### **Supporting Information**

### One-pot Dilithiation-Lithium-Zinc Exchange-Negishi Coupling Approach to 2,6-Di(hetero)aryl Substituted Dithienothiazines – A Novel Class of Electronically Fine-tunable Redox Systems

Catherine Dostert and Thomas J. J. Müller\*

Institut für Organische und Makromolekulare Chemie

Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1, D-40225 Düsseldorf, Germany

E-Mail: ThomasJJ.Mueller@uni-duesseldorf.de

Fax: (+)49 (0)211-8114324

### Table of contents

| 1 <sup>1</sup> H- and <sup>13</sup> C-NMR spectra of 2,6-di(hetero)aryl dithienothiazines <b>3a</b> - <b>3I</b> | 3  |
|-----------------------------------------------------------------------------------------------------------------|----|
| 2 <sup>1</sup> H- and <sup>13</sup> C-NMR spectra of 2-(hetero)aryl dithienothiazines <b>6a-6c</b>              | 27 |
| 3 UV and fluorescence spectra of 2,6-di(hetero)aryl dithienothiazines 3a-31                                     | 33 |
| 4 UV and fluorescence spectra of 2-(hetero)aryl dithienothiazines 6a-6c                                         | 39 |
| 5 Cyclic voltammograms of 2,6-di(hetero)aryl dithienothiazines 3a-31                                            | 41 |
| 6 Cyclic voltammograms of 2-(hetero)aryl dithienothiazines 6a-6c                                                | 47 |
| 7 Molecular modeling coordinates and FMO energies of compounds 3a, 3c and 3g-3j                                 | 49 |

# 1 <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 2,6-di(hetero)aryl dithienothiazines 3a-3I

1.1 4-(4-Hexylphenyl)-2,6-bis(4-methoxyphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3a)





20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10  $^{13}$ C-NMR (150 MHz) of **3a** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 313 K ( $\delta$  in ppm).



<sup>13</sup>C-DEPT 135-NMR (150 MHz) of **3a** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 313 K (δ in ppm).







<sup>13</sup>C-DEPT 135-NMR (150 MHz) of **3b** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 298 K (δ in ppm).



#### 1.3 4-(4-Hexylphenyl)-2,6-diphenyl-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3c)

<sup>1</sup>H-NMR (300 MHz) of **3c** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 2:1 at 298 K (δ in ppm).



<sup>13</sup>C-DEPT 135-NMR (75 MHz) of **3c** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 2:1 at 298 K ( $\overline{\delta}$  in ppm).



## 1.4 2,6-Bis(4-chlorophenyl)-4-(4-hexylphenyl)-4H-dithieno [2,3-b:3',2'-e][1,4]thiazine (3d)

<sup>1</sup>H-NMR (500 MHz) of **3d** (20 mg) in dichloromethane-d<sub>2</sub> at 298 K ( $\delta$  in ppm).



#### 1.5 Dimethyl 4,4'-(4-(4-hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzoate (3e)



<sup>1</sup>H-NMR (300 MHz) of **3e** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 293 K ( $\delta$  in ppm).



1.6 4-(4-Hexylphenyl)-2,6-bis(4-(trifluoromethyl)phenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3f)



 $^1\text{H-NMR}$  (600 MHz) of **3f** (20 mg) in acetone-d\_6/CS\_2 1:1 at 313 K ( $\delta$  in ppm).



 $^{13}\text{C}\text{-}\text{DEPT}$  135-NMR (150 MHz) of 3f (20 mg) in acetone-d\_6/CS\_2 1:1 at 313 K ( $\delta$  in ppm).

1.7 4,4'-(4-(4-Hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzonitrile (3g)



<sup>1</sup>H-NMR (600 MHz) of **3g** (20 mg) in dichloromethane-d<sub>2</sub> at 293 K ( $\delta$  in ppm).







<sup>1</sup>H-NMR (500 MHz) of **3f** (20 mg) in dichloromethane-d<sub>2</sub> at 298 K ( $\delta$  in ppm).







<sup>1</sup>H-NMR (600 MHz) of **3i** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 313 K ( $\delta$  in ppm).



20





<sup>1</sup>H-NMR (600 MHz) of **3j** (20 mg) in acetone- $d_6/CS_2$  1:1 at 298 K ( $\delta$  in ppm).



<sup>13</sup>C-DEPT 135-NMR (150 MHz) of **3j** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 298 K ( $\overline{\delta}$  in ppm).

1.11 4-(4-Hexylphenyl)-2,6-di(pyridin-3-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3k)



<sup>1</sup>H-NMR (300 MHz) of **3k** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:1 at 298 K ( $\delta$  in ppm).







<sup>1</sup>H-NMR (600 MHz) of **3I** (20 mg) in acetone- $d_6/CS_2$  1:2 at 298 K ( $\delta$  in ppm).



<sup>13</sup>C-DEPT 135-NMR (150 MHz) of **3I** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 1:2 at 298 K ( $\overline{\delta}$  in ppm).

# 2 <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 2-(hetero)aryl dithienothiazines 6a-6c

2.1 4-(4-Hexylphenyl)-2-(4-nitrophenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6a)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0  $^{13}$ C-NMR (150 MHz) of **6a** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 2:1 at 298 K (δ in ppm).



2.2 4-(4-Hexylphenyl)-2-(thiophen-2-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6b)



<sup>1</sup>H-NMR (600 MHz) of **6b** (20 mg) in acetone-d<sub>6</sub>/CS<sub>2</sub> 5:1 at 298 K ( $\delta$  in ppm).



#### 2.3 4-(4-Hexylphenyl)-2-(pyridin-4-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6c)





## 3 UV and fluorescence spectra of 2,6-di(hetero)aryl dithienothiazines 3a-3l

3.1 4-(4-Hexylphenyl)-2,6-bis(4-methoxyphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3a)



Normalized UV spectrum of 3a in dichloromethane at 293 K.

#### 3.2 4-(4-Hexylphenyl)-2,6-di-p-tolyl-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3b)



Normalized UV spectrum of 3b in dichloromethane at 293 K.

#### 3.3 4-(4-Hexylphenyl)-2,6-diphenyl-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3c)



Normalized UV spectrum of 3c in dichloromethane at 293 K.

## 3.4 2,6-Bis(4-chlorophenyl)-4-(4-hexylphenyl)-4H-dithieno [2,3-b:3',2'-e][1,4] thiazine (3d)



Normalized UV spectrum of 3d in dichloromethane at 293 K.

3.5 Dimethyl 4,4'-(4-(4-hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzoate (3e)



Normalized UV spectrum of 3e in dichloromethane at 293 K.

3.6 4-(4-Hexylphenyl)-2,6-bis(4-(trifluoromethyl)phenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3f)



Normalized UV spectrum of 3f in dichloromethane at 293 K.

3.7 4,4'-(4-(4-Hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzonitrile (3g)



Normalized UV spectrum of 3g in dichloromethane at 293 K.

## 3.8 4-(4-Hexylphenyl)-2,6-bis(4-nitrophenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3h)



Normalized UV spectrum of 3h in dichloromethane at 293 K.

3.9 4-(4-Hexylphenyl)-2,6-bis(3-nitrophenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3i)



Normalized UV spectrum of 3h in dichloromethane at 293 K.

#### 3.10 4-(4-Hexylphenyl)-2,6-bis(2-nitrophenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3j)



Normalized UV spectrum of 3i in dichloromethane at 293 K.

## 3.11 4-(4-Hexylphenyl)-2,6-di(pyridin-3-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3k)



Normalized absorption (blue) and emission (red) spectra of **3k** ( $\lambda_{max,exc}$  = 380 nm) in dichloromethane at 293 K.

3.12 3,3'-(4-(4-Hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)bis(10-hexyl-10H-phenothiazine) (3l)



Normalized absorption (blue) and emission (red) spectra of **3I** ( $\lambda_{max,exc}$  = 420 nm) in dichloromethane at 293 K.

# 4 UV and fluorescence spectra of 2-(hetero)aryl dithienothiazines 6a-6c

4.1 4-(4-Hexylphenyl)-2-(4-nitrophenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6a)



Normalized UV spectrum of 6a in dichloromethane at 293 K.

4.2 4-(4-Hexylphenyl)-2-(thiophen-2-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6b)



Normalized absorption (blue) and emission (red) spectra of **6b** ( $\lambda_{max,exc}$  = 425 nm) in dichloromethane at 293 K. $\lambda$ 

#### 4.3 4-(4-Hexylphenyl)-2-(pyridin-4-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6c)



Normalized absorption (blue) and emission (red) spectra of **6c** ( $\lambda_{max,exc}$  = 450 nm) in dichloromethane at 293 K.

# 5 Cyclic voltammograms of 2,6-di(hetero)aryl dithienothiazines 3a-3l

5.1 4-(4-Hexylphenyl)-2,6-bis(4-methoxyphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3a)



Cyclic voltammogram of **3a** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.2 4-(4-Hexylphenyl)-2,6-di-p-tolyl-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3b)



Cyclic voltammogram of **3b** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ $^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.3 4-(4-Hexylphenyl)-2,6-diphenyl-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3c)



Cyclic voltammogram of **3c** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

## 5.4 2,6-Bis(4-chlorophenyl)-4-(4-hexylphenyl)-4H-dithieno [2,3-b:3',2'-e][1,4] thiazine (3d)



Cyclic voltammogram of **3d** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.5 Dimethyl 4,4'-(4-(4-hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzoate (3e)



Cyclic voltammogram of **3e** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.6 4-(4-Hexylphenyl)-2,6-bis(4-(trifluoromethyl)phenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3f)



Cyclic voltammogram of **3f** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ $^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.7 4,4'-(4-(4-Hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)dibenzonitrile (3g)



Cyclic voltammogram of **3g** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.8 4-(4-Hexylphenyl)-2,6-bis(4-nitrophenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3h)



Cyclic voltammogram of **3h** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.9 4-(4-Hexylphenyl)-2,6-bis(3-nitrophenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3i)



Cyclic voltammogram of **3i** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.10 4-(4-Hexylphenyl)-2,6-bis(2-nitrophenyl)-4H-dithieno[2,3-b:3',2'e][1,4]thiazine (3j)



Cyclic voltammogram of **3j** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

### 5.11 4-(4-Hexylphenyl)-2,6-di(pyridin-3-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (3k)



Cyclic voltammogram of **3k** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 5.12 3,3'-(4-(4-Hexylphenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine-2,6diyl)bis(10-hexyl-10H-phenothiazine) (3l)



Cyclic voltammogram of **3I** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

# 6 Cyclic voltammograms of 2-(hetero)aryl dithienothiazines 6a-6c

6.1 4-(4-Hexylphenyl)-2-(4-nitrophenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6a)



Cyclic voltammogram of **6a** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

### 6.2 4-(4-Hexylphenyl)-2-(thiophen-2-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6b)



Cyclic voltammogram of **6b** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

#### 6.3 4-(4-Hexylphenyl)-2-(pyridin-4-yl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (6c)



Cyclic voltammogram of **6c** recorded in dichloromethane, T = 293 K, v = 100 mV/s, 0.1 M electrolyte [ ${}^{n}Bu_{4}N^{+}$ ][PF<sub>6</sub><sup>-</sup>], Pt working electrode, Pt counter electrode, Ag/AgCl reference electrode.

# 7 Molecular modeling coordinates and FMO energies of compounds 3a, 3c and 3g-3j

#### 7.1 XYZ-Coordinates of the S0 (Gaussian03, B3LYP/6-311G\*) of compound 3a

| С | 4.822897  | -1.168984 | -1.673543 |
|---|-----------|-----------|-----------|
| С | 4.656080  | -1.095909 | -0.277426 |
| С | 5.777375  | -1.345129 | 0.521772  |
| С | 7.018158  | -1.653525 | -0.032139 |
| С | 7.164603  | -1.710519 | -1.420248 |
| С | 6.051797  | -1.463356 | -2.235469 |
| С | 3.349208  | -0.762914 | 0.298639  |
| С | 2.361502  | 0.032009  | -0.222989 |
| С | 1.228156  | 0.175221  | 0.633552  |
| С | 1.355227  | -0.539110 | 1.797074  |
| S | 2.849895  | -1.429371 | 1.848712  |
| Ν | 0.023131  | 0.867129  | 0.327489  |
| С | -1.154168 | 0.130080  | 0.636090  |
| С | -1.251490 | -0.587787 | 1.800299  |
| S | 0.055290  | -0.664587 | 2.995135  |
| C | -2.283144 | -0.056623 | -0.217838 |
| C | -3.238795 | -0.887966 | 0.306701  |
| S | -2.711352 | -1.533697 | 1.856055  |
| Č | -4.533259 | -1.271359 | -0.266169 |
| Ċ | -5.643473 | -1.558495 | 0.535736  |
| Ĉ | -6.872657 | -1.915111 | -0.015098 |
| Č | -7.018555 | -1.983804 | -1.402743 |
| Ĉ | -5.916757 | -1.699056 | -2.220636 |
| Č | -4.698935 | -1.356663 | -1.661719 |
| Č | -0.004171 | 2.269346  | 0.119947  |
| Č | 1.184603  | 3.012727  | 0.022912  |
| Č | 1.147019  | 4.380921  | -0.206953 |
| Č | -0.055351 | 5.083407  | -0.346233 |
| Ĉ | -1 229611 | 4 341650  | -0 219204 |
| č | -1 214025 | 2 967548  | 0.013005  |
| č | -0.027473 | 6.577789  | -0.615084 |
| Ĉ | -1 379416 | 7 292188  | -0 611989 |
| õ | 8 325804  | -1 995760 | -2 070521 |
| õ | -8 169142 | -2 315112 | -2 050054 |
| Č | 9.485743  | -2.268901 | -1.299447 |
| Č | -9.316972 | -2.627903 | -1.275964 |
| Ĥ | 3.968645  | -1.013954 | -2.323768 |
| Н | 5.693245  | -1.277812 | 1.601631  |
| Н | 7.857168  | -1.834984 | 0.627664  |
| H | 6.176514  | -1.523441 | -3.310877 |
| Н | 2.447368  | 0.533341  | -1.178237 |
| Н | -2.390079 | 0.439993  | -1.173362 |
| H | -5.560511 | -1.483384 | 1.615166  |
| Н | -7.703588 | -2.124517 | 0.646649  |
| Н | -6.040487 | -1.768580 | -3.295589 |
| H | -3.851762 | -1.172683 | -2.313701 |
| Н | 2.143591  | 2.529313  | 0.154025  |
| Н | 2.089280  | 4.919933  | -0.270564 |
| H | -2.194571 | 4.831739  | -0.290814 |
| н | -2.156220 | 2.450071  | 0.135376  |
| н | 0.461405  | 6.752276  | -1.582386 |
| н | 0 626025  | 7.053701  | 0 126360  |

| 192<br>923 |
|------------|
| 923        |
|            |
| 332        |
| 340        |
| 542        |
| 361        |
| 983        |
| /20        |
| 209        |
|            |

SCF Done: E (RB + HF-LYP)= -2558.33244230 A. U. after 7 cyclesSum of electronic and zero-point Energies= -2557.859085Sum of electronic and thermal Energies= -2557.826506Sum of electronic and thermal Enthalpies= -2557.825561Sum of electronic and thermal Free Energies= -2557.927268

| LUMO+1 | = -1.168 eV |
|--------|-------------|
| LUMO   | = -1.211 eV |
| НОМО   | = -5.061 eV |
| HOMO-1 | = -5.666 eV |

#### 7.2 XYZ-Coordinates of the S0 (Gaussian03, B3LYP/6-311G\*) of compound 3c

| С | 6.951569  | -2.265258 | 1.835631  |
|---|-----------|-----------|-----------|
| С | 6.808289  | -2.320503 | 0.450911  |
| С | 5.591964  | -1.999826 | -0.142923 |
| С | 4.487845  | -1.623936 | 0.638145  |
| С | 4.643045  | -1.582048 | 2.033549  |
| С | 5.863131  | -1.892923 | 2.623084  |
| С | 3.198543  | -1.275083 | 0.028710  |
| S | 2.652727  | -2.068211 | -1.442690 |
| С | 1.213769  | -1.092252 | -1.482317 |
| С | 1.137468  | -0.249613 | -0.402374 |
| С | 2.264834  | -0.370794 | 0.464305  |
| S | -0.099469 | -1.270564 | -2.658750 |
| С | -1.391212 | -0.981204 | -1.480652 |
| С | -1.242306 | -0.148043 | -0.401030 |
| Ν | -0.020614 | 0.543968  | -0.173023 |
| С | -2.375347 | -0.171966 | 0.466306  |
| С | -3.383444 | -0.992911 | 0.031627  |
| S | -2.908559 | -1.830477 | -1.439719 |
| С | 0.039600  | 1.960346  | -0.121916 |
| С | -1.131721 | 2.736568  | -0.107902 |
| С | -1.062600 | 4.120384  | -0.029416 |
| С | 0.155932  | 4.805960  | 0.032230  |
| С | 1.312648  | 4.028198  | -0.011266 |
| С | 1.265307  | 2.637597  | -0.091066 |
| С | 0.162525  | 6.321460  | 0.130394  |
| С | 1.534193  | 6.996689  | 0.108852  |
| С | -4.697252 | -1.229765 | 0.642380  |
| С | -5.829311 | -1.515316 | -0.136967 |
| С | -7.067842 | -1.731083 | 0.458316  |

| С | -7.205439 | -1.658416 | 1.842789  |
|---|-----------|-----------|-----------|
| С | -6.089417 | -1.374528 | 2.628528  |
| С | -4.847952 | -1.168919 | 2.037607  |
| Н | 7.901395  | -2.513418 | 2.297678  |
| Н | 7.649624  | -2.605308 | -0.172664 |
| Н | 5.503429  | -2.018929 | -1.224286 |
| Н | 3.793550  | -1.327866 | 2.658389  |
| Н | 5.960498  | -1.856609 | 3.703458  |
| Н | 2.387848  | 0.221482  | 1.361633  |
| Н | -2.446856 | 0.429522  | 1.363139  |
| Н | -2.102031 | 2.264203  | -0.184924 |
| Н | -1.992128 | 4.684544  | -0.025416 |
| Н | 2.288452  | 4.501152  | 0.007435  |
| Н | 2.195488  | 2.088664  | -0.154271 |
| Н | -0.361250 | 6.615535  | 1.049001  |
| Н | -0.444654 | 6.727439  | -0.688197 |
| Н | 1.425169  | 8.082212  | 0.174998  |
| Н | 2.157851  | 6.679934  | 0.949632  |
| Н | 2.080743  | 6.777701  | -0.812892 |
| Н | -5.743250 | -1.545990 | -1.218276 |
| Н | -7.930285 | -1.947188 | -0.164006 |
| Н | -8.172434 | -1.824658 | 2.305959  |
| Н | -6.182941 | -1.325497 | 3.708739  |
| Н | -3.980024 | -0.983549 | 2.661354  |

SCF Done: E (RB + HF-LYP)

Sum of electronic and zero-point Energies Sum of electronic and thermal Energies Sum of electronic and thermal Enthalpies Sum of electronic and thermal Free Energies

| LUMO+1 | = -1.386 eV |
|--------|-------------|
| LUMO   | = -1.451 eV |
| НОМО   | = -5.206 eV |
| HOMO-1 | = -5.921 eV |

#### 7.3 XYZ-Coordinates of the S<sub>0</sub> (Gaussian03, B3LYP/6-311G\*) of compound 3g

| С | -0.06981 | 5.00414  | -0.33937 |
|---|----------|----------|----------|
| С | 1.13533  | 4.30531  | -0.20654 |
| С | 1.17767  | 2.93579  | 0.01571  |
| С | -0.00838 | 2.18995  | 0.11139  |
| С | -1.22062 | 2.88261  | 0.00969  |
| С | -1.24148 | 4.2581   | -0.21484 |
| Ν | 0.02387  | 0.78269  | 0.31313  |
| С | -1.14908 | 0.04431  | 0.62761  |
| С | -1.24511 | -0.66973 | 1.79657  |
| S | 0.0612   | -0.74394 | 2.99042  |
| С | 1.35969  | -0.61258 | 1.79308  |
| С | 1.22923  | 0.09716  | 0.6248   |
| S | -2.70592 | -1.60777 | 1.8689   |

= -2329.229220214 A. U. after 9 cycles

- = -2328.821074
- = -2328.793723
- = -2328.792779
- = -2328.882714

| С | -3.23313 | -0.97546 | 0.31541  |
|---|----------|----------|----------|
| С | -2.27808 | -0.14836 | -0.22035 |
| S | 2.86056  | -1.48547 | 1.86094  |
| С | 3.35566  | -0.82931 | 0.30663  |
| С | 2.36356  | -0.0449  | -0.22605 |
| С | -0.04782 | 6.50027  | -0.59785 |
| С | 1.40253  | 7.20906  | -0.59322 |
| H | -2.38539 | 0.34227  | -1.17878 |
| н | 2.44667  | 0.45075  | -1.18436 |
| Н | 2,13926  | 2,45646  | 0.14327  |
| H | -2.16165 | 2.36276  | 0.13164  |
| H | 2 07537  | 4 84787  | -0 26872 |
| н | -2 20777 | 4 74571  | -0 28193 |
| н | 0 4432   | 6 68192  | -1 56251 |
| н | 0.60243  | 6 97273  | 0 14839  |
| н | -1 27196 | 8 27983  | -0 76809 |
| н | -2 06437 | 6 8303   | -1.37711 |
| н | -1 91785 | 7 09319  | 0.36448  |
| C | -4 52038 | -1 35375 | -0 25166 |
| č | 4 66585  | -1 14946 | -0.25100 |
| ĉ | 5 77247  | -1 11340 | 0.55054  |
| č | 1 84507  | 1 16565  | 1 65871  |
| ĉ | 6 08111  | -1.10505 | 2 21708  |
| ĉ | 7 00020  | 1 72000  | -2.21700 |
| Č | 7.00929  | -1.73909 | -0.00070 |
|   | 1.17007  | -1.74332 | -1.39233 |
|   | 4.0019   | -0.97300 | -2.31170 |
| п | 5.00983  | -1.4185  | 1.62992  |
| п | 7.80313  | -1.96007 | 0.0427   |
| П | 0.20227  | -1.40241 | -3.2941  |
| C | 8.45219  | -2.04376 | -1.96556 |
| N | 9.48237  | -2.28572 | -2.42956 |
| C | -5.62059 | -1.69284 | 0.56618  |
| C | -4./1128 | -1.38205 | -1.64587 |
| С | -6.84462 | -2.04383 | 0.01837  |
| C | -5.93412 | -1.72215 | -2.20079 |
| С | -7.01584 | -2.05863 | -1.37304 |
| Н | -3.87738 | -1.15786 | -2.30118 |
| Н | -5.5169  | -1.66031 | 1.64525  |
| Н | -7.67692 | -2.29825 | 0.66424  |
| Н | -6.05684 | -1.74193 | -3.27751 |
| С | -8.27702 | -2.41532 | -1.94245 |
| Ν | -9.29679 | -2.70275 | -2.4035  |

SCF Done: E (RB + HF-LYP)

= -2513.76143743 A. U. after 8 cycles

= -2513.355987 = -2513.325005 = -2513.324061 = -2513.422675

| Sum of electronic and zero-point Energies   |
|---------------------------------------------|
| Sum of electronic and thermal Energies      |
| Sum of electronic and thermal Enthalpies    |
| Sum of electronic and thermal Free Energies |

| LUMO+1 | = -2.331 eV |
|--------|-------------|
| LUMO   | = -2.395 eV |
| НОМО   | = -5.655 eV |
| HOMO-1 | = -6.409 eV |

### 7.4 XYZ-Coordinates of the S0 (Gaussian03, B3LYP/6-311G\*) of compound 3h

| С | -7.007540 | -1.915800 | -1.116910 |
|---|-----------|-----------|-----------|
| С | -6.854773 | -1.859549 | 0.264191  |
| С | -5.626369 | -1.488267 | 0.789950  |
| С | -4.540908 | -1.177952 | -0.048623 |
| С | -4.729843 | -1.255494 | -1.441191 |
| С | -5.955846 | -1.615900 | -1.977625 |
| С | -3.242266 | -0.779367 | 0.496710  |
| S | -2.718331 | -1.331124 | 2.081667  |
| С | -1.252521 | -0.407175 | 1.958855  |
| С | -1.152485 | 0.243819  | 0.753516  |
| С | -2.282365 | 0.012734  | -0.082564 |
| S | 0.052367  | -0.424596 | 3.156075  |
| С | 1.352251  | -0.360617 | 1.955089  |
| С | 1.225730  | 0.286331  | 0.749828  |
| Ν | 0.023588  | 0.958804  | 0.401100  |
| С | 2.359839  | 0.092911  | -0.090193 |
| С | 3.348718  | -0.664952 | 0.486357  |
| S | 2.849371  | -1.233272 | 2.073294  |
| С | -0.004209 | 2.351569  | 0.113504  |
| С | 1.183539  | 3.083997  | -0.043997 |
| С | 1.143761  | 4.437881  | -0.347749 |
| С | -0.060057 | 5.133713  | -0.505612 |
| С | -1.233007 | 4.402563  | -0.319909 |
| С | -1.214698 | 3.043102  | -0.013066 |
| С | -0.035552 | 6.611471  | -0.853727 |
| С | -1.386580 | 7.327283  | -0.865038 |
| С | 4.658514  | -1.019047 | -0.062924 |
| С | 5.756395  | -1.292030 | 0.772502  |
| С | 6.995026  | -1.622036 | 0.243259  |
| С | 7.145473  | -1.673988 | -1.138262 |
| С | 6.081715  | -1.410040 | -1.995926 |
| С | 4.845887  | -1.090776 | -1.455999 |
| N | 8.461053  | -2.019720 | -1.707461 |
| 0 | 9.373677  | -2.252088 | -0.925219 |
| 0 | 8.559815  | -2.052355 | -2.927419 |
| N | -8.312539 | -2.305092 | -1.682351 |
| 0 | -9.214436 | -2.568566 | -0.897531 |
| 0 | -8.413963 | -2.340082 | -2.902023 |
| Н | -7.694503 | -2.094288 | 0.904272  |
| Н | -5.515766 | -1.417126 | 1.866254  |
| Н | -3.900463 | -1.054478 | -2.109178 |
| Н | -6.107127 | -1.680515 | -3.046743 |
| н | -2.386796 | 0.452658  | -1.065531 |
| Н | 2.444941  | 0.533512  | -1.074713 |
| Н | 2.145269  | 2.609238  | 0.098531  |
| н | 2.085133  | 4.970719  | -0.455963 |
| н | -2.198120 | 4.890143  | -0.402156 |
| н | -2.156257 | 2.536850  | 0.153845  |
| н | 0.43/411  | 6.732200  | -1.836750 |
| н | 0.631566  | 7.123326  | -0.149613 |
| н | -1.254113 | 8.385809  | -1.101814 |
| Н | -2.064151 | 6.909242  | -1.614/53 |
| Н | -1.884901 | /.26//16  | 0.1066/2  |
| Н | 5.646662  | -1.224024 | 1.849101  |
| Н | 7.844073  | -1.828008 | 0.880943  |
| Н | 6.231891  | -1.4/0214 | -3.065459 |
| Н | 4.008291  | -0.918384 | -2.121698 |

SCF Done: E (RB + HF-LYP)

Sum of electronic and zero-point Energies Sum of electronic and thermal Energies Sum of electronic and thermal Enthalpies Sum of electronic and thermal Free Energies = -2738.34454905 A. U. after 7 cycles

- = -2737.931407
- = -2737.898876
- = -2737.897932
- = -2738.001513

| LUMO+1 | = -2.897 eV |
|--------|-------------|
| LUMO   | = -2.932 eV |
| НОМО   | = -5.718 eV |
| HOMO-1 | = -6.507 eV |

### 7.5 XYZ-Coordinates of the S0 (Gaussian03, B3LYP/6-311G\*) of compound 3i

| С | -4.834464 | -1.307954 | 0.976685  |
|---|-----------|-----------|-----------|
| Ĉ | -4.659679 | -1.041352 | -0.388517 |
| Č | -5.767467 | -1.188044 | -1.240915 |
| C | -7.006710 | -1.587448 | -0.750390 |
| Ċ | -7.182389 | -1.842095 | 0.605534  |
| Č | -6.083044 | -1.690719 | 1.443321  |
| C | -3.348374 | -0.618435 | -0.892134 |
| Ċ | -2.359495 | 0.060347  | -0.227498 |
| C | -1.225185 | 0.355479  | -1.040338 |
| C | -1.355188 | -0.133743 | -2.316402 |
| S | -2.853418 | -0.986690 | -2.537543 |
| N | -0.017895 | 0.970703  | -0.613105 |
| С | 1.153642  | 0.297032  | -1.051280 |
| С | 1.248065  | -0.198241 | -2.328041 |
| S | -0.055983 | -0.047202 | -3.517539 |
| С | 2.279993  | -0.051376 | -0.248703 |
| С | 3.228587  | -0.777722 | -0.921596 |
| S | 2.701095  | -1.123056 | -2.562058 |
| С | 4.522638  | -1.262328 | -0.429045 |
| С | 5.615974  | -1.458882 | -1.290003 |
| С | 6.839428  | -1.914634 | -0.808985 |
| С | 7.013603  | -2.177946 | 0.545477  |
| С | 5.928582  | -1.977685 | 1.391644  |
| С | 4.695223  | -1.538222 | 0.934587  |
| С | 0.018662  | 2.304404  | -0.124204 |
| С | -1.164738 | 3.015357  | 0.134047  |
| С | -1.117142 | 4.307617  | 0.638215  |
| С | 0.090622  | 4.962253  | 0.904512  |
| С | 1.259408  | 4.258810  | 0.614753  |
| С | 1.233317  | 2.961192  | 0.107277  |
| С | 0.075345  | 6.369160  | 1.475359  |
| С | 1.430382  | 7.068593  | 1.589370  |
| Ν | -6.243978 | -1.963838 | 2.891735  |
| 0 | -7.349370 | -2.314114 | 3.279720  |
| 0 | -5.263482 | -1.819686 | 3.608493  |
| Ν | 6.087993  | -2.258799 | 2.838675  |
| 0 | 7.179921  | -2.657061 | 3.218430  |
| 0 | 5.119969  | -2.072664 | 3.562668  |

| Н | -4.012497 | -1.240040 | 1.675823  |
|---|-----------|-----------|-----------|
| Н | -5.662344 | -0.968519 | -2.297982 |
| Н | -7.845382 | -1.691267 | -1.429757 |
| Н | -8.134298 | -2.149516 | 1.015771  |
| Н | -2.441100 | 0.369980  | 0.806189  |
| Н | 2.386621  | 0.256078  | 0.783371  |
| Н | 5.513042  | -1.233811 | -2.346121 |
| Н | 7.667423  | -2.055860 | -1.494677 |
| Н | 7.953732  | -2.528356 | 0.948368  |
| Н | 3.882277  | -1.433634 | 1.639719  |
| Н | -2.128919 | 2.574513  | -0.081629 |
| Н | -2.055352 | 4.825039  | 0.822366  |
| Н | 2.227353  | 4.721330  | 0.773296  |
| Н | 2.172128  | 2.478015  | -0.128921 |
| Н | -0.392008 | 6.339599  | 2.467969  |
| Н | -0.592339 | 6.986373  | 0.862015  |
| Н | 1.304709  | 8.078705  | 1.987040  |
| Н | 2.109285  | 6.537190  | 2.262107  |
| Н | 1.923828  | 7.156607  | 0.617282  |
|   |           |           |           |

| SCF Done: E (RB + HF-LYP)                   | = - 2738.34248589 A. U. after 7 cycles |
|---------------------------------------------|----------------------------------------|
| Sum of electronic and zero-point Energies   | = -2737.931407                         |
| Sum of electronic and thermal Energies      | = -2737.898876                         |
| Sum of electronic and thermal Enthalpies    | = -2737.897932                         |
| Sum of electronic and thermal Free Energies | = -2738.001513                         |
|                                             |                                        |

| LUMO+1 | = -2.765 eV |
|--------|-------------|
| LUMO   | = -2.768 eV |
| НОМО   | = -5.562 eV |
| HOMO-1 | = -6.361 eV |

#### 7.6 XYZ-Coordinates of the S0 (Gaussian03, B3LYP/6-311G\*) of compound 3j

| С | 5.080365  | -1.622025 | -1.085644 |
|---|-----------|-----------|-----------|
| С | 4.727512  | -0.899951 | 0.071164  |
| С | 5.792435  | -0.548504 | 0.922525  |
| С | 7.111726  | -0.870582 | 0.632286  |
| С | 7.420869  | -1.587075 | -0.521551 |
| С | 6.396116  | -1.975950 | -1.371885 |
| С | 3.355259  | -0.571808 | 0.506124  |
| С | 2.352662  | 0.137269  | -0.100090 |
| С | 1.222391  | 0.355667  | 0.742660  |
| С | 1.363763  | -0.226128 | 1.977892  |
| S | 2.878131  | -1.060867 | 2.131516  |
| Ν | 0.004238  | 0.984628  | 0.367721  |
| С | -1.157637 | 0.262284  | 0.751824  |
| С | -1.244583 | -0.328726 | 1.987321  |
| S | 0.063416  | -0.263679 | 3.180329  |
| С | -2.275365 | -0.039025 | -0.081953 |

| С | -3.215868 | -0.822858 | 0.531023  |
|---|-----------|-----------|-----------|
| S | -2.690305 | -1.276055 | 2.152051  |
| С | -4.562581 | -1.252888 | 0.105272  |
| С | -5.645909 | -0.977551 | 0.961301  |
| С | -6.939712 | -1.395213 | 0.678291  |
| С | -7.201459 | -2.135228 | -0.472397 |
| С | -6.155209 | -2.451215 | -1.326847 |
| С | -4.867357 | -2.001772 | -1.047989 |
| С | -0.054759 | 2.351693  | -0.006757 |
| С | 1.115331  | 3.097662  | -0.225405 |
| С | 1.043567  | 4.429342  | -0.609706 |
| С | -0.176002 | 5.090547  | -0.792507 |
| С | -1.331195 | 4.348426  | -0.547540 |
| С | -1.280780 | 3.011311  | -0.159229 |
| С | -0.187242 | 6.542221  | -1.237577 |
| С | -1.543593 | 7.248073  | -1.209733 |
| Ν | -3.838537 | -2.390389 | -2.033028 |
| 0 | -3.888818 | -3.533514 | -2.465492 |
| 0 | -3.026857 | -1.543529 | -2.377925 |
| Ν | 4.078037  | -2.082567 | -2.066766 |
| 0 | 4.210139  | -3.217421 | -2.503635 |
| 0 | 3.204337  | -1.296784 | -2.404750 |
| Н | 5.564917  | 0.008119  | 1.824024  |
| Н | 7.898958  | -0.559799 | 1.310744  |
| Н | 8.447134  | -1.846175 | -0.755813 |
| Н | 6.594536  | -2.559941 | -2.261397 |
| Н | 2.418504  | 0.501349  | -1.112995 |
| Н | -2.378352 | 0.322903  | -1.092639 |
| Н | -5.455000 | -0.403527 | 1.860375  |
| Н | -7.744242 | -1.140726 | 1.359897  |
| Н | -8.207311 | -2.468680 | -0.701090 |
| Н | -6.314986 | -3.050444 | -2.214005 |
| Н | 2.088214  | 2.649157  | -0.074390 |
| Н | 1.972401  | 4.972424  | -0.766222 |
| Н | -2.307447 | 4.810136  | -0.647955 |
| Н | -2.209196 | 2.494597  | 0.044922  |
| Н | 0.220859  | 6.601570  | -2.254918 |
| Н | 0.517574  | 7.103479  | -0.612245 |
| Н | -1.435755 | 8.293047  | -1.511362 |
| Н | -2.259332 | 6.785291  | -1.894814 |
| Н | -1.984382 | 7.237136  | -0.208766 |

SCF Done: E (RB + HF-LYP)

= -2738.31965016 A. U. after 6 cycles

| Sum of electronic and zero-point Energies   | = -2737.931407 |
|---------------------------------------------|----------------|
| Sum of electronic and thermal Energies      | = -2737.898876 |
| Sum of electronic and thermal Enthalpies    | = -2737.897932 |
| Sum of electronic and thermal Free Energies | = -2738.001513 |

| LUMO+1 | = -2.436 eV |
|--------|-------------|
| LUMO   | = -2.467 eV |
| НОМО   | = -5.330 eV |

HOMO-1 = -6.184 eV

#### 7.7 Results of the TD-DFT calculation of compound 3g

Excitation energies and oscillator strengths: Excited State 1: Singlet-A, 2.7252 eV, 454.96 nm, f = 0.0885 134 -> 135 0.69200 Excited State 2: Singlet-A, 2.8625 eV, 433.13 nm, f = 0.0234 134 -> 136 0.68751 Excited State 3: Singlet-A, 3.5572 eV, 348.54 nm, f = 0.5258 133 -> 135 0.68432 Excited State 4: Singlet-A, 3.6793 eV, 336.98 nm, f = 0.0393 132 -> 135 0.21770 133 -> 136 0.65319 Excited State 5: Singlet-A, 3.8533 eV, 321.76 nm, f = 0.1599 132 -> 135 0.19498 -0.12300 133 -> 136 134 -> 137 0.49287 134 -> 139 0.40656 Excited State 6: Singlet-A, 3.9341 eV, 315.15 nm, f = 0.5655 132 -> 136 0.65226 134 -> 138 0.16073 Excited State 7: Singlet-A, 3.9544 eV, 313.54 nm, f = 0.0328 132 -> 135 -0.33242 134 -> 137 0.47137 134 -> 139 -0.36578 Excited State 8: Singlet-A, 3.9659 eV, 312.63 nm, f = 0.1013 132 -> 136 -0.14166 134 -> 138 0.67307

Excited State 9: Singlet-A, 4.0385 eV, 307.00 nm, f = 0.0005

| 132 -> 136                  | 0.10588                             |
|-----------------------------|-------------------------------------|
| 134 -> 140                  | 0.66216                             |
| 134 -> 142                  | -0.12672                            |
| Excited State 10: Singlet-A | A, 4.0559 eV, 305.69 nm, f = 0.1473 |
| 132 -> 135                  | 0.49509                             |
| 133 -> 136                  | -0.12412                            |
| 134 -> 139                  | -0.40535                            |
| Excited State 11: Singlet-A | A, 4.3394 eV, 285.72 nm, f = 0.0049 |
| 131 -> 135                  | 0.70247                             |
| Excited State 12: Singlet-A | A, 4.3890 eV, 282.49 nm, f = 0.0025 |
| 131 -> 136                  | 0.63579                             |
| 134 -> 141                  | 0.27919                             |
| Excited State 13: Singlet-A | A, 4.4560 eV, 278.24 nm, f = 0.0328 |
| 131 -> 136                  | -0.30048                            |
| 131 -> 144                  | 0.10466                             |
| 134 -> 141                  | 0.59139                             |
| Excited State 14: Singlet-A | A, 4.5176 eV, 274.45 nm, f = 0.0053 |
| 133 -> 140                  | -0.10626                            |
| 134 -> 140                  | 0.13904                             |
| 134 -> 141                  | 0.12047                             |
| 134 -> 142                  | 0.61853                             |
| 134 -> 143                  | -0.15920                            |
| Excited State 15: Singlet-A | A, 4.5242 eV, 274.04 nm, f = 0.0060 |
| 126 -> 135                  | -0.18300                            |
| 127 -> 136                  | -0.18068                            |
| 132 -> 138                  | 0.26591                             |
| 133 -> 137                  | 0.54709                             |
| Excited State 16: Singlet-A | A, 4.5430 eV, 272.91 nm, f = 0.0093 |
| 126 -> 135                  | 0.11698                             |
| 126 -> 136                  | 0.20247                             |
| 127 -> 135                  | 0.21497                             |
| 130 -> 135                  | 0.11046                             |
| 132 -> 137                  | 0.31923                             |

| 133 -> 13        | 8 0.49142               |                       |
|------------------|-------------------------|-----------------------|
| Excited State 17 | : Singlet-A, 4.6076 eV, | 269.08 nm, f = 0.0518 |
| 134 -> 14        | 2 0.16379               |                       |
| 134 -> 14        | 3 0.60699               |                       |
| 134 -> 14        | 4 -0.11223              |                       |
| Excited State 18 | : Singlet-A, 4.6754 eV, | 265.18 nm, f = 0.0298 |
| 126 -> 13        | 5 0.10485               |                       |
| 130 -> 13        | 6 -0.12669              |                       |
| 132 -> 13        | 8 -0.16298              |                       |
| 133 -> 13        | 7 0.15735               |                       |
| 133 -> 13        | 9 0.59109               |                       |
| Excited State 19 | : Singlet-A, 4.6837 eV, | 264.71 nm, f = 0.0610 |
| 129 -> 13        | 6 0.11208               |                       |
| 130 -> 13        | 5 0.64033               |                       |
| 132 -> 13        | 9 0.14748               |                       |
| 133 -> 13        | 8 -0.11648              |                       |
| Excited State 20 | : Singlet-A, 4.7590 eV, | 260.53 nm, f = 0.0362 |
| 128 -> 13        | 6 -0.12313              |                       |
| 129 -> 13        | 5 0.21114               |                       |
| 130 -> 13        | 6 0.59391               |                       |
| 132 -> 14        | 0 -0.10574              |                       |
| 133 -> 13        | 7 0.15184               |                       |
| Excited State 21 | : Singlet-A, 4.8281 eV, | 256.80 nm, f = 0.0207 |
| 129 -> 13        | 5 0.62087               |                       |
| 130 -> 13        | 6 -0.28416              |                       |
| Excited State 22 | : Singlet-A, 4.8509 eV, | 255.59 nm, f = 0.0084 |
| 128 -> 13        | 5 0.13632               |                       |
| 129 -> 13        | 6 0.45933               |                       |
| 130 -> 13        | 5 -0.20209              |                       |
| 132 -> 13        | 7 0.17788               |                       |
| 132 -> 13        | 9 0.17902               |                       |
| 133 -> 13        | 8 -0.11981              |                       |
| 133 -> 14        | 0 0.34208               |                       |

Excited State 23: Singlet-A, 4.8795 eV, 254.09 nm, f = 0.0120

| 129 -> 136 | -0.17606 |
|------------|----------|
| 132 -> 137 | -0.29909 |
| 133 -> 138 | 0.32093  |
| 133 -> 140 | 0.44276  |
| 134 -> 146 | -0.10891 |

Excited State 24: Singlet-A, 4.8876 eV, 253.67 nm, f = 0.0071

| 128 -> 135 | -0.34264 |
|------------|----------|
| 129 -> 136 | 0.39898  |
| 132 -> 137 | -0.27723 |
| 133 -> 138 | 0.19669  |
| 133 -> 140 | -0.16019 |

Excited State 25: Singlet-A, 4.9080 eV, 252.62 nm, f = 0.0292

| 126 -> 135 | -0.19454 |
|------------|----------|
| 127 -> 136 | -0.17326 |
| 128 -> 137 | -0.11363 |
| 132 -> 138 | 0.39301  |
| 133 -> 137 | -0.34583 |
| 133 -> 139 | 0.29032  |