Supporting Information *for*

Alkynyl Trifluoromethyl Selenides Synthesis via

Oxidative Trifluoromethylselenolation of Terminal

Alkynes

Yuguang Wang, Yi You,* and Zhiqiang Weng*

Department of Chemistry, Fuzhou University, Fuzhou 350108, China

Table of Contents

General Inform	nation						2	
General procedure for trifluoromethylselenolation of terminal alkynes								
Data for compounds 3								
Procedure	for	gram	scale	reaction	for	synthesis	of	
(<i>p</i> -tolylethynyl)(trifluoromethyl)selane (3b) 12								
Procedure for the trifluoromethylselenolation of 1 with 4-ethynyltoluene (2b) in the								
presence of 1.0 equiv TEMPO12								
Experiments for Mechanistic Investigations								
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR Spectra for Compounds 3a–v 18								

General Information: ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using a 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (chloroform δ 7.26) and ¹³C NMR (chloroform δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were obtained on GCT-TOF. [(bpy)Cu(SeCF₃)]₂ was prepared according to the published procedures.¹ Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures² prior to use. Column chromatography purifications were performed by flash chromatography using silica gel 60.

General procedure for trifluoromethylselenolation of terminal alkynes with $[(bpy)Cu(SeCF_3)]_2$: Terminal alkynes 2 (0.30 mmol), $[(bpy)Cu(SeCF_3)]_2$ 1 (132 mg, 0.18 mmol), DMP (255 mg, 0.60 mmol, 2.0 equiv), KF (52 mg, 0.90 mmol, 3.0 equiv), and DMF (2.5 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 25 °C for 16 hours. The reaction mixture was filtered through a pad of celite. The filtrate was added water (30 mL) at 0 °C. The resulting mixture was extracted with Et₂O (3×15 mL), and the combined organic layers was washed with water, and then dried over MgSO₄. The solvent was removed by rotary evaporation in an ice bath and the resulting product was purified by column chromatography on silica gel with pentane/Et₂O.

^{1.} C. Chen, L. Ouyang, Q. Lin, Y. Liu, C. Hou, Y. Yuan, Z. Weng, *Chem.-Eur. J.* **2014**, *20*, 657-661.

^{2.} W. L. F. Armerego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 6th ed., Elsevier, Amsterdam, **2009**.

(Phenylethynyl)(trifluoromethyl)selane (3a)

Obtained as a pale yellow oil in 74% yield (55 mg). $R_{\rm f}$ (*n*-pentane) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.44 – 7.33 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 132.0 (s), 129.5 (s), 128.4 (s), 120.7 (q, *J* = 336.3 Hz), 122.0 (s), 107.2 (d, *J* = 1.1 Hz), 61.8 (q, *J* = 3.1 Hz). IR (KBr): v 2928, 2852, 2169, 1489, 1443, 1154, 1098, 755, 689, 532 cm⁻¹. GC-MS m/z 249 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₅F₃⁷⁴Se: 243.9568; Found: 243.9566.

(p-Tolylethynyl)(trifluoromethyl)selane (3b)

Obtained as a yellow solid in 87% yield (69 mg). M.p: 40–41 °C. R_f (*n*-pentane) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 140.0 (s), 132.1 (s), 129.2 (s), 120.7 (q, J = 336.3 Hz), 119.0 (s), 107.4 (d, J = 1.3 Hz), 60.9 (q, J = 3.1 Hz), 21.6 (s). IR (KBr): v 2951, 1683, 1558, 1508, 1154, 1072, 1047, 917, 816, 741 cm⁻¹. GC-MS m/z 263 (M⁺). HRMS (EI) m/z: Calcd. for C₁₀H₇F₃⁷⁴Se: 257.9725; Found: 257.9731.

(*m*-Tolylethynyl)(trifluoromethyl)selane (3c)

Obtained as a yellow oil in 81% yield (64 mg). $R_{\rm f}$ (*n*-pentane) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.20 (m, 4H), 2.37 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 138.2 (s), 132.6 (s), 130.4 (s), 129.1 (s),

128.3 (s), 121.8 (s), 120.5 (q, J = 336.3 Hz), 107.4 (d, J = 1.1 Hz), 61.3 (q, J = 3.1 Hz), 21.2 (s). IR (KBr): v 2925, 2855, 1600, 1483, 1155, 1096, 784, 741, 689, 442 cm⁻¹. GC-MS m/z 263 (M⁺). HRMS (EI) m/z: Calcd. for C₁₀H₇F₃⁷⁴Se: 257.9725; Found: 257.9728.

((4-Ethylphenyl)ethynyl)(trifluoromethyl)selane (3d)

Obtained as a yellow solid in 87% yield (72 mg). M.p: 31-32 °C. R_f (*n*-pentane) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 146.2 (s), 132.2 (s), 128.0 (s), 120.7 (q, J = 336.4 Hz), 119.2 (s), 107.5 (d, J = 0.7 Hz), 60.9 (q, J = 3.1 Hz), 28.9 (s), 15.3 (s). IR (KBr): v 3031, 2936, 2166, 1508, 1154, 1093, 1019, 932, 741 cm⁻¹. GC-MS m/z 277 (M⁺). HRMS (EI) m/z: Calcd. for C₁₁H₉F₃⁷⁴Se: 271.9881; Found: 271.9886.

Obtained as a white solid in 84% yield (73 mg). M.p: 31-32 °C. R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 2.68 – 2.57 (m, 2H), 1.73 – 1.61 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.7 (s), 132.1 (s), 128.6 (s), 120.7 (q, J = 336.4 Hz), 119.2 (s), 107.5 (d, J = 1.3 Hz), 60.9 (q, J = 3.1 Hz), 38.0 (s), 24.3 (s), 13.7 (s). IR (KBr): v 2974, 1686, 1561, 1508, 1459, 1157, 1094, 1051, 741 cm⁻¹. GC-MS m/z 291 (M⁺). HRMS (EI) m/z: Calcd. for C₁₂H₁₁F₃⁷⁴Se: 286.0038; Found: 286.0031.

((4-Butylphenyl)ethynyl)(trifluoromethyl)selane (3f)

Obtained as a yellow oil in 81% yield (74 mg). $R_f(n\text{-pentane}) = 0.69$. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 2.70 – 2.57 (m, 2H), 1.68 – 1.53 (m, 2H), 1.45 – 1.30 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 145.0 (s), 132.1 (s), 128.6 (s), 120.7 (q, J = 336.0 Hz), 119.1 (s), 107.4 (d, J = 1.3 Hz), 60.9 (q, J = 3.1 Hz), 35.7 (s), 33.3 (s), 22.3 (s), 13.9 (s). IR (KBr): v 2959, 2932, 2860, 2166, 1507, 1156, 1094, 828, 741, 537 cm⁻¹. GC-MS m/z 305 (M⁺). HRMS (EI) m/z: Calcd. for C₁₃H₁₃F₃⁷⁴Se: 300.0194; Found: 300.0200.

((4-Pentylphenyl)ethynyl)(trifluoromethyl)selane (3g)

Obtained as a yellow oil in 78% yield (75 mg). R_f (*n*-pentane) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 2.71 – 2.52 (m, 2H), 1.74 – 1.50 (m, 2H), 1.40 – 1.30 (m, 4H), 0.92 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 145.0 (s), 132.1 (s), 128.6 (s), 120.7 (q, J = 336.4 Hz), 119.2 (s), 107.5 (d, J = 1.1 Hz), 60.9 (q, J = 3.1 Hz), 35.9 (s), 31.4 (s), 30.9 (s), 22.5 (s), 14.0 (s). IR (KBr): v 2958, 2935, 2859, 2161, 1508, 1151, 1104, 831, 740, 541 cm⁻¹. GC-MS m/z 320 (M⁺). HRMS (EI) m/z: Calcd. for C₁₄H₁₅F₃⁷⁴Se: 314.0351; Found: 314.0356.

([1,1'-Biphenyl]-4-ylethynyl)(trifluoromethyl)selane (3h)

Obtained as a yellow solid in 74% yield (74 mg). M.p: 53–54 °C. $R_{\rm f}$ (*n*-pentane) =

0.79. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.50 (m, 6H), 7.44 (t, J = 7.4 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 142.3 (s), 140.1 (s), 132.6 (s), 129.0 (s), 128.0 (s), 127.1 (s), 120.9 (s), 120.8 (q, J = 336.5 Hz), 107.2 (d, J = 1.1 Hz), 62.5 (q, J = 3.1 Hz). IR (KBr): v 2951, 1558, 1404, 1147, 1108, 1082, 841, 764, 741, 693 cm⁻¹. GC-MS m/z 326 (M⁺+H). HRMS (EI) m/z: Calcd. for C₁₅H₉F₃⁷⁴Se: 319.9881; Found: 319.9882.

((4-Methoxyphenyl)ethynyl)(trifluoromethyl)selane (3i)

Obtained as a yellow oil in 81% yield (68 mg). R_f (*n*-pentane) = 0.49. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.5 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (s), 134.1 (s), 120.7 (q, J = 336.5 Hz), 114.1 (s), 107.3 (d, J = 1.2 Hz), 60.2 (q, J = 3.2 Hz), 55.3 (s). IR (KBr): v 2952, 1605, 1509, 1294, 1252, 1152, 1106, 832, 741, 669 cm⁻¹. GC-MS m/z 279 (M⁺). HRMS (EI) m/z: Calcd. for C₁₀H₇OF₃⁷⁴Se: 273.9674; Found: 273.9670.

((4-Ethoxyphenyl)ethynyl)(trifluoromethyl)selane (3j)

Obtained as a white solid in 73% yield (64 mg). M.p: 61–62 °C. R_f (*n*-pentane) = 0.46. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.07 (q, J = 7.0 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.1 (s), 134.1 (s), 120.7 (q, J = 336.5 Hz), 114.5 (s), 113.8 (s), 107.4 (d, J = 0.6 Hz), 63.6 (s), 60.1 (q, J = 3.1 Hz), 14.7 (s). IR (KBr): v 2990, 2935, 2156, 1602, 1508, 1475, 1258, 1149, 1116, 840 cm⁻¹. GC-MS m/z 293 (M⁺). HRMS (EI) m/z: Calcd. for C₁₁H₉OF₃⁷⁴Se: 287.9830; Found: 287.9834.

((4-(Pentyloxy)phenyl)ethynyl)(trifluoromethyl)selane (3k)

Obtained as a yellow solid in 79% yield (79 mg). M.p: 37–38 °C. R_f (*n*-pentane) = 0.64. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 3.99 (t, J = 6.6 Hz, 2H), 1.90 – 1.72 (m, 2H), 1.54 – 1.34 (m, 4H), 0.96 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.3 (s), 134.1 (s), 120.7 (q, J = 336.5 Hz), 114.6 (s), 113.8 (s), 107.5 (d, J = 1.2 Hz), 68.2 (s), 60.0 (q, J = 3.2 Hz), 28.8 (s), 28.2 (s), 22.4 (s), 14.0 (s). IR (KBr): v 2936, 2862, 2156, 1602, 1508, 1259, 1151, 1125, 1108, 837 cm⁻¹. GC-MS m/z 335 (M⁺). HRMS (EI) m/z: Calcd. for C₁₄H₁₅OF₃⁷⁴Se: 330.0300; Found: 330.0302.

(Trifluoromethyl)((4-(trifluoromethyl)phenyl)ethynyl)selane (3l)

Obtained as a yellow oil in 68% yield (67 mg). R_f (*n*-pentane) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.52 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.8 (s, 3F), -63.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 132.0 (s), 131.0 (q, J = 32.9 Hz), 125.4 (q, J = 3.8 Hz), 125.1 (s), 122.4 (s), 120.6 (q, J = 336.2 Hz), 105.7 (s), 65.0 (q, J = 3.0 Hz). IR (KBr): v 2946, 1615, 1324, 1163, 1091, 1067, 1017, 742, 642, 597 cm⁻¹. GC-MS m/z 317 (M⁺). HRMS (EI) m/z: Calcd. for C₁₀H₄F₆⁷⁴Se: 311.9442; Found: 311.9439.

((4-Fluorophenyl)ethynyl)(trifluoromethyl)selane (3m)

Obtained as a yellow oil in 71% yield (59 mg). R_f (*n*-pentane) = 0.75. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 8.2, 5.8 Hz, 2H), 7.07 (t, J = 8.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.2 (s, 3F), -108.4 – -108.5 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, J = 252.5 Hz), 134.3 (d, J = 8.6 Hz), 120.7 (q, J = 336.2 Hz), 118.1 (d, J = 3.6 Hz), 115.8 (d, J = 22.2 Hz), 106.1 (d, J = 1.0 Hz), 61.7 (q, J = 3.2 Hz). IR (KBr): v 2929, 2854, 2170, 1601, 1507, 1237, 1157, 1090, 836, 771 cm⁻¹. GC-MS m/z 267 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₄F₄⁷⁴Se: 261.9474; Found: 261.9472.

((2-Fluorophenyl)ethynyl)(trifluoromethyl)selane (3n)

Obtained as a pale yellow oil in 77% yield (62 mg). R_f (*n*-pentane) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, J = 6.7 Hz, 1H), 7.44- 7.34 (m, 1H), 7.21 – 7.08 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.9 (s, 3F), -108.8 – -108.9 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, J = 254.5 Hz), 133.8 (s), 131.4 (d, J = 8.1 Hz), 124.1 (d, J = 3.8 Hz), 120.7 (q, J = 336.4 Hz), 115.7 (d, J = 21.2 Hz), 110.7 (d, J = 15.6 Hz), 100.5 (s), 67.2 (q, J = 3.2 Hz). IR (KBr): v 2927, 2853, 2174, 1491, 1247, 1160, 1098, 779, 756, 742 cm⁻¹. GC-MS m/z 267 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₄ F_4^{74} Se: 261.9474; Found: 261.9478.

((4-Chlorophenyl)ethynyl)(trifluoromethyl)selane (30)

Obtained as a pale yellow solid in 82% yield (70 mg). M.p: 30–31 °C. R_f (*n*-pentane) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 135.7 (s), 133.2 (s), 128.9 (s), 122.3 (q, J = 336.4 Hz), 120.5 (s), 106.0 (d, J = 1.1 Hz), 63.1 (q, J = 3.1 Hz). IR (KBr): v 2952, 2913, 1686, 1655, 1560, 1509, 1155, 1070,

943, 828 cm⁻¹. GC-MS m/z 283 (M⁺). HRMS (EI) m/z: Calcd. for $C_9H_4F_3Cl^{74}Se$: 277.9178; Found: 277.9177.

((4-Bromophenyl)ethynyl)(trifluoromethyl)selane (3p)

Obtained as a pale yellow solid in 76% yield (75 mg). M.p: 38–39 °C. $R_f(n\text{-pentane})$ = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 133.4 (s), 131.8 (s), 124.0 (s), 120.9 (s), 120.6 (q, J = 336.4 Hz), 106.1 (d, J = 1.1 Hz), 63.3 (q, J = 3.1 Hz). IR (KBr): v 2951, 1584, 1486, 1156, 1099, 1085, 1011, 823, 741, 650 cm⁻¹. GC-MS m/z 327 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₄F₃⁷⁴SeBr: 321.8673; Found: 321.8665.

((3-Bromophenyl)ethynyl)(trifluoromethyl)selane (3q)

Obtained as a pale yellow oil in 75% yield (74 mg). R_f (*n*-pentane) = 0.68. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.53 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 7.9 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 134.6 (s), 132.6 (s), 130.6 (s), 129.9 (s), 123.9 (s), 122.3 (s), 120.6 (q, J = 336.5 Hz), 105.5 (d, J = 1.1 Hz), 63.7 (q, J = 3.1 Hz). IR (KBr): v 1585, 1561, 1471, 1157, 1095, 867, 782, 742, 679, 437 cm⁻¹. GC-MS m/z 327 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₄F₃⁷⁴SeBr: 321.8673; Found: 321.8669.

2-((Trifluoromethylselanyl)ethynyl)pyridine (3r)

Obtained as a sepia oil in 73% yield (55 mg). $R_{\rm f}$ (*n*-pentane/diethyl ether 1:1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 4.7 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.29 (t, J = 6.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 150.2 (s), 142.1 (s), 136.3 (s), 127.3 (s), 123.7 (s), 120.6 (q, J = 336.5 Hz), 106.4 (d, J = 1.0 Hz), 63.3 (q, J = 3.0 Hz). IR (KBr): v 2952, 2913, 1581, 1460, 1427, 1151, 1095, 990, 777, 740 cm⁻¹. GC-MS m/z 250 (M⁺). HRMS (EI) m/z: Calcd. for C₈H₄N F_3^{74} Se: 244.9521; Found: 244.9522.

3-((Trifluoromethylselanyl)ethynyl)pyridine (3s)

Obtained as a sepia oil in 67% yield (50 mg). R_f (*n*-pentane/diethyl ether 1:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.60 (d, J = 4.8 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.34 – 7.26 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -35.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.5 (s), 149.7 (s), 138.9 (s), 123.1 (s), 120.6 (q, J = 336.4 Hz), 119.2 (s), 103.8 (d, J = 1.1 Hz), 66.0 (q, J = 3.0 Hz). IR (KBr): v 2952, 1563, 1475, 1408, 1155, 1094, 1022, 804, 741, 703 cm⁻¹. GC-MS m/z 250 (M⁺). HRMS (EI) m/z: Calcd. for C₈H₄NF₃⁷⁴Se: 244.9521; Found: 244.9517.

2-((Trifluoromethylselanyl)ethynyl)thiophene (3t)

Obtained as a yellow oil in 72% yield (55 mg). R_f (*n*-pentane/diethyl ether 5:1) = 0.79. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.05 (t, J = 3.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 134.8 (s), 129.7 (s), 127.2 (s), 121.9 (s), 120.6 (q, J = 337.0 Hz), 100.4 (d, J = 1.1 Hz), 66.8 (q, J = 3.1 Hz). IR (KBr): v 2926, 2854, 2153, 1418, 1157, 1096, 855, 835, 741, 705 cm⁻¹. GC-MS m/z 255 (M⁺). HRMS (EI) m/z: Calcd. for C₇H₃F₃S⁷⁴Se: 249.9132; Found:

3-((Trifluoromethylselanyl)ethynyl)thiophene (3u)

Obtained as a yellow oil in 74% yield (57 mg). R_f (*n*-pentane) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.36 – 7.29 (m, 1H), 7.20 (d, J = 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -36.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 131.5 (s), 130.0 (s), 125.7 (s), 121.2 (s), 120.6 (q, J = 337.0 Hz), 102.2 (s), 61.7 (q, J = 3.0 Hz). IR (KBr): v 2952, 2161, 1358, 1155, 1091, 949, 872, 783, 741, 625 cm⁻¹. GC-MS m/z 255 (M⁺). HRMS (EI) m/z: Calcd. for C₇H₃F₃S⁷⁴Se: 249.9132; Found: 249.9130.

Oct-1-yn-1-yl(trifluoromethyl)selane (3v)

Obtained as a yellow oil in 57% yield (44 mg). R_f (*n*-pentane) = 0.47. ¹H NMR (400 MHz, CDCl₃) δ 2.45 (t, J = 7.0 Hz, 2H), 1.66 – 1.51 (m, 2H), 1.49 – 1.21 (m, 6H), 0.92 (t, J = 6.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -37.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 120.7 (q, J = 335.6 Hz), 109.5 (d, J = 1.0 Hz), 51.1 (q, J = 3.1 Hz), 31.2 (s), 28.4 (s), 28.2 (s), 22.5 (s), 20.5 (s), 14.0 (s). IR (KBr): v 2959, 2933, 2861, 2190, 1467, 1380, 1326, 1156, 1097, 741 cm⁻¹. GC-MS m/z 257 (M⁺). HRMS (EI) m/z: Calcd. for C₉H₁₃F₃⁷⁴Se: 252.0194; Found: 252.0189.

Procedure reaction for gram scale for synthesis of (p-tolylethynyl)(trifluoromethyl)selane (3b): 4-Ethynyltoluene (2b) (1.04 g, 9.0 mmol), [(bpy)Cu(SeCF₃)]₂ 1 (3.98 g, 5.4 mmol, 0.60 equiv), DMP (7.63 g, 18 mmol, 2.0 equiv), KF (1.57 g, 27 mmol, 3.0 equiv), and DMF (25 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 25 °C for 16 hours. The reaction mixture was filtered through a pad of celite. The filtrate was added water (30 mL) at 0 °C. The resulting mixture was extracted with Et₂O (3×20 mL), and the combined organic layers was washed with water, and then dried over MgSO₄. The solvent was removed by rotary evaporation in an ice bath and the resulting product was purified by column chromatography on silica gel with pentane/Et₂O. Compound **3b** was obtained in 84% yield (1.99 g).

Procedure for the trifluoromethylselenolation of 1 with 4-ethynyltoluene (2b) in the presence of 1.0 equiv TEMPO: 4-Ethynyltoluene (2b) (11.6 mg, 0.10 mmol), [(bpy)Cu(SeCF₃)]₂ 1 (44.1 mg, 0.060 mmol), DMP (84.8 mg, 0.20 mmol, 2.0 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv), TEMPO (15.6 mg, 0.10 mmol), and DMF (2.5 mL) were added to a reaction tube equipped with a stir bar. The mixture was stirred at 25 °C for 16 hours. The tube was removed from the oil bath and cooled to room temperature, and then 10 µL (trifluoromethoxy)benzene was added as an internal standard. The resulting mixture was filtered through a layer of Celite. The filtrate was 19 F analyzed by NMR and GC-MS. The vield of the (*p*-tolylethynyl)(trifluoromethyl)selane (**3b**) was calculated to be 65%.

Experiments for Mechanistic Investigations

(1). Procedure for reaction of $[(bpy)Cu(SeCF_3)]_2$ (1) with Dess–Martin periodinane in the presence of KF.

[(bpy)Cu(SeCF₃)]₂ (**1**) (44 mg, 0.060 mmol), DMP (85 mg, 0.20 mmol), KF (17.4 mg, 0.30 mmol), and PhOCF₃ (10 μ L) as internal standard were weighed into a vial and dissolved in 2.0 mL of DMF. The contents of the vial were agitated and then transferred to an NMR tube. The NMR tube was agitated for 10 min and the ¹⁹F NMR spectrum was acquired. The yield of the intermediate **I** was calculated to be 75% based on **1**.

(2). Procedure for reaction of intermediate I with 4-ethynyltoluene (2b).

4-Ethynyltoluene (**2b**) (11.6 mg, 0.10 mmol) was then added to the above intermediate **I** solution. The resulting mixture was measured by ¹⁹F NMR at regular intervals at 25 °C until the yield did not change. The resulting mixture was filtered through a layer of Celite. The filtrate was analyzed by GC-MS. The yield of the (*p*-tolylethynyl)(trifluoromethyl)selane (**3b**) was calculated to be 82% based on **2b**.

Source Gun Type	Al K Alpha			
Spot Size	500 µm			
Lens Mode	Standard			
Analyser Mode	CAE : Pass Energy 100.0 eV			
Energy Step Size	1.000 eV			
Number of Energy Steps	1361			

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR Spectra for Compounds 3a-v

¹H NMR spectrum of 3a in CDCl₃

¹³C NMR spectrum of **3a** in CDCl₃

 ^{19}F NMR spectrum of 3a in CDCl₃

¹H NMR spectrum of **3b** in CDCl₃

^{13}C NMR spectrum of 3b in CDCl_3

¹⁹F NMR spectrum of **3b** in CDCl₃

¹H NMR spectrum of **3c** in CDCl₃

 ^{13}C NMR spectrum of 3c in CDCl_3

¹⁹F NMR spectrum of 3c in CDCl₃

¹H NMR spectrum of 3d in CDCl₃

 ^{13}C NMR spectrum of 3d in CDCl_3

¹⁹F NMR spectrum of **3d** in CDCl₃

¹H NMR spectrum of **3e** in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹⁹F NMR spectrum of 3e in CDCl₃

¹H NMR spectrum of **3f** in CDCl₃

¹³C NMR spectrum of 3f in CDCl₃

¹⁹F NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of **3g** in CDCl₃

 ^{13}C NMR spectrum of 3g in CDCl_3

¹⁹F NMR spectrum of 3g in CDCl₃

¹H NMR spectrum of **3h** in CDCl₃

 ^{13}C NMR spectrum of **3h** in CDCl₃

¹⁹F NMR spectrum of **3h** in CDCl₃

¹H NMR spectrum of **3i** in CDCl₃

¹³C NMR spectrum of 3i in CDCl₃

 ^{19}F NMR spectrum of 3i in CDCl₃

¹H NMR spectrum of **3j** in CDCl₃

¹³C NMR spectrum of 3j in CDCl₃

 ^{19}F NMR spectrum of 3j in CDCl₃

¹H NMR spectrum of 3k in CDCl₃

¹³C NMR spectrum of 3k in CDCl₃

¹⁹F NMR spectrum of 3k in CDCl₃

¹H NMR spectrum of **3l** in CDCl₃

¹³C NMR spectrum of **3l** in CDCl₃

¹⁹F NMR spectrum of **3l** in CDCl₃

¹H NMR spectrum of **3m** in CDCl₃

 ^{13}C NMR spectrum of 3m in CDCl_3

 ^{19}F NMR spectrum of 3m in CDCl_3

¹H NMR spectrum of **3n** in CDCl₃

 ^{13}C NMR spectrum of 3n in CDCl_3

¹⁹F NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹⁹F NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

 ^{13}C NMR spectrum of 3p in CDCl_3

¹⁹F NMR spectrum of **3p** in CDCl₃

¹H NMR spectrum of 3q in CDCl₃

 ^{13}C NMR spectrum of 3q in CDCl_3

¹⁹F NMR spectrum of 3q in CDCl₃

¹H NMR spectrum of 3r in CDCl₃

¹³C NMR spectrum of 3r in CDCl₃

¹⁹F NMR spectrum of 3r in CDCl₃

¹H NMR spectrum of **3s** in CDCl₃

 ^{13}C NMR spectrum of 3s in CDCl $_3$

¹⁹F NMR spectrum of 3s in CDCl₃

¹**H NMR** spectrum of **3t** in CDCl₃

¹³C NMR spectrum of 3t in CDCl₃

^{19}F NMR spectrum of 3t in CDCl_3

¹H NMR spectrum of **3u** in CDCl₃

 ^{13}C NMR spectrum of 3u in CDCl_3

¹⁹F NMR spectrum of **3u** in CDCl₃

¹H NMR spectrum of 3v in CDCl₃

¹³C NMR spectrum of 3v in CDCl₃

 ^{19}F NMR spectrum of 3v in CDCl₃

