Zinc Diiodide-Promoted Synthesis of Trisubstituted Allenes From

Propargylic Amines

Jinqiang Kuang^a, Xinjun Tang^a, and Shengming Ma^{*,a,b}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R.

China.

^b Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P.

R. China

Fax: (+86)21-64167510; Email: masm@mail.sioc.ac.cn

Supporting Information

Table of Contents

Experimental details and analytical data	S2-S31
References	S32
¹ H and ¹³ C NMR spectra of all the products	S33-S129

General Information. CuBr (98.5%) was purchased from Sinopharm Chemical Reagent Co., Ltd and used without further treatment. ZnI_2 (98%) was purchased from Acros and kept in a glove box. 4 Å molecular sieves was purchased from Alfa Aesar and kept in glove box after activation (heated at 450 °C for 10 h in Muffle furnace, taken out after cooling to 200 °C and then kept in a glove box to allow to cool to room temperature) under N₂. Toluene was dried over sodium wire with benzophenone as the indicator and distilled freshly before use. Anhydrous benzene was purchased from Alfaddin and used without further treatment. Other reagents were used without further treatment. All the temperatures are referred to the oil baths used.

Propargylic amines were all synthesized according to our previously reported method.¹ **1a-1h**, **1k-1n**, and **1p** are known compounds.¹

Part I Synthesis of propargylic amines 1i-1l, 1q, 1s-1u, and 1w-1z.

(1) Synthesis of 1-phenyl-3-ethylpent-1-yn-3-yl)pyrrolidine 1i (kjq-2-175)

Typical Procedure I: To a dried Schlenk tube was added 4 Å MS (2.9995 g). The Schlenk tube was then dried under vacuum with a heating gun. CuBr (0.0215 g, 0.15 mmol), phenylacetylene (1.0208 g, 10 mmol)/toluene (3 mL), 3-pentanone (0.9471 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7820 g, 11 mmol)/toluene (4 mL) were then added sequentially under Ar atmosphere. The Schlenk tube was then placed in a pre-heated oil bath at 100 °C with stirring for 6 h as monitored by TLC. After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel with a sand-core funnel eluted with acetone (50 mL). After evaporation, the residue was purified by chromatography on silica gel to afford **1i** (1.7092 g, 71%) (eluent: petroleum ether/ethyl acetate = 50/1; then petroleum ether/ethyl acetate = 20/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 2 H, Ar-H), 7.31-7.23 (m, 3 H, Ar-H), 2.79-2.72 (m, 4 H, CH₂NCH₂), 1.85-1.67 (m, 8 H, 4×CH₂), 0.96 (t, *J* = 7.4 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 131.7, 128.1, 127.5, 123.7,

91.4, 84.8, 61.9, 47.4, 28.8, 23.6, 8.1; MS (ESI) m/z 242 (M+H⁺), 171 (M+H⁺-pyrrolidine); IR (neat): 3080, 3056, 2968, 2876, 2808, 1598, 1489, 1458, 1443, 1376, 1335, 1324, 1280, 1247, 1191, 1157, 1144, 1120, 1070, 1029, 1009 cm⁻¹; HRMS calcd for C₁₇H₂₄N (M+H⁺): 242.1903. Found: 242.1904.

(2) Synthesis of 1-(1-(4-methoxyphenylethynyl)cyclohexyl)pyrrolidine 1j (kjq-2-23)

Typical Procedure II: To a dried Schlenk tube was added 4 Å MS (3.0150 g). The Schlenk tube was then dried under vacuum with a heating gun. CuBr (0.0215 g, 0.15 mmol), 4-methoxyphenylacetylene (1.3225 g, 10 mmol)/toluene (3 mL), cyclohexanone (1.0770 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7830 g, 11 mmol)/toluene (4 mL) were then added sequentially under Ar atmosphere. The Schlenk tube was then placed in a pre-heated oil bath at 100 °C with stirring for 5 h and 80 °C for additional 16 h. After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel with a sand-core funnel eluted with acetone (50 mL). After evaporation, the residue was purified by chromatography on silica gel to afford 1j (2.6171 g, 92%) (eluent: petroleum ether; then petroleum ether/ethyl acetate = 4/1; finally petroleum ether/ethyl acetate = 1/1) as a yellow solid: m.p. 52-54 °C (petroleum ether & ethyl ether); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.8 Hz, 2 H, Ar-H), 6.81 (d, J = 8.8 Hz, 2 H, Ar-H), 3.79 (s, 3 H, OCH₃), 2.78 (t, J $= 5.8 \text{ Hz}, 4 \text{ H}, \text{CH}_2\text{NCH}_2$, 2.06-1.96 (m, 2 H, 2 H in Cy), 1.85-1.73 (m, 4 H, 2×CH₂), 1.72-1.57 (m, 5 H, 2×CH₂ + one proton of CH₂), 1.56-1.45 (m, 2 H, CH₂), 1.29-1.16 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 133.0, 115.9, 113.7, 88.7, 85.7, 59.3, 55.2, 47.0, 37.9, 25.7, 23.5, 23.0; MS (ESI) *m/z* 284 (M+H⁺), 213 (M+H⁺-pyrrolidine); IR (neat): 2924, 2855, 2803, 1604, 1570, 1507, 1439, 1285, 1243, 1173, 1154, 1123, 1106, 1034 cm⁻¹; Anal. calcd for C₁₉H₂₅NO (%): C 80.52, H 8.89, N 4.94; Found: C 80.34, H 9.04, N 4.91.

(3) Synthesis of 1-(1-(4-bromophenylethynyl)cyclohexyl)pyrrolidine 1k (kjq-2-22)

$$Br \longrightarrow + \bigvee_{\substack{N \\ H}} + \bigvee_{\substack{N \\ H}} \frac{CuBr (1.5 \text{ mol\%})}{4 \text{ Å MS}} Br \longrightarrow N$$

$$I.1 \text{ equiv} 1.1 \text$$

Following **Typical Procedure II**, the reaction of 4 Å MS (3.0100 g), CuBr (0.0213 g, 0.15 mmol), 4-bromophenylacetylene (1.8135 g, 10 mmol)/toluene (3 mL), cyclohexanone (1.0813 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7816 g, 11 mmol)/toluene (4 mL) afforded **1k** (3.0359 g, 91%) (eluent: petroleum ether; then petroleum ether/ethyl acetate = 4/1; finally petroleum ether/ethyl acetate = 1/1) as a yellow solid: m.p. 85-87 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.28 (d, *J* = 8.4 Hz, 2 H, Ar-H), 2.84-2.72 (m, 4 H, CH₂NCH₂), 2.06-1.96 (m, 2 H, 2 H in Cy), 1.86-1.46 (m, 11 H, 5×CH₂ + one proton of CH₂), 1.30-1.17 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 131.4, 122.6, 121.7, 91.9, 85.0, 59.3, 47.0, 37.8, 25.6, 23.5, 23.0; MS (ESI) *m*/*z* 334 (M(⁸¹Br)+H⁺), 332 (M(⁷⁹Br)+H⁺); IR (neat): 2932, 2857, 2798, 1482, 1446, 1390, 1283, 1123, 1069, 1010 cm⁻¹; Anal. calcd for C₁₈H₂₂NBr (%): C 65.06, H 6.67, N 4.22; Found: C 64.96, H 6.64, N 4.30.

(4) Synthesis of 1-(1-(3-bromophenylethynyl)cyclohexyl)pyrrolidine 11 (kjq-2-26)

Following **Typical Procedure I**, the reaction of 4 Å MS (3.0100 g), CuBr (0.0220 g, 0.15 mmol), 3-bromophenylacetylene (1.8071 g, 10 mmol)/toluene (3 mL), cyclohexanone (1.0777 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7820 g, 11 mmol)/toluene (4 mL) afforded **11** (3.0583 g, 92%) (eluent: petroleum ether; then petroleum ether/ethyl acetate = 4/1; finally petroleum ether/ethyl acetate = 1/1) as a yellow solid: m.p. 76-78 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz,

CDCl₃) δ 7.57 (t, J = 1.8 Hz, 1 H, Ar-H), 7.43-7.38 (m, 1 H, Ar-H), 7.35 (dt, J = 7.8, 1.2 Hz, 1 H, Ar-H), 7.15 (t, J = 8.0 Hz, 1 H, Ar-H), 2.77 (t, J = 6.6 Hz, 4 H, CH₂NCH₂), 2.06-1.98 (m, 2 H, 2 H in Cy), 1.85-1.75 (m, 4 H, 2×CH₂), 1.75-1.58 (m, 5 H, 2×CH₂+ one proton of CH₂), 1.58-1.47 (m, 2 H, CH₂), 1.30-1.17 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 134.2, 130.6, 130.1, 129.4, 125.5, 121.8, 92.0, 84.4, 59.0, 46.9, 37.6, 25.5, 23.3, 22.8; MS (ESI) *m/z* 334 (M(⁸¹Br)+H⁺), 332 (M(⁷⁹Br)+H⁺); IR (neat): 3031, 2945, 2927, 2851, 2825, 1589, 1556, 1473, 1447, 1404, 1331, 1290, 1260, 1224, 1155, 1123, 1089, 1072, 1041 cm⁻¹; Anal. calcd for C₁₈H₂₂NBr (%): C 65.06, H 6.67, N 4.22; Found: C 65.10, H 6.79, N 4.19.

(5) Synthesis of 1-(1-(4-methylphenyl)-3-methylhept-1-yn-3-yl)pyrrolidine **1q** (tangxj-4-143)

Following **Typical Procedure I**, the reaction of 4 Å MS (3.0031 g), CuBr (0.0219 g, 0.15 mmol), 4-methylphenylacetylene (1.1602 g, 10 mmol)/toluene (3 mL), 2-hexanone (1.1001 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7830 g, 11 mmol)/toluene (4 mL) afforded **1q** (2.0992 g, 78%) (eluent: petroleum ether; then petroleum ether/ethyl acetate = 150/1; finally petroleum ether/ethyl acetate/Et₃N = 900/180/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.08 (d, *J* = 8.0 Hz, 2 H, Ar-H), 2.85-2.72 (m, 4 H, CH₂NCH₂), 2.33 (s, 3 H, ArCH₃), 1.87-1.73 (m, 5 H, 2×CH₂ + one proton of CH₂), 1.67 (td, *J* = 12.2, 5.2 Hz, 1 H, one proton of CH₂), 1.57-1.29 (m, 7 H, 2×CH₂ + CH₃), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 131.5, 128.8, 120.5, 90.5, 84.2, 57.8, 47.6, 41.2, 26.5, 25.8, 23.6, 23.1, 21.3, 14.0; MS (ESI) *m*/*z* 270 (M+H⁺), 199 (M+H⁺-pyrrolidine); IR (neat): 3028, 2956, 2870, 2807, 2358, 1509, 1461, 1370, 1302, 1264, 1190, 1144, 1091, 1038, 1000 cm⁻¹; HRMS calcd for C₁₉H₂₇N [M⁺]: 269.2143. Found: 269.2151.

⁽⁶⁾ Synthesis of 1-(1-(dec-1-yn-1-yl)cyclohexyl)pyrrolidine 1s (kjq-2-33)

$$n-C_8H_{17} \longrightarrow + \bigvee_{\substack{N \\ 1.1 \text{ equiv}}} + \bigvee_{\substack{N \\ 1.1 \text{ equiv}}} \frac{CuBr (1.5 \text{ mol\%})}{4 \text{ MS}} \quad n-C_8H_{17} \longrightarrow N_{11}$$

Following **Typical Procedure I**, the reaction of 4 Å MS (3.0009 g), CuBr (0.0219 g, 0.15 mmol), 1-decyne (1.3790 g, 10 mmol)/toluene (3 mL), cyclohexanone (1.0770 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7825 g, 11 mmol)/toluene (4 mL) afforded **1s** (2.2322 g, 77%) (eluent: petroleum ether/ethyl acetate = 10/1; then petroleum ether/ethyl acetate = 3/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 2.75-2.62 (m, 4 H, CH₂NCH₂), 2.25-2.17 (m, 2 H, CH₂), 1.93-1.82 (m, 2 H, 2 H in Cy), 1.80-1.69 (m, 4 H, 2×CH₂), 1.67-1.06 (m, 20 H, 10×CH₂), 0.87 (t, *J* = 5.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 85.8, 80.0, 58.8, 46.8, 38.1, 31.8, 29.3, 29.2, 29.0, 28.7, 25.7, 23.4, 23.0, 22.6, 18.6, 14.1; MS (ESI) *m*/*z* 290 (M+H⁺); IR (neat): 2931, 2855, 2809, 1447, 1378, 1328, 1282, 1263, 1224, 1163, 1127, 1079, 1014 cm⁻¹; HRMS calcd for C₂₀H₃₆N [M+H⁺]: 290.2842. Found: 290.2849.

(7) Synthesis of 1-(2-methyldodec-3-yn-2-yl)pyrrolidine 1t (kjq-2-46)

$$n \cdot C_8 H_{17} \longrightarrow + \underbrace{\bigcirc_{H}}_{1.1 \text{ equiv}} + \underbrace{\bigvee_{N}}_{H} \underbrace{\xrightarrow_{H}}_{toluene, 100 \, ^\circ C} \underbrace{\stackrel{n \cdot C_8 H_{17}}{\underset{h}{}}_{toluene, 100 \, ^\circ C}}_{1.1 \text{ equiv}} \underbrace{\stackrel{n \cdot C_8 H_{17}}{\underset{h}{}}_{toluene, 100 \, ^\circ C}}_{1t}$$

Following **Typical Procedure I**, the reaction of 4 Å MS (1.5008 g), CuBr (0.0115 g, 0.080 mmol), 1-decyne (0.6905 g, 5 mmol)/toluene (2 mL), acetone (0.4 mL, d = 0.80 g/mL, 0.3200 g, 5.5 mmol), and pyrrolidine (0.3915 g, 5.5 mmol)/toluene (3 mL) afforded **1t** (0.7426 g, 60%) (eluent: petroleum ether; then petroleum ether/ethyl acetate = 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 2.69 (t, *J* = 6.2 Hz, 4 H, CH₂NCH₂), 2.18 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.83-1.73 (m, 4 H, 2×CH₂), 1.52-1.19 (m, 18 H, 2×CH₃ + 6×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 83.6, 81.3, 53.6, 47.9, 31.8, 29.9, 29.2, 29.1, 29.0, 28.7, 23.6, 22.6, 18.5, 14.0; MS (ESI) *m*/*z* 250 (M+H⁺); IR (neat): 2960, 2928, 2856, 2809, 1459, 1377, 1359, 1328, 1223, 1185, 1118, 1074, 1014 cm⁻¹; HRMS calcd for C₁₇H₃₂N [M+H⁺]: 250.2529. Found: 250.2535.

(8) Synthesis of 1-(1-(dec-1-yn-1-yl)cyclopentyl)pyrrolidine 1u (kjq-2-50)

$$n-C_8H_{17} \longrightarrow + \bigvee_{\substack{N \\ H}} \underbrace{+ \bigvee_{\substack{N \\ H}} \underbrace{- \frac{CuBr (1.5 \text{ mol}\%)}{4 \text{ Å MS}}}_{\text{toluene, 100 °C}} n-C_8H_{17} \longrightarrow \underbrace{- \frac{N}{N}}_{N}$$

Following **Typical Procedure I**, the reaction of 4 Å MS (3.0150 g), CuBr (0.0210 g, 0.15 mmol), 1-decyne (1.3830 g, 10 mmol)/toluene (3 mL), cyclopentanone (0.9248 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7820 g, 11 mmol)/toluene (4 mL) afforded **1u** (2.3531 g, 85%) (eluent: petroleum ether/ethyl acetate = 10/1; then petroleum ether/ethyl acetate = 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 2.67 (t, J = 6.2 Hz, 4 H, CH₂NCH₂), 2.19 (t, J = 6.8 Hz, 2 H, CH₂), 1.96-1.65 (m, 12 H, 6×CH₂), 1.52-1.21 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 84.5, 80.9, 65.0, 48.9, 40.6, 31.7, 29.19, 29.16, 29.0, 28.7, 23.5, 23.3, 22.6, 18.5, 14.0; MS (ESI) *m*/*z* 276 (M+H⁺); IR (neat): 2961, 2929, 2871, 2856, 2810, 1458, 1378, 1354, 1321, 1213, 1149, 1084 cm⁻¹; HRMS calcd for C₁₉H₃₄N [M+H⁺]: 276.2686. Found: 276.2692.

Following **Typical Procedure I**, the reaction of 4 Å MS (3.0100 g), CuBr (0.0214 g, 0.15 mmol), 3-butyn-1-ol (0.6997 g, 10 mmol)/toluene (3 mL), 2-hexanone (1.0961 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7808 g, 11 mmol)/toluene (4 mL) afforded **1w** (1.6608 g, 74%) (eluent: petroleum ether/ethyl acetate = 10/1, 330 mL; then petroleum ether/ethanol = 10/1, 880 mL) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.67 (t, *J* = 6.6 Hz, 2 H, OCH₂), 2.72-2.60 (m, 4 H, CH₂NCH₂), 2.47 (t, *J* = 6.4 Hz, 2 H, C=CCH₂), 2.17 (brs, 1 H, OH), 1.81-1.70 (m, 4 H, 2×CH₂), 1.68-1.48 (m, 2 H, CH₂), 1.46-1.22 (m, 7 H, 2×CH₂ + CH₃), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 83.2, 80.3, 61.3, 57.4, 47.5, 41.1, 26.6, 25.7, 23.4, 23.0, 22.9,

14.0; MS (ESI) m/z 224 (M+H⁺); IR (neat): 3419, 2956, 2872, 1466, 1375, 1333, 1261, 1241, 1180, 1147, 1118, 1052 cm⁻¹; HRMS calcd for C₁₄H₂₆NO [M+H⁺]: 224.2009. Found: 224.2010.

(10) Synthesis of N-(3-(1-(pyrrolidin-1-yl)cyclohexyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide 1x (kjq-2-96)

Following **Typical Procedure I**, the reaction of 4 Å MS (2.9998 g), CuBr (0.0218 g, 0.15 mmol), *N*-(prop-2-yn-1-yl)-*p*-toluenesulfonamide (2.0907 g, 10 mmol)/toluene (3 mL), cyclohexanone (1.0796 g, 11 mmol)/toluene (3 mL), and pyrrolidine (0.7820 g, 11 mmol)/toluene (4 mL) afforded **1x** (2.0160 g, 56%) (eluent: DCM/MeOH = 100/1; then DCM/MeOH = 15/1) as a solid: m.p. 130-132 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.31 (d, *J* = 7.8 Hz, 2 H, Ar-H), 4.87 (brs, 1 H, NH), 3.93 (s, 2 H, C=CCH₂), 2.60-2.46 (m, 4 H, CH₂NCH₂), 2.43 (s, 3 H, CH₃), 1.78-1.61 (m, 6 H, 3×CH₂), 1.60-1.44 (m, 3 H, CH₂ + one proton of CH₂), 1.41-1.23 (m, 4 H, 2×CH₂), 1.20-1.06 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.9, 129.5, 127.0, 84.4, 80.0, 58.6, 46.6, 37.0, 32.8, 25.2, 23.1, 22.5, 21.3; MS (ESI) *m*/z 361 (M+H⁺); IR (neat): 3279, 2932, 2855, 1598, 1495, 1448, 1330, 1289, 1263, 1160, 1094, 1049 cm⁻¹; Anal. calcd for C₂₀H₂₈N₂O₂S (%): C 66.63, H 7.83, N 7.77; Found: C 66.41, H 7.86, N 7.46.

(11) Synthesis of N-(1-(1-(pyrrolidin-1-yl)cyclohexyl)dec-1-yn-3-yl)-4-methyl benzenesulfonamide **1w** (kjq-2-116)

Following **Typical Procedure I**, the reaction of 4 Å MS (1.5050 g), CuBr (0.0108 g, 0.075 mmol), *N*-(dec-1-yn-3-yl)-*p*-toluenesulfonamide (1.5372 g, 5 mmol), cyclohexanone (0.5400 g, 5.5 mmol)/toluene (2 mL), and pyrrolidine (0.3910 g, 5.5

mmol)/toluene (3 mL) afforded **1y** (2.1143 g, 92%) (eluent: ethyl acetate/DCM = 2/1) as a solid: m.p. 60-62 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.29 (d, *J* = 8.4 Hz, 2 H, Ar-H), 4.77-4.62 (m, 1 H, NH), 4.13 (q, *J* = 7.3 Hz, 1 H, C=CCH), 2.52-2.36 (m, 7 H, CH₂NCH₂+ CH₃), 1.75-1.01 (m, 26 H, 13×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 137.7, 129.4, 127.0, 84.4, 83.9, 58.3, 46.6, 45.7, 37.6, 37.3, 31.6, 29.0, 28.8, 25.3, 23.2, 22.6, 22.5, 21.4, 14.0; MS (ESI) *m*/*z* 459 (M+H⁺); IR (neat): 3269, 2930, 2856, 1599, 1496, 1448, 1334, 1286, 1263, 1184, 1162, 1126, 1095, 1064 cm⁻¹; Anal. calcd for C₂₇H₄₂N₂O₂S (%): C 70.70, H 9.23, N 6.11; Found: C 70.53, H 9.47, N 6.06.

(12) Synthesis of *N*-(1-phenyl-3-(1-(pyrrolidin-1-yl)cyclohexyl)prop-2-yn-1-yl)4-methylbenzenesulfonamide 1z (kjq-2-117)

Following **Typical Procedure I**, the reaction of 4 Å MS (1.2100 g), CuBr (0.0087 g, 0.06 mmol), *N*-(dec-1-yn-3-yl)-*p*-toluenesulfonamide (1.1426 g, 4 mmol), cyclohexanone (0.4310 g, 4.4 mmol)/toluene (2 mL), and pyrrolidine (0.3128 g, 4.4 mmol)/toluene (2 mL) afforded **1z** (1.4802 g, 85%) (eluent: DCM/MeOH = 50/1; then DCM/MeOH = 15/1) as a solid: m.p. 145-147 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.52 (d, *J* = 7.2 Hz, 2 H, Ar-H), 7.37-7.23 (m, 5 H, Ar-H), 5.41 (s, 1 H, C=CCH), 5.25 (brs, 1 H, NH), 2.58-2.44 (m, 4 H, CH₂NCH₂), 2.41 (s, 3 H, CH₃), 1.76-1.60 (m, 6 H, 3×CH₂), 1.59-1.42 (m, 3 H, CH₂ + one proton of CH₂), 1.37-1.19 (m, 4 H, 2×CH₂), 1.19-1.04 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 138.4, 137.6, 129.3, 128.2, 127.8, 127.0, 126.9, 86.9, 82.2, 58.5, 48.8, 46.6, 37.1, 25.2, 23.1, 22.5, 21.3; MS (ESI) *m*/z 437 (M+H⁺); IR (neat): 3268, 3062, 3031, 2933, 2855, 1599, 1494, 1450, 1332, 1306, 1288, 1264, 1160, 1126, 1092, 1068, 1044, 1021 cm⁻¹; Anal. calcd for C₂₆H₃₂N₂O₂S (%): C 71.52, H 7.39, N 6.42; Found: C 71.44, H 7.53, N 6.30.

Part II ZnI₂-Promoted synthesis of trisubstituted allenes from propargylic amines.

(1) Synthesis of 1,1-pentamethylene-3-phenylpropadiene 2a (kjq-2-37)

Typical Procedure III: To a flame-dried Schlenk tube was added anhydrous ZnI₂ (191.3 mg, 0.6 mmol). The Schlenk tube was then taken out and dried under vacuum with a heating gun. **1a** (252.9 mg. 1.0 mmol) and 3 mL of toluene were added under the atmosphere of Ar. The Schlenk tube was then equipped with a condenser and placed in a pre-heated oil bath of 120 °C with stirring for 0.8 h as monitored by TLC. After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel eluted with ethyl acetate (15 mL). After evaporation, the residue was purified by chromatography on silica gel (eluent: 30-60 °C petroleum ether) to afford **2a**² (116.7 mg, 63%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.23 (m, 4 H, ArH), 7.18-7.10 (m, 1 H, ArH), 6.02-5.96 (m, 1 H, =CH), 2.32-2.12 (m, 4 H, 2×CH₂), 1.77-1.48 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 136.1, 128.5, 126.5, 126.2, 106.4, 92.3, 31.3, 27.7, 26.1; MS (EI) *m*/*z* 184 (M⁺, 70.53), 141 (100); IR (neat) 3030, 2929, 2887, 2853, 1951, 1598, 1496, 1459, 1446, 1256, 1237, 1198, 1069, 1027 cm⁻¹.

The following compounds were prepared according to **Typical Procedure III.** (2) Synthesis of 1-phenyl-3-methyl-1,2-pentadiene **2b** (kjq-2-38)

The reaction of **1b** (226.3 mg, 1.0 mmol), ZnI_2 (191.6, 0.6 mmol), and toluene (3 mL) afforded allene **2b**³ (90.3 mg, 57%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.23 (m, 4 H, ArH), 7.20-7.12 (m, 1 H, ArH), 6.12-6.05 (m, 1 H, =CH), 2.15-2.03 (m, 2 H, CH₂), 1.81 (d, *J* = 2.8 Hz, 3 H, =CCH₃),

1.06 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 136.1, 128.4, 126.4, 126.3, 105.4, 94.4, 27.2, 18.7, 12.3; MS (EI) m/z 158 (M⁺, 70.99), 143 (100); IR (neat) 3083, 3064, 3029, 2967, 2933, 2905, 2846, 1950, 1597, 1496, 1458, 1400, 1368, 1327, 1218, 1206, 1150, 1073, 1028, 1002 cm⁻¹.

(3) Synthesis of 1-phenyl-3,4-dimethyl-1,2-pentadiene 2c (kjq-2-39)

The reaction of **1c** (240.8 mg, 1.0 mmol), ZnI₂ (191.0, 0.6 mmol), and toluene (3 mL) afforded allene **2c**⁴ (105.8 mg, 62%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 4 H, ArH), 7.19-7.13 (m, 1 H, ArH), 6.08 (q, *J* = 2.7 Hz, 1 H, =CH), 2.29-2.21 (m, 1 H, CH in *i*-Pr), 1.81 (d, *J* = 3.2 Hz, 3 H, =CCH₃), 1.10 (d, *J* = 6.8 Hz, 3 H, CH₃), 1.08 (d, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 136.1, 128.5, 126.34, 126.30, 109.8, 94.7, 32.5, 21.6, 21.5, 17.0; MS (EI) *m*/*z* 172 (M⁺, 88.17), 129 (100); IR (neat) 3082, 3063, 3029, 2962, 2926, 2869, 1950, 1598, 1496, 1462, 1398, 1382, 1369, 1324, 1298, 1219, 1202, 1129, 1101, 1075, 1028 cm⁻¹.

(4) Synthesis of 1-phenyl-3-methyl-1,2-heptadiene 2d (kjq-2-19)

The reaction of **1d** (254.5 mg, 1.0 mmol), ZnI₂ (192.5, 0.6 mmol), and toluene (3 mL) afforded allene **2d**² (97.7 mg, 53%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.22 (m, 4 H, ArH), 7.20-7.12 (m, 1 H, ArH), 6.07-6.01 (m, 1 H, =CH), 2.12-2.02 (m, 2 H, =CCH₂), 1.80 (d, *J* = 2.8 Hz, 3 H, =CCH₃), 1.51-1.30 (m, 4 H, 2×CH₂), 0.89 (t, *J* = 7.2 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 136.1, 128.4, 126.5, 126.3, 103.7, 93.7, 33.8, 29.7, 22.4, 18.8, 13.9; MS (EI) *m*/*z* 186 (M⁺, 1.92), 129 (100); IR (neat) 3029, 2957, 2929, 2872,

2859, 1951, 1598, 1496, 1464, 1399, 1378, 1369, 1227, 1200, 1151, 1071, 1028 cm⁻¹.

(5) Synthesis of 1-phenyl-3-methyl-1,2-nonadiene 2e (kjq-2-41)

The reaction of **1e** (282.5 mg, 1.0 mmol), ZnI₂ (191.0, 0.6 mmol), and toluene (3 mL) afforded allene **2e**⁵ (116.5 mg, 55%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.23 (m, 4 H, ArH), 7.19-7.12 (m, 1 H, ArH), 6.07-6.01 (m, 1 H, =CH), 2.12-2.02 (m, 2 H, =CCH₂), 1.80 (d, *J* = 2.4 Hz, 3 H, =CCH₃), 1.52-1.41 (m, 2 H, CH₂), 1.38-1.18 (m, 6 H, 2×CH₂), 0.86 (t, *J* = 6.4 Hz, 3 H, CH₃ in Hex); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 136.1, 128.4, 126.5, 126.3, 103.7, 93.7, 34.1, 31.7, 29.1, 27.5, 22.6, 18.8, 14.1; MS (EI) *m*/*z* 214 (M⁺, 0.69), 171 (M⁺-C₃H₇, 3.70), 157 (M⁺-C₄H₉, 5.74), 129 (100); IR (neat) 3064, 3029, 2956, 2926, 2856, 1951, 1598, 1496, 1465, 1399, 1369, 1210, 1149, 1072, 1028 cm⁻¹.

(6) Synthesis of 1-phenyl-3-ethyl-1,2-hexadiene 2f (kjq-2-44)

The reaction of **1f** (302.3 mg, 1.0 mmol), ZnI₂ (191.2, 0.6 mmol), and toluene (3 mL) afforded allene **2f**⁶ (130.5 mg, 56%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.09 (m, 10 H, ArH), 6.10-6.02 (m, 1 H, =CH), 2.80 (t, *J* = 7.8 Hz, 2 H, PhCH₂), 2.47-2.33 (m, 2 H, =CCH₂), 1.84 (d, *J* = 2.8 Hz, 3 H, =CCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 141.8, 135.7, 128.42, 128.38, 128.3, 126.5, 126.4, 125.8, 103.0, 94.4, 35.7, 33.8, 18.9; MS (EI) *m/z* 234 (M⁺, 46.46), 128 (100); IR (neat) 3062, 3027, 2979, 2917, 2855, 1950, 1598, 1496, 1463, 1453, 1400, 1369, 1336, 1310, 1212, 1161, 1073, 1029 cm⁻¹.

⁽⁷⁾ Synthesis of 1-phenyl-3-ethyl-1,2-hexadiene 2g (kjq-2-43)

The reaction of **1g** (256.0 mg, 1.0 mmol), ZnI₂ (191.7, 0.6 mmol), and toluene (3 mL) afforded allene **2g**⁷ (97.3 mg, 52%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 4 H, ArH), 7.19-7.12 (m, 1 H, ArH), 6.15 (q, *J* = 3.0 Hz, 1 H, =CH), 2.15-2.00 (m, 4 H, 2×CH₂), 1.55-1.45 (m, 2 H, CH₂), 1.05 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.93 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 136.3, 128.5, 126.31, 126.29, 110.4, 95.8, 34.9, 25.8, 21.0, 14.0, 12.3; MS (EI) *m*/*z* 186 (M⁺, 31.78), 129 (100); IR (neat) 3031, 2963, 2932, 2873, 1947, 1598, 1496, 1459, 1377, 1327, 1201, 1071, 1028 cm⁻¹.

The reaction of **1h** (269.6 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2h**⁵ (112.9 mg, 56%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) 7.30-7.24 (m, 4 H, Ar-H), 7.18-7.12 (m, 1 H, Ar-H), 6.11 (q, J = 3.0 Hz, 1 H, =CH), 2.12-1.98 (m, 4 H, 2×CH₂), 1.57-1.43 (m, 4 H, 2×CH₂), 0.93 (t, J = 7.4 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) 202.3, 136.2, 128.5, 126.4, 126.3, 108.4, 95.2, 34.9, 20.9, 14.0; MS (EI) m/z (%) 200 (M⁺, 18.35), 129 (100); IR (neat): 3082, 3063, 3031, 2958, 2931, 2872, 1947, 1598, 1496, 1461, 1377, 1242, 1199, 1094, 1071, 1028 cm⁻¹.

(9) Synthesis of 1-phenyl-3-ethyl-1,2-pentadiene 2i (kjq-2-180)

The reaction of **1i** (240.9 mg, 1.0 mmol), ZnI_2 (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2i**² (102.7 mg, 60%) (eluent: *n*-hexane) as a liquid: ¹H NMR (400

MHz, CDCl₃) 7.31-7.24 (m, 4 H, Ar-H), 7.19-7.13 (m, 1 H, Ar-H), 6.18 (q, J = 3.2 Hz, 1 H, =CH), 2.18-2.02 (m, 4 H, 2×CH₂), 1.06 (t, J = 7.6 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) 201.6, 136.3, 128.5, 126.31, 126.26, 112.4, 96.4, 25.8, 12.3; MS (EI) m/z (%) 172 (M⁺, 36.46), 128 (100); IR (neat): 3064, 3031, 2966, 2932, 2875, 1948, 1597, 1496, 1459, 1406, 1376, 1328, 1206, 1074, 1045 cm⁻¹.

(10) Synthesis of 1,1-pentamethylene-3-(4-methoxyphenyl)propadiene 2j (kjq-2-28)

The reaction of **1j** (282.6 mg, 1.0 mmol), ZnI₂ (192.2, 0.6 mmol), and toluene (3 mL) afforded allene **2j**⁵ (139.5 mg, 65%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.20 (d, *J* = 8.8 Hz, 2 H, ArH), 6.83 (d, *J* = 8.8 Hz, 2 H, ArH), 5.98-5.93 (m, 1 H, =CH), 3.78 (s, 3 H, OCH₃), 2.30-2.12 (m, 4 H, 2×CH₂), 1.75-1.47 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 158.3, 128.4, 127.5, 114.0, 106.4, 91.7, 55.3, 31.5, 27.7, 26.1; MS (EI) *m*/*z* 214 (M⁺, 100); IR (neat) 2928, 2852, 2836, 1951, 1609, 1581, 1509, 1463, 1444, 1402, 1296, 1247, 1200, 1180, 1170, 1106, 1036 cm⁻¹.

(11) Synthesis of 1,1-pentamethylene-3-(4-bromophenyl)propadiene 2k(kjq-2-27)

The reaction of **1k** (333.0 mg, 1.0 mmol), ZnI₂ (191.9, 0.6 mmol), and toluene (3 mL) afforded allene **2k**⁵ (167.0 mg, 63%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2 H, ArH), 7.15 (d, *J* = 8.4 Hz, 2 H, ArH), 5.99-5.92 (m, 1 H, =CH), 2.34-2.15 (m, 4 H, 2×CH₂), 1.79-1.50 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 135.2, 131.5, 128.0, 119.7, 106.9, 91.6, 31.1, 27.6, 26.0; MS (EI) *m*/*z* 264 (M⁺(⁸¹Br), 31.39), 262 (M⁺(⁷⁹Br), 31.2), 141 (100); IR (neat) 2929, 2852, 1951, 1486, 1444, 1386, 1343, 1237, 1198, 1097, 1070, 1009

 cm^{-1} .

(12) Synthesis of 1,1-pentamethylene-3-(3-bromophenyl)propadiene 2l (kjq-2-40)

The reaction of **11** (332.1 mg, 1.0 mmol), ZnI₂ (191.3, 0.6 mmol), and toluene (3 mL) afforded allene **21**⁵ (158.0 mg, 60%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1 H, ArH), 7.27 (d, *J* = 7.6 Hz, 1 H, ArH), 7.21-7.10 (m, 2 H, ArH), 5.95-5.89 (m, 1 H, =CH), 2.32-2.14 (m, 4 H, 2×CH₂), 1.76-1.49 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 138.6, 129.9, 129.3, 129.1, 125.1, 122.7, 107.1, 91.4, 31.2, 27.6, 26.0; MS (EI) *m*/*z* 264 (M⁺(⁸¹Br), 9.23), 262 (M⁺(⁷⁹Br), 9.91), 129 (100); IR (neat) 3056, 2930, 2852, 1952, 1591, 1564, 1475, 1446, 1401, 1384, 1343, 1277, 1255, 1236, 1200, 1165, 1088, 1068, 1022 cm⁻¹.

(13) Synthesis of 1-(4-methoxyphenyl)-3-methyl-1,2-heptadiene 2m (kjq-2-3)

The reaction of **1m** (285.4 mg, 1.0 mmol), ZnI₂ (191.8, 0.6 mmol), and toluene (3 mL) afforded allene **2m** (107.6 mg, 50%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.4 Hz, 2 H, ArH), 6.82 (d, *J* = 8.8 Hz, 2 H, ArH), 6.05-5.97 (m, 1 H, =CH), 3.76 (s, 3 H, OMe), 2.12-2.00 (m, 2 H, =CCH₂), 1.78 (d, *J* = 2.0 Hz, 3 H, Me), 1.52-1.28 (m, 4 H, 2×CH₂), 0.89 (t, *J* = 7.2 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 158.3, 128.4, 127.5, 114.0, 103.5, 93.1, 55.2, 33.9, 29.7, 22.4, 18.9, 13.9; MS (EI) *m*/*z* 216 (M⁺, 12.06), 159 (100); IR (neat) 2956, 2931, 2872, 2858, 2835, 1951, 1608, 1581, 1510, 1464, 1441, 1395, 1369, 1296, 1249, 1201, 1170, 1106, 1036 cm⁻¹; HRMS calcd for C₁₅H₂₀O [M⁺]: 216.1514. Found: 216.1512.

(14) Synthesis of 1-(4-bromophenyl)-3-methyl-1,2-heptadiene 2n (kjq-2-4)

The reaction of **1n** (335.0 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2n** (138.4 mg, 50%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dt, *J* = 8.4, 2.1 Hz, 2 H, ArH), 7.13 (dt, *J* = 8.4, 2.0 Hz, 2 H, ArH), 6.01-5.97 (m, 1 H, C=CH), 2.08 (td, *J* = 7.4, 2.7 Hz, 2 H, C=CCH₂), 1.80 (d, *J* = 2.8 Hz, 3 H, Me), 1.51-1.30 (m, 4 H, 2×CH₂), 0.89 (t, *J* = 7.2 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 135.1, 131.5, 128.0, 119.8, 104.2, 93.0, 33.7, 29.6, 22.4, 18.7, 13.9; MS (EI) *m*/*z* 266 (M⁺(⁸¹Br), 2.07), 264 (M⁺(⁷⁹Br), 2.12), 143 (100); IR (neat) 2957, 2927, 2871, 2858, 1951, 1488, 1465, 1456, 1443, 1381, 1369, 1223, 1201, 1098, 1071, 1009 cm⁻¹; HRMS calcd for C₁₄H₁₇Br [M⁺(⁷⁹Br)]: 264.0514. Found: 264.0512.

(15) Synthesis of 1-(3-bromophenyl)-3-methyl-1,2-heptadiene 20 (kjq-2-21)

The reaction of **1o** (334.5 mg, 1.0 mmol), ZnI₂ (191.8, 0.6 mmol), and toluene (3 mL) afforded allene **2o** (144.7 mg, 55%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1 H, ArH), 7.31-7.22 (m, 1 H, ArH), 7.20-7.09 (m, 2 H, ArH), 6.02-5.92 (m, 1 H, =CH), 2.15-2.01 (m, 2 H, =CCH₂), 1.81 (d, *J* = 2.8 Hz, 3 H, Me), 1.51-1.30 (m, 4 H, 2×CH₂), 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 138.5, 129.9, 129.23, 129.17, 125.1, 122.7, 104.4, 92.8, 33.7, 29.6, 22.4, 18.7, 13.9; MS (EI) *m*/*z* 266 (M⁺(⁸¹Br), 1.02), 264 (M⁺(⁷⁹Br), 1.21), 143 (100); IR (neat) 3057, 2957, 2927, 2871, 2858, 1951, 1590, 1565, 1475, 1465, 1392, 1377, 1298, 1225, 1191, 1164, 1150, 1087, 1069 cm⁻¹; HRMS calcd for

 $C_{14}H_{17}Br [M^+(^{79}Br)]$: 264.0514. Found: 264.0519.

(16) Synthesis of 1-(2-chlorophenyl)-3-methyl-1,2-heptadiene 2p (kjq-2-20)

The reaction of **1p** (289.8 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2p** (123.6 mg, 56%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.6 Hz, 1 H, ArH), 7.31 (d, *J* = 8.4 Hz, 1 H, ArH), 7.17 (t, *J* = 7.4 Hz, 1 H, ArH), 7.08 (t, *J* = 7.4 Hz, 1 H, ArH), 6.53-6.45 (m, 1 H, =CH), 2.09 (t, *J* = 6.6 Hz, 2 H, =CCH₂), 1.81 (d, *J* = 2.8 Hz, 3 H, Me), 1.53-1.29 (m, 4 H, 2×CH₂), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 133.6, 131.8, 129.6, 128.0, 127.3, 126.6, 104.0, 90.1, 33.6, 29.6, 22.4, 18.6, 13.9; MS (EI) *m*/*z* 222 (M⁺(³⁷Cl), 0.37), 220 (M⁺(³⁵Cl), 1.15), 143 (100); IR (neat) 3066, 2957, 2929, 2872, 2859, 1951, 1591, 1567, 1478, 1466, 1456, 1441, 1397, 1379, 1369, 1284, 1227, 1199, 1150, 1125, 1048, 1032 cm⁻¹; HRMS calcd for C₁₄H₁₇Cl [M⁺(³⁵Cl)]: 220.1019. Found: 220.1022.

(17) Synthesis of 1-(4-methylphenyl)-3-methyl-1,2-heptadiene 2q (kjq-2-25)

The reaction of **1q** (269.1 mg, 1.0 mmol), ZnI₂ (192.5, 0.6 mmol), and toluene (3 mL) afforded allene **2q** (114.0 mg, 57%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.0 Hz, 2 H, ArH), 7.11 (d, *J* = 8.0 Hz, 2 H, ArH), 6.07-6.00 (m, 1 H, =CH), 2.34 (s, 3 H, ArCH₃), 2.13-2.04 (m, 2 H, =CCH₂), 1.81 (d, *J* = 2.8 Hz, 3 H, Me), 1.52-1.31 (m, 4 H, 2×CH₂), 0.91 (t, *J* = 7.2 Hz, 3 H, CH₃ in Bu); ¹³C NMR (100 MHz, CDCl₃) δ 202.3, 136.0, 133.1, 129.2, 126.4, 103.5, 93.5, 33.8, 29.7, 22.4, 21.1, 18.9, 13.9; MS (EI) *m/z* 200 (M⁺, 5.37), 143 (100); IR

(neat) 3018, 2957, 2926, 2872, 2859, 1952, 1513, 1458, 1390, 1378, 1368, 1308, 1227, 1202, 1176, 1150, 1118, 1106, 1039, 1019 cm⁻¹; HRMS calcd for $C_{15}H_{20}$ (M⁺): 200.1565. Found: 200.1567.

(18) Synthesis of 5-methyl-5,6-tridecadiene 2r (kjq-2-30)

The reaction of **1r** (263.6 mg, 1.0 mmol), ZnI₂ (191.7, 0.6 mmol), and toluene (3 mL) afforded allene **2r** (130.1 mg, 67%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.02-4.94 (m, 1 H, =CH), 2.00-1.85 (m, 4 H, 2× =CCH₂), 1.66 (d, *J* = 2.8 Hz, 3 H, Me), 1.44-1.21 (m, 12 H, 6×CH₂), 0.96-0.81 (m, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 99.1, 90.1, 33.8, 31.8, 29.8, 29.4, 29.3, 28.8, 22.7, 22.4, 19.3, 14.1, 14.0; MS (EI) *m/z* 194 (M⁺, 1.23), 95 (100); IR (neat) 2958, 2927, 2873, 2856, 1965, 1466, 1378, 1369, 1231, 1154, 1106 cm⁻¹; HRMS calcd for C₁₄H₂₆ (M⁺): 194.2035. Found: 194.2034.

(19) Synthesis of 1,1-pentamethylene-1,2-undecadiene 2s (kjq-2-48)

The reaction of **1s** (289.7 mg, 1.0 mmol), ZnI₂ (191.8, 0.6 mmol), and toluene (3 mL) afforded allene **2s**⁵ (178.2 mg, 81%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 4.98-4.92 (m, 1 H, =CH), 2.16-2.04 (m, 4 H, 2×CH₂), 1.95 (q, *J* = 6.8 Hz, 2 H, CH₂), 1.66-1.45 (m, 6 H, 3×CH₂), 1.44-1.20 (m, 12 H, 6×CH₂), 0.89 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) 198.3, 102.2, 88.7, 31.9, 31.8, 29.5, 29.4, 29.3, 29.1, 29.0, 27.5, 26.2, 22.7, 14.1; MS (EI) *m/z* (%) 220 (M⁺, 1.85), 122 (100); IR (neat) 2925, 2853, 1965, 1446, 1378, 1344, 1261, 1239 cm⁻¹.

(20) Synthesis of 2-methyl-2,3-dodecadiene 2t (kjq-2-47)

$$\begin{array}{c|c} n - C_8 H_{17} & \hline & ZnI_2 (0.6 \text{ equiv}) \\ \hline & & \\ 1t & & \\ 1.3 \text{ h}, 61\% & & \\ \end{array} \begin{array}{c} n - C_8 H_{17} \\ n - C_8 H_{17} \\ \hline & \\ 2t \end{array}$$

The reaction of **1t** (249.5 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2t**⁸ (110.3 mg, 61%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 4.96-4.89 (m, 1 H, =CH), 1.93 (q, *J* = 6.9 Hz, 2 H, CH₂), 1.67 (d, *J* = 3.2 Hz, 6 H, 2×CH₃), 1.42-1.21 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 94.7, 88.8, 31.9, 29.5, 29.3, 29.23, 29.22, 29.1, 22.7, 20.8, 14.1; MS (EI) *m*/*z* 180 (M⁺, 0.5), 137 (M⁺-C₃H₇, 1.19), 82 (100); IR (neat) 2958, 2925, 2855, 1969, 1456, 1406, 1377, 1362, 1229, 1190 cm⁻¹.

(21) Synthesis of 1,1-tetramethylene-1,2-undecadiene 2u (kjq-2-54)

The reaction of **1u** (274.9 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3 mL) afforded allene **2u** (118.6 mg, 58%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.09-5.01 (m, 1 H, =CH), 2.41-2.24 (m, 4 H, 2×CH₂), 1.96 (q, *J* = 6.8 Hz, 2 H, CH₂), 1.71-1.59 (m, 4 H, 2×CH₂), 1.44-1.17 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) 197.0, 103.4, 91.4, 31.9, 31.2, 29.5, 29.36, 29.35, 29.2, 29.1, 27.1, 22.7, 14.1; MS (EI) *m*/*z* (%) 206 (M⁺, 1.61), 93 (100); IR (neat) 2956, 2925, 2854, 1964, 1466, 1437, 1378, 1212, 1133, 1015 cm⁻¹; HRMS calcd for C₁₅H₂₆ (M⁺): 206.2035. Found: 206.2039.

(22) Synthesis of 2,5-dimethyl-3,4-nonadien-2-ol 2v (kjq-2-29)

The reaction of 1v (237.2 mg, 1.0 mmol), ZnI₂ (192.0, 0.6 mmol), and toluene (3

mL) afforded allene **2v** (97.3 mg, 58%) (eluent: 30-60 °C petroleum ether/ethyl ether = 10/1 to 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.25-5.20 (m, 1 H, =CH), 1.99-1.91 (m, 2 H, CH₂), 1.75-1.65 (m, 4 H, OH and CH₃), 1.43-1.22 (m, 10 H, 2×CH₃ and 2×CH₂), 0.89 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) 197.2, 104.0, 100.6, 69.8, 33.7, 30.03, 29.98, 29.7, 22.4, 19.2, 13.9; MS (EI) *m/z* (%) 168 (M⁺, 4.30), 68 (100); IR (neat) 3362, 2972, 2930, 2874, 2860, 1966, 1459, 1400, 1370, 1148 cm⁻¹; HRMS calcd for C₁₁H₂₀O (M⁺): 168.1514. Found: 168.1510.

(23) Synthesis of 5-methyl-3,4-nonadien-1-ol 2w (kjq-2-49)

The reaction of **1w** (222.7 mg, 1.0 mmol), ZnI₂ (191.0, 0.6 mmol), and toluene (3 mL) afforded allene **2w**⁹ (81.8 mg, 53%) (eluent: petroleum ether/ethyl acetate = 15/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.05-4.96 (m, 1 H, =CH), 3.68 (q, *J* = 5.7 Hz, 2 H, CH₂), 2.22 (q, *J* = 6.3 Hz, 2 H, CH₂), 1.99-1.89 (m, 2 H, CH₂), 1.68 (d, *J* = 2.4 Hz, 3 H, =CCH₃), 1.62 (brs, 1 H, OH), 1.47-1.26 (m, 4 H, 2×CH₂), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) 202.1, 100.2, 86.2, 62.1, 33.7, 32.6, 29.7, 22.3, 19.2, 13.9; MS (EI) *m*/*z* (%) 154 (M⁺, 0.64), 139 (M⁺-CH₃, 2.75), 121 (M⁺-CH₃-H₂O, 6.96), 68 (100); IR (neat) 3346, 2957, 2928, 2873, 1966, 1466, 1443, 1370, 1230, 1177, 1049 cm⁻¹.

(24) Synthesis of N-(1,1-pentamethylene-1,2-butadien-4-yl)-4-methyl benzenesulfonamide **2x** (kjq-2-105)

The reaction of **1x** (359.8 mg, 1.0 mmol), ZnI_2 (191.8, 0.6 mmol), and toluene (3 mL) afforded allene **2x**¹⁰ (228.6 mg, 79%) (eluent: *n*-hexane/ethyl acetate = 10/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 2 H, ArH), 7.30 (d, *J* = 8.0

Hz, 2 H, ArH), 4.95-4.88 (m, 1 H, =CH), 4.51-4.41 (m, 1 H, NH), 3.52 (t, J = 5.6 Hz, 2 H, CH₂), 2.42 (s, 3 H, CH₃), 2.08-1.99 (m, 4 H, 2×CH₂), 1.62-1.45 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) 197.7, 143.2, 136.9, 129.6, 127.0, 106.2, 85.3, 42.3, 31.1, 27.2, 25.8, 21.4; MS (EI) m/z (%) 291 (M⁺, 1.52), 155 (100); IR (neat) 3271, 2924, 2852, 1965, 1598, 1496, 1444, 1325, 1290, 1265, 1240, 1184, 1160, 1093, 1070, 1038, 1020 cm⁻¹.

(25) Synthesis of *N*-(1,1-pentamethylene-1,2-undecadien-4-yl)-4-methyl benzenesulfonamide **2y** (kjq-2-119)

The reaction of **1y** (458.9 mg, 1.0 mmol), ZnI₂ (192.3, 0.6 mmol), and toluene (3 mL) afforded allene **2y** (357.7 mg, 92%) (eluent: *n*-hexane/ethyl acetate = 10/1 to 5/1) as a white solid: m.p. 97-99 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2 H, ArH), 7.28 (d, *J* = 8.8 Hz, 2 H, ArH), 4.87-4.80 (m, 1 H, =CH), 4.49-4.40 (m, 1 H, NH), 3.75-3.67 (m, 1 H, NCH), 2.42 (s, 3 H, CH₃), 2.08-1.89 (m, 4 H, 2×CH₂), 1.65-1.41 (m, 8 H, 4×CH₂), 1.36-1.13 (m, 10 H, 5×CH₂), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) 196.5, 142.8, 138.0, 129.3, 127.0, 106.4, 90.6, 52.8, 36.1, 31.6, 31.13, 31.10, 29.08, 29.06, 27.2, 25.8, 25.1, 22.5, 21.3, 13.9; MS (EI) *m*/*z* (%) 389 (M⁺, 0.55), 290 (M⁺-C₇H₁₅, 4.18), 91 (100); IR (neat) 3276, 2927, 2854, 1967, 1599, 1496, 1446, 1331, 1306, 1239, 1184, 1161, 1094, 1049 cm⁻¹; Anal. calcd for C₂₃H₃₅NO₂S (%): C 70.91, H 9.06, N 3.60; Found: C 70.81, H 9.47, N 3.49.

(26) Synthesis of *N*-(1,1-pentamethylene-4-phenyl-1,2-undecadien-4-yl)-4-methyl benzenesulfonamide **2z** (kjq-2-120)

The reaction of **1z** (437.0 mg, 1.0 mmol), ZnI₂ (191.0, 0.6 mmol), and toluene (3 mL) afforded allene **2z** (312.0 mg, 85%) (eluent: *n*-hexane/ethyl acetate = 10/1 to 5/1) as a white solid: m.p. 124-126 °C (petroleum ether & ethyl acetate); ¹H NMR (400 MHz, CDCI₃) δ 7.63 (d, *J* = 8.0 Hz, 2 H, ArH), 7.25-7.14 (m, 7 H, ArH), 5.14-5.08 (m, 1 H, =CH), 5.06-4.98 (m, 1 H, NH), 4.89 (dd, *J* = 6.8, 4.8 Hz, 1 H, NCH), 2.38 (s, 3 H, CH₃), 2.06-1.91 (m, 4 H, 2×CH₂), 1.62-1.33 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCI₃) 196.9, 142.7, 140.4, 137.6, 129.1, 128.0, 127.1, 126.9, 126.8, 107.5, 91.3, 56.4, 31.0, 30.8, 27.0, 25.6, 21.2; MS (EI) *m/z* (%) 367 (M⁺, 0.08), 260 (M⁺-CH=C=C(CH₂)₅, 67.77), 91 (100); IR (neat) 3227, 3063, 3030, 2929, 2853, 1967, 1599, 1495, 1448, 1328, 1289, 1163, 1093, 1051, 1028 cm⁻¹; Anal. calcd for C₂₂H₂₅NO₂S (%): C 71.90, H 6.86, N 3.81; Found: C 71.64, H 6.78, N 3.70.

To a flame-dried Schlenk tube was added CdI_2 (146.0 mg, 0.4 mmol) inside a glove box. The Schlenk tube was then taken out and dried under vacuum with a heating gun. After cooling to room temperature, propargylic amine **1x** (181.1 mg. 0.5 mmol) and 1.5 mL of toluene were added under the atmosphere of Ar. The Schlenk tube equipped with a condenser was then placed in a pre-heated oil bath of 130 °C with stirring for 4.3 h as monitored TLC. After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel eluted with ethyl acetate (15 mL). After evaporation, to the residue was added 27 µL of CH₃NO₂ as the internal standard, the NMR yields of **4x** and **2x** were determined based on the ¹H NMR analysis. Then the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to afford **4x**¹³ (87.3 mg, 60%) as a solid: ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.72 (m, 2 H, Ar-H), 7.29-7.23 (m, 2 H, Ar-H), 6.12 (dt, *J* = 6.6, 2.3 Hz, 1 H, CH=), 5.67 (dt, *J* = 6.4, 2.0 Hz, 1 H, CH=), 4.12 (t, *J* = 2.2 Hz, 2 H, CH₂), 2.52-2.36 (m, 5 H, CH₃ + two protons of Cy), 1.82-1.57 (m, 5 H, five protons of Cy), 1.42-1.22 (m, 3 H, three protons of Cy); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 138.4, 132.6, 129.22, 127.0, 122.1, 75.7, 55.0, 37.1, 25.0, 24.4, 21.3; MS (EI) *m/z* (%) 291 (M⁺, 18.01), 91 (100); IR (neat) 2927, 2863, 1598, 1495, 1455, 1368, 1160, 1127, 1100, 1071 cm⁻¹.

Part III ZnI₂-Promoted synthesis of trisubstituted allenes from 1-alkynes, ketones, and pyrrolidine.

(1) Synthesis of 1,1-pentamethylene-3-phenylpropadiene (2a) (kjq-13-56)

Typically Procedure IV: To a flame-dried Schlenk tube were added CuBr (14.6 mg, 0.1 mmol), phenylacetylene **3a** (102.4 mg, 1.0 mmol)/toluene(0.5 mL), cyclohexanone (107.8 mg, 1.1 mmol)/ toluene(0.5 mL), and pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) sequentially. The Schlenk tube was then stirred at 100 °C until completion of the reaction as monitored by TLC (1.1 h). After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel eluted with acetone (20 mL). After evaporation, the crude product was used in the next step without further treatment.

To another Schlenk tube were added anhydrous ZnI₂ (191.4 mg, 0.6 mmol). The

Schlenk tube was then dried under vacuum with a heating gun. The above crude product was then dissolved in toluene (3 mL) and transferred to the Schlenk tube via a syringe under Ar atmosphere. The Schlenk tube was then equipped with a condenser and placed in a pre-heated oil bath of 120 °C with stirring. After 1.5 h, the reaction was complete as monitored by TLC, the crude reaction mixture was cooled to room temperature and filtrated through a short pad of silica gel eluted with ethyl ether (20 mL). After evaporation, the residue was purified by chromatography on silica gel to afford $2a^2$ (112.1 mg, 61%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.22 (m, 4 H, ArH), 7.20-7.10 (m, 1 H, ArH), 6.02-5.96 (m, 1 H, =CH), 2.34-2.12 (m, 4 H, 2×CH₂), 1.80-1.46 (m, 6 H, 3×CH₂).

The following compounds were prepared according to **Typically Procedure IV**. (2) Synthesis of 1,1-pentamethylene-3-(4-chlorophenyl)propadiene (**2aa**) (kjq-13-48)

The reaction of CuBr (14.3 mg, 0.1 mmol), **3c** (136.3 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (107.1 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.8 mg, 0.6 mmol) afforded **2aa** (124.3 mg, 57%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.14 (m, 4 H, ArH), 5.99-5.92 (m, 1 H, =CH), 2.35-2.12 (m, 4 H, 2×CH₂), 1.80-1.47 (m, 6 H, 3×CH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 199.7, 134.7, 131.7, 128.6, 127.6, 106.9, 91.5, 31.2, 27.6, 26.0; MS (EI) *m/z* 220 [M⁺(³⁷Cl), 22.82], 218 [M⁺(³⁵Cl), 68.91], 141 (100); IR (neat) 2929, 2853, 1952, 1489, 1444, 1390, 1343, 1238, 1091, 1012 cm⁻¹; HRMS (EI) calcd for C₁₄H₁₅³⁵Cl (M⁺): 218.0862. Found: 218.0860.

(3) Synthesis of 1,1-pentamethylene-3-(4-bromophenyl)propadiene (2k) (kjq-1-39)

The reaction of CuBr (14.4 mg, 0.1 mmol), **3d** (181.2 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (107.5 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.4 mg, 0.6 mmol) afforded **2k**⁵ (135.6 mg, 51%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2 H, ArH), 7.15 (d, *J* = 8.0 Hz, 2 H, ArH), 5.99-5.93 (m, 1 H, =CH), 2.34-2.16 (m, 4 H, 2×CH₂), 1.79-1.51 (m, 6 H, 3×CH₂).

(4) Synthesis of 1,1-pentamethylene-3-(4-methylphenyl)propadiene (2ab) (kjq-13-47)

The reaction of CuBr (14.7 mg, 0.1 mmol), **3e** (115.7 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (106.8 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.9 mg, 0.6 mmol) afforded **2ab** (101.3 mg, 51%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.17 (d, *J* = 8.1 Hz, 2 H, ArH), 7.09 (d, *J* = 7.8 Hz, 2 H, ArH), 6.00-5.94 (m, 1 H, =CH), 2.37-2.10 (m, 7 H, CH₃ + 2×CH₂), 1.77-1.46 (m, 6 H, 3×CH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 199.3, 136.0, 133.1, 129.2, 126.4, 106.3, 92.1, 31.4, 27.7, 26.1, 21.1; MS (EI) *m/z* 198 (M⁺, 74.69), 155 (100); IR (neat) 2926,

2853, 1951, 1513, 1445, 1257, 1237 cm⁻¹; HRMS (EI) calcd for $C_{15}H_{18}$ (M⁺): 198.1409. Found: 198.1410.

(5) Synthesis of 1,1-pentamethylene-1,2-undecadiene (2s) (kjq-13-64)

The reaction of CuBr (14.4 mg, 0.1 mmol), **3f** (138.6 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (108.0 mg, 1.1 mmol) /toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.2 mg, 0.6 mmol) afforded **2s**⁵ (164.5 mg, 74%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.00-4.90 (m, 1 H, =CH), 2.20-2.01 (m, 4 H, 2×CH₂), 2.00-1.88 (m, 2 H, CH₂), 1.68-1.15 (m, 18 H, 9×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃).

(6) Synthesis of N-(1,1-pentamethylene-1,2-butadien-4-yl)-4-methylbenzenesulfonamide (**2x**) (kjq-13-53)

The reaction of CuBr (14.1 mg, 0.1 mmol), **3g** (208.5 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (107.7 mg, 1.1 mmol)/toluene (0.5 mL), pyrroline (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.0 mg, 0.6 mmol) afforded **2x**¹⁰ (88.5 mg, 30%) (eluent: petroleum ether/ethyl acetate = 10/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 2 H, ArH), 7.30 (d, *J* = 8.4 Hz, 2 H, ArH), 4.96-4.86 (m, 1 H, =CH), 4.76-4.60 (bs, 1 H, NH), 3.52 (t, *J* = 5.9 Hz, 2 H, NCH₂), 2.42 (s, 3 H, Me), 2.10-1.96 (m, 4 H, 2×CH₂), 1.64-1.42 (m, 6 H,

3×CH₂).

(7) Synthesis of 4-cyclohexylidenebut-3-en-1-ol (2ac) (kjq-13-67)

The reaction of CuBr (14.3 mg, 0.1 mmol), **3h** (69.8 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (108.6 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.7 mg, 0.6 mmol) afforded **2ac**¹¹ (80.0 mg, 53%) (eluent: petroleum ether/ethyl acetate = 4/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.00-4.91 (m, 1 H, =CH), 3.74-3.61 (m, 2 H, OCH₂), 2.22 (q, *J* = 6.2 Hz, 2 H, CH₂), 2.16-1.96 (m, 4 H, 2×CH₂), 1.76-1.42 (m, 7 H, OH + 3×CH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 199.0, 103.1, 84.8, 62.0, 32.5, 31.7, 27.4, 26.0; MS (EI) *m*/*z* 152 (M⁺, 13.39), 79 (100); IR (neat) 3335, 2924, 2852, 1965, 1708, 1445, 1264, 1238, 1176, 1130, 1048 cm⁻¹.

(8) Synthesis of tert-butyl(3-cyclohexylideneallyloxy)dimethylsilane (2ad)(kjq-13-69)

The reaction of CuBr (14.2 mg, 0.1 mmol), **3i** (170.4 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (107.4 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.7 mg, 0.6 mmol) afforded **2ad**¹² (132.2 mg, 52%) (eluent: petroleum ether/ethyl acetate =

50/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.15-5.04 (m, 1 H, =CH), 4.14 (d, *J* = 6.3 Hz, 2 H, OCH₂), 2.16-2.06 (m, 4 H, 2×CH₂), 1.64-1.45 (m, 6 H, 3×CH₂), 0.90 (s, 9 H, C(CH₃)₃), 0.08 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 197.9, 103.6, 89.6, 62.7, 31.3, 27.3, 26.1, 26.0, 18.4, -5.0; MS (EI) *m*/*z* 252 (M⁺, 0.05), 237 (M⁺-CH₃, 1.98), 75 (100); IR (neat) 2928, 2855, 1966, 1472, 1446, 1361, 1253, 1176, 1096, 1078, 1047, 1006 cm⁻¹.

(9) Synthesis of 2-(3-cyclohexylideneallyloxy)-tetrahydro-2H-pyran (2ae) (kjq-13-81)

The reaction of CuBr (14.5 mg, 0.1 mmol), **3j** (140.3 mg, 1.0 mmol)/toluene (0.5 mL), cyclohexanone (107.8 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (191.6 mg, 0.6 mmol) afforded **2ae** (95.8 mg, 43%) (eluent: petroleum ether/ethyl acetate = 20/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.12-5.03 (m, 1 H, =CH), 4.72-4.66 (m, 1 H, OCHO in THP), 4.18 (dd, *J* = 11.6, 6.2 Hz, 1 H, one proton of OCH₂), 4.00 (dd, *J* = 11.6, 7.4 Hz, 1 H, one proton of OCH₂), 3.94-3.83 (m, 1 H, one proton of OCH₂), 3.55-3.44 (m, 1 H, one proton of OCH₂), 2.18-2.04 (m, 4 H, 2×CH₂), 1.94-1.42 (m, 12 H, 6×CH₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 199.4, 103.0, 97.2, 86.0, 65.8, 62.1, 31.3, 31.2, 30.6, 27.17, 27.16, 25.9, 25.4, 19.5; MS (EI) *m*/z 222 (M⁺, 1.08), 85 (100); IR (neat) 2922, 2849, 1966, 1622, 1579, 1443, 1385, 1353, 1321, 1269, 1201, 1182, 1118, 1078, 1053, 1023 cm⁻¹; HRMS (EI) calcd for C₁₄H₂₂O₂ (M⁺): 222.1620. Found: 222.1622.

(10) Synthesis of 1,1-tetramethylene-1,2-undecadiene (2u) (kjq-13-89)

$$n-C_{8}H_{17} \longrightarrow + \bigvee_{H} H \xrightarrow{O} 1) CuBr (10 \text{ mol\%})$$

toluene, 100 °C, 1.3 h
2) removal of Cu(I)
$$\frac{1}{3} Znl_{2} (0.6 \text{ equiv})$$

3f 1.1 equiv 1.1 equiv toluene, 120 °C, 1.3 h
2u (50%)

The reaction of CuBr (14.4 mg, 0.1 mmol), **3f** (138.6 mg, 1.0 mmol)/toluene (0.5 mL), cyclopentanone (92.2 mg, 1.1 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (192.0 mg, 0.6 mmol) afforded **2u** (102.9 mg, 50%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.11-5.00 (m, 1 H, =CH), 2.40-2.24 (m, 4 H, 2×CH₂), 2.02-1.90 (m, 2 H, CH₂), 1.73-1.58 (m, 4 H, 2×CH₂), 1.45-1.15 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃).

(11) Synthesis of 2-methyl-2,3-dodecadiene (2r) (kjq-13-101)

$$n-C_{8}H_{17} \longrightarrow + \underbrace{O}_{H} + \underbrace{N}_{H} \underbrace{O}_{3} Znl_{2} (0.6 \text{ equiv}) \\ 3f 2.0 \text{ equiv} 1.1 \text{ equiv} \text{ toluene, 120 °C, 0.9 h} \underbrace{n-C_{8}H_{17}}_{2t (49\%)}$$

The reaction of CuBr (14.2 mg, 0.1 mmol), **3f** (137.2 mg, 1.0 mmol)/toluene (0.5 mL), acetone (148.0 μ L, d = 0.7845 g/mL, 116.1 mg, 2.0 mmol)/toluene (0.5 mL), pyrrolidine (93.0 μ L, d = 0.862 g/mL, 80.2 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (192.7 mg, 0.6 mmol) afforded **2t**⁸ (87.5 mg, 49%) (eluent: 30-60 °C petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 4.98-4.87 (m, 1 H, C=CH), 1.98-1.86 (q, *J* = 6.8 Hz, 2 H, CH₂), 1.67 (d, *J* = 2.7 Hz, 6 H, 2×CH₃), 1.44-1.19 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.5 Hz, 3 H, CH₃ in C₈H₁₇).

(12) Synthesis of 7-methylheptadeca-7,8-diene (2af) (kjq-13-145)

$$n-C_{8}H_{17} \longrightarrow + \underbrace{\bigcirc}_{n-C_{6}H_{13}} + \underbrace{\bigcirc}_{n-C_{6}H_{13}} + \underbrace{\bigvee}_{n-C_{6}H_{13}} + \underbrace{\int}_{n-C_{6}H_{13}} + \underbrace{$$

The reaction of CuBr (14.7 mg, 0.1 mmol), **3f** (138.5 mg, 1.0 mmol)/toluene (0.5 mL), 2-octanone (166.1 mg, 1.3 mmol)/toluene (0.5 mL), pyrrolidine (92.6 μ L, d = 0.862 g/mL, 79.8 mg, 1.1 mmol) afforded the crude product after filtration and evaporation. The reaction of the crude product/toluene (3 mL) and ZnI₂ (192.1 mg, 0.6 mmol) afforded **2af** (112.3 mg, 45%) (eluent: petroleum ether) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.04-4.94 (m, 1 H, =CH), 2.01-1.84 (m, 4 H, 2×CH₂), 1.66 (d, *J* = 3.0 Hz, 3 H, =CCH₃), 1.50-1.17 (m, 20 H, 10×CH₂), 0.89 (t, *J* = 6.3 Hz, 6 H, 2×CH₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 201.1, 99.1, 90.1, 34.1, 31.9, 31.8, 29.5, 29.39, 29.35, 29.1, 29.0, 27.6, 22.7, 19.3, 14.1; MS (EI) *m*/*z* 250 (M⁺, 1.19), 81 (100); IR (neat) 2957, 2924, 2854, 1966, 1465, 1378, 1232, 1153, 1115, 1056 cm⁻¹; HRMS (EI) calcd for C₁₈H₃₄ (M⁺): 250.2661. Found: 250.2662.

Fifty mmol-scale reaction for the synthesis of 1,1-pentamethylene-3-phenylpropadiene from phenylacetylene, cyclohexanone, and pyrrolidine (2a) (kjq-1-164)

To a three-necked flask equipped with a Dean-Stark trap and a condenser dried under vacuum with a heating gun were added CuBr (0.11 g, 0.75 mmol), **3a** (5.65 mL, d = 0.93 g/mL, 5.25 g, 97%, 50 mmol), cyclohexanone (5.67 mL, d = 0.95 g/mL, 5.39 g, 55 mmol), pyrrolidine (4.54 mL, d = 0.86 g/mL, 3.90 g, 55 mmol), and benzene (50 mL) sequentially under Ar atmosphere. The flask was then placed in a pre-heated oil bath at 110 °C with stirring for 3.5 h as monitored by TLC. After cooling to room

temperature, the crude reaction mixture was filtrated through a short pad of silica gel eluted with ethyl acetate (120 mL). After evaporation, the crude product was used in the next step without further treatment.

To another three-necked flask equipped with a condenser was added anhydrous ZnI₂ (9.78 g, 30 mmol), the flask was then dried under vacuum with a heating gun. The above crude product was then dissolved in toluene (150 mL) and transferred to the flask via a syringe under Ar atmosphere. The flask was then placed in a pre-heated oil bath of 120 °C with stirring. After 3.0 h, the reaction was complete as monitored by TLC, the crude reaction mixture was cooled to room temperature and filtrated through a short pad of silica gel eluted with ethyl ether (100 mL). After evaporation, the residue was purified by chromatography on silica gel to afford $2a^2$ (6.13 g, 67%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 4 H, ArH), 7.20-7.12 (m, 1 H, ArH), 6.02-5.97 (m, 1 H, C=CH), 2.32-2.12 (m, 4 H, 2×CH₂), 1.77-1.47 (m, 6 H, 3×CH₂).

References:

- 1. Tang, X.; Kuang, J.; Ma, S. Chem. Comm. 2013, 49, 8976.
- 2. Ting, C.-M.; Hsu, Y.-L.; Liu, R.-S. Chem. Commun.(Camb) 2012, 48, 6577.
- 3. Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 7294.
- 4. Caporusso, A. M.; Polizzi, C.; Lardicci, L. J. Org. Chem. 1987, 52, 3920.
- Tang, X.; Zhu, C.; Cao, T.; Kuang, J.; Lin, W.; Ni, S.; Zhang, J.; Ma, S. *Nature*. *Comm.* 2013, DOI: 10.1038/ncomms3450.
- Ohmiya, H.; Yang, M.; Yamauchi, Y.; Ohtsuka, Y.; Sawamura, M. Org. Lett. 2010, 12, 1796.
- 7. Zeng, X.; Frey, G. D.; Kousar, S.; Bertrand, G. Chem. Eur. J. 2009, 15, 3056.
- 8. Michelot, D.; Linstrymelle, G. J. C. S. Chem. Comm. 1975, 561.
- 9. Gockel, B.; Krause, N. Eur. J. Org. Chem. 2010, 311.
- 10. Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943.
- 11. Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466.
- 12. Rigby, J. H.; Laurent, S. B.; Kamal, Z.; Heeg, M. J. Org. Lett. 2008, 10, 5609.
- 13. Tanner, D.; Hagberg, L.; Poulsen, A. Tetrahedron 1999, 55, 1427.

S35

S36

.

-

.

-

