.





Chemical Formula: C<sub>15</sub>H<sub>16</sub>INO Exact Mass: 353.03 Molecular Weight: 353.20 m/z: 353.03 (100.0%), 354.03 (16.4%), 355.03 (1.5%) Elemental Analysis: C, 51.01; H, 4.57; I, 35.93; N, 3.97; O, 4.53



HRMS (ESI, m/z) calcd for  $C_{15}H_{16}INO [M+H]^+$  **354.0349**, found **354.0346**.





Chemical Formula: C<sub>12</sub>H<sub>12</sub>INO Exact Mass: 313.00 Molecular Weight: 313.13 m/z: 313.00 (100.0%), 314.00 (13.2%), 315.00 (1.0%) Elemental Analysis: C, 46.03; H, 3.86; I, 40.53; N, 4.47; O, 5.11



HRMS (ESI, m/z) calcd for  $C_{12}H_{12}INO[M+H]^+$  **314.0036**, found **314.0029**.





## Chemical Formula: C<sub>18</sub>H<sub>17</sub>NO Exact Mass: 263.1310 Molecular Weight: 263.3337 m/z: 263.1310 (100.0%), 264.1344 (19.5%), 265.1377 (1.8%) Elemental Analysis: C, 82.10; H, 6.51; N, 5.32; O, 6.08



HRMS (ESI, m/z) calcd for  $C_{18}H_{17}NO[M+H]^+$  **264.1383**, found **264.1389**.





## Chemical Formula: C<sub>16</sub>H<sub>17</sub>NO<sub>3</sub> Exact Mass: 271.1208 Molecular Weight: 271.3111 m/z: 271.1208 (100.0%), 272.1242 (17.3%), 273.1276 (1.4%) Elemental Analysis: C, 70.83; H, 6.32; N, 5.16; O, 17.69



HRMS (ESI, m/z) calcd for  $C_{16}H_{17}NO_3 [M+H]^+$  272.1281, found 264.1271.





## Chemical Formula: C<sub>21</sub>H<sub>19</sub>NO<sub>2</sub> Exact Mass: 317.1416 Molecular Weight: 317.3811 m/z: 317.1416 (100.0%), 318.1449 (22.7%), 319.1483 (2.5%) Elemental Analysis: C, 79.47; H, 6.03; N, 4.41; O, 10.08



HRMS (ESI, m/z) calcd for C<sub>21</sub>H<sub>19</sub>NO<sub>2</sub> [M+H]<sup>+</sup>**318.1489**, found **318.1483**.





Chemical Formula: C<sub>19</sub>H<sub>21</sub>NO<sub>3</sub> Exact Mass: 311.1521 Molecular Weight: 311.3749 m/z: 311.1521 (100.0%), 312.1555 (20.5%), 313.1589 (2.0%) Elemental Analysis: C, 73.29; H, 6.80; N, 4.50; O, 15.41



HRMS (ESI, m/z) calcd for  $C_{19}H_{21}NO_3 [M+H]^+$  312.1594, found 312.1590.





Chemical Formula: C<sub>22</sub>H<sub>23</sub>NO<sub>2</sub> Exact Mass: 333.1729 Molecular Weight: 333.4235 m/z: 333.1729 (100.0%), 334.1762 (23.8%), 335.1796 (2.7%) Elemental Analysis: C, 79.25; H, 6.95; N, 4.20; O, 9.60



HRMS (ESI, m/z) calcd for  $C_{22}H_{23}NO_2 [M+H]^+$  **334.1802**, found **334.1803**.





Chemical Formula: C<sub>28</sub>H<sub>26</sub>NO<sub>2</sub> Exact Mass: 408.1964 Molecular Weight: 408.5115 m/z: 408.1964 (100.0%), 409.1997 (30.3%), 410.2031 (4.4%) Elemental Analysis: C, 82.32; H, 6.42; N, 3.43; O, 7.83



HRMS (ESI, m/z) calcd for  $C_{29}H_{29}NO_3 [M+H]^+$  440.2220, found 440.2227.





Chemical Formula: C<sub>23</sub>H<sub>25</sub>NO<sub>5</sub> Exact Mass: 395.1733 Molecular Weight: 395.4483 m/z: 395.1733 (100.0%), 396.1766 (24.9%), 397.1800 (3.0%), 397.1775 (1.0%) Elemental Analysis: C, 69.86; H, 6.37; N, 3.54; O, 20.23



HRMS (ESI, m/z) calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>5</sub> [M+H]<sup>+</sup> **396.1805**, found **396.1807**.





