Supporting Information

Enantioselective Synthesis of Trifluoromethyl Substituted Piperidines with Multiple Stereogenic Centers via Hydrogenation of Pyridinium Chlorides

Mu-Wang Chen, Zhi-Shi Ye, Zhang-Pei Chen, Bo Wu and Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics
Chinese Academy of Sciences, Dalian 116023, P. R. China
Email: ygzhou@dicp.ac.cn

Table of Contents

1. General and materials S2-2
2. Typical procedure for synthesis of 6-alkyl-2-aryl-3-(trifluoromethyl)pyridines S2-5
3. General procedure for asymmetric hydrogenation of 6-alkyl-2-aryl-3-(trifluoromethyl) -pyridinium salt $\mathbf{1} \cdot \mathbf{H C l}$ S5-8
4. The determination of the absolute configuration of $\mathbf{2 b}$ S9-9
5. References S9-9
6. Copy of NMR for trifluoromethyl pyridines and trifluoromethyl piperidines S10-82
7. Copy of HPLC for racemic and chiral products S83-96

1. General and materials:

General: All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis.

Materials: Commercially available reagents were used throughout without further purification other than those detailed below. The solvents for asymmetric hydrogenation reaction were purchased without further purification.

2. Synthesis of 6-alkyl-2-aryl-3-(trifluoromethyl)pyridines:

General procedure for the synthesis of 6-chloro-2-aryl-3-(trifluoromethyl)pyridines: Procedure one: A mixture of 2-bromo-3-(trifluoromethyl)pyridine $5(10.0 \mathrm{mmol})$, arylboronic acid $(15.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.5 \mathrm{~mol} \%, 11.2 \mathrm{mg}), \mathrm{K}_{3} \mathrm{PO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(20.0 \mathrm{mmol}, 6.768 \mathrm{~g})$ and ethylene glycol (20.0 mL) was stirred at $80^{\circ} \mathrm{C}$ for indicated time. The mixture was added to brine (30 mL). The mixture was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$. The extracts were combined, dried over sodium sulfate, and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to yield the product 6. ${ }^{[1]}$

Procedure two: Hydrogen peroxide $(30 \%, 1.4 \mathrm{~mL}, 13 \mathrm{mmol})$ was added into the solution of the 2-aryl-3-(trifluoromethyl)pyridine $6(10.0 \mathrm{mmol})$ in 10 mL of acetic acid. The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 72 h . The solvent was evaporated under vacuum, and the residue was basified with aqueous solution of sodium carbonate until $\mathrm{pH}=9$. The resulting mixture was extracted with chloroform $(3 \times 20 \mathrm{~mL})$. The organic phase were combined and dried over anhydrous sodium sulfate, filtered and evaporated under vacuum. The residue was purified by flash chromatography on silica gel (dichloromethane/methanol $=15 / 1$). ${ }^{[2]}$

Procedure three: 2-aryl-3-(trifluoromethyl)pyridine N-oxide (5.0 mmol) is taken up in excess phosphoryl chloride (10.0 mL). The mixture is refluxed for 4 h , cooled, poured into cold water $(50.0 \mathrm{~mL})$, basified with 10% aqueous ammonia solution (20 mL), and extracted with chloroform $(2 \times 50 \mathrm{~mL})$. The organic phase were combined and dried over anhydrous sodium sulfate, filtered and evaporated under vacuum. The residue was purified by flash chromatography on silica gel (dichloromethane/methanol $=20 / 1$) to yield the products $\mathbf{7 a - 7 h}{ }^{[3]}$ The 6-chloro-2-aryl-3-(trifluoromethyl) pyridines $\mathbf{7 a - 7 d}$, and $\mathbf{7 f}$ are the known compounds. ${ }^{[4]}$

6-Chloro-2-(naphthalen-2-yl)-3-(trifluoromethyl)pyridine (7e): 54\% yield, a yellow oil, R_{f} $=0.60$ (petroleum ether/ethyl acetate $=20 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.84(\mathrm{~m}, 2 \mathrm{H})$,
 $7.80-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $153.6,137.6(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}), 135.2,133.5,132.7,128.7(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $128.7,127.9,127.8,126.6,126.1(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 124.9,123.9(\mathrm{q}, J=32.0$ Hz), 122.6, 122.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.8$; HRMS (ESI) m / z Calculated for

6-Chloro-3-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)pyridine (7g): 68\% yield, white solid, $\mathrm{mp}=61-62^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.70$ (petroleum ether/ ethyl acetate $\left.=20 / 1\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $157.8,154.0,141.3,137.8(\mathrm{q}, J=5.0 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=33.0 \mathrm{~Hz}), 129.4(\mathrm{q}$, $J=2.0 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=77.0 \mathrm{~Hz}), 125.3(\mathrm{q}, J=33.0 \mathrm{~Hz}), 124.2(\mathrm{q}, J=$ $33.0 \mathrm{~Hz}), 123.5,122.3(\mathrm{q}, J=79.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0,-62.9$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClF}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$326.0166, found 326.0165.

6-Chloro-2-(3,5-difluorophenyl)-3-(trifluoromethyl)pyridine (7h): 58\% yield, yellow oil, $\mathrm{R}_{f}=0.59$ (petroleum ether/ ethyl acetate $=20 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=8.4$
 $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.92(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6(\mathrm{dd}, J=248.0,13.0 \mathrm{~Hz}), 156.5$, $153.9,140.4,137.7(\mathrm{q}, J=4.8 \mathrm{~Hz}), 123.9(\mathrm{q}, J=33.0 \mathrm{~Hz}), 123.6,112.2(\mathrm{~d}, J$ $=27.0 \mathrm{~Hz}), 105.2,104.8(\mathrm{~d}, \mathrm{~J}=25.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -57.2, -109.2; HRMS (ESI) m / z Calculated for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{ClF}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$294.0103, found 294.0100.

General procedure for synthesis of 6-alkyl-2-aryl-3-(trifluoromethyl)pyridines: RMgBr ($3.6 \mathrm{mmol}, 1.2$ equiv.) was added to a solution of the corresponding 6-chloro-2-aryl-3-(trifluoromethyl)pyridine $7(3.0 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{acac})_{3}(10 \mathrm{~mol} \%)$ in $\mathrm{THF} / \mathrm{NMP}(10.0 \mathrm{~mL} / \mathrm{mmol})$ cooled to $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and then quenched with brine. After extraction with dichloromethane, the combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The resulting crude product was purified by chromatography on silica gel (dichloromethane $/$ methanol $=20 / 1$) to afford the products $\mathbf{1} .{ }^{[5]}$

6-Methyl-2-phenyl-3-(trifluoromethyl)pyridine (1a): 95\% yield, yellow oil, $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether/ethyl acetate $=20 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
 $7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dt}, J=4.3,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,157.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 139.5,134.9(\mathrm{q}$, $J=5.0 \mathrm{~Hz}), 128.6,128.0,125.3,122.2(\mathrm{q}, J=32.0 \mathrm{~Hz}), 121.3,119.9,24.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 238.0838$, found 238.0842 .

6-Methyl-2-p-tolyl-3-(trifluoromethyl)pyridine (1b): 80% yield, yellow oil, $\mathrm{R}_{\mathrm{f}}=0.34$ (petroleum ether/ethyl acetate $=30 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
 $7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,158.0,138.5,136.7,134.9$ (q, $J=5.0$ $\mathrm{Hz}), 128.7,128.6(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 125.4,122.0(\mathrm{q}, J=32.0 \mathrm{~Hz}), 121.1,24.6$, 21.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-57.0; HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 252.0995$, found 252.1004 .

6-Methyl-2-m-tolyl-3-(trifluoromethyl)pyridine (1c): 74\% yield, yellow oil, $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate $=30 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,

7.33-7.23 (m, 5H), $2.67(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.3(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 158.2(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 139.4,137.6,134.8(\mathrm{q}, J=5.0 \mathrm{~Hz})$, $129.4,129.3(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 127.8,125.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 122.6,122.1$ (q, $J=$ 32.0 Hz), 121.2, 24.6, 21.4; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-57.0; HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$252.0995, found 252.0994.

2-(4-Methoxyphenyl)-6-methyl-3-(trifluoromethyl)pyridine (1d): 90\% yield, yellow oil, , $\mathrm{R}_{f}=0.20$ (petroleum ether/ethyl acetate $\left.=20 / 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$,
 $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.87(\mathrm{~m}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3,160.1$, $157.6,135.0(\mathrm{q}, ~ J=5.0 \mathrm{~Hz}), 132.1,130.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 125.4,121.9(\mathrm{q}, J$ $=32.0 \mathrm{~Hz}), 120.9,113.5,55.3,24.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-57.0 ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 268.0944$, found 268.0953.

6-Methyl-2-(naphthalen-2-yl)-3-(trifluoromethyl)pyridine (1e): 77\% yield, yellow oil, R_{f} $=0.40$ (petroleum ether/ethyl acetate $=30 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.90(\mathrm{~m}, 5 \mathrm{H})$,
 7.63 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5,157.9,136.9,135.0(\mathrm{q}, \mathrm{J}=5.0$ Hz), 133.3, 132.9, 128.5, 128.2 (d, $J=2.0 \mathrm{~Hz}$), 127.7 (d, $J=3.0 \mathrm{~Hz}), 126.6$, $126.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 125.4,122.9,122.4(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}), 121.9,121.4$, 24.7; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-56.9; HRMS (ESI) m / z Calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 288.0995, found 288.0998

2-(Biphenyl-4-yl)-6-methyl-3-(trifluoromethyl)pyridine (1f): 82\% yield, yellow oil, $\mathrm{R}_{\mathrm{f}}=$ 0.26 (petroleum ether/ethyl acetate $=30 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
 7.72-7.61 (m, 4H), $7.58(\mathrm{dd}, J=7.9,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,157.6,141.6,140.8,138.5,135.0(\mathrm{q}, J=48.0$ $\mathrm{Hz}), 129.1,128.8,127.5,127.2,126.8,125.4,122.3(\mathrm{q}, J=32.0 \mathrm{~Hz}), 121.3$, 24.7; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-56.9; HRMS (ESI) m / z Calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 314.1151, found 314.1155

6-Methyl-3-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)pyridine (1g): 83\% yield, yellow oil, $\mathrm{R}_{f}=0.50$ (petroleum ether/ethyl acetate $=20 / 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}$,
 $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,156.4$, $142.9,135.0(\mathrm{q}, ~ J=5.0 \mathrm{~Hz}), 130.8(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=16.0 \mathrm{~Hz})$, $125.4,125.0(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}), 122.7,122.4(\mathrm{q}, J=12.0 \mathrm{~Hz}), 122.0,24.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0$, -62.8; HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 306.0712, found 306.0727

2-(3,5-Difluorophenyl)-6-methyl-3-(trifluoromethyl)pyridine (1h): 77\% yield, yellow oil, $\mathrm{R}_{f}=0.60$ (petroleum ether/ethyl acetate $\left.=30 / 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$,
 $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{tt}, J=8.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{dd}, J=$ $247.0,13.0 \mathrm{~Hz}), 161.8,155.3,142.2(\mathrm{t}, J=9.6 \mathrm{~Hz}), 135.1(\mathrm{q}, J=4.9 \mathrm{~Hz})$, 123.6 (q, $J=272.0 \mathrm{~Hz}$), 122.3 ($\mathrm{q}, ~ J=32.0 \mathrm{~Hz}$), 122.2, $112.2(\mathrm{~m}, 1 \mathrm{C}), 104.2$ $(\mathrm{t}, J=25.0 \mathrm{~Hz}), 24.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.2,-109.9$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 274.0650$, found 274.0642 .

6-Ethyl-2-phenyl-3-(trifluoromethyl)pyridine (1i): 73\% yield, yellow oil, $\mathrm{R}_{f}=0.50$ (petroleum ether/ethyl acetate $=20 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
 $7.50(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{td}, J=7.6,0.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.5,157.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 139.7,135.1(\mathrm{q}, J=5.0 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=2.0$ Hz), 128.6, 127.9, 125.4, $122.2(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}) 112.0,31.5,13.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.9$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 252.0995$, found 252.1000.

3. General procedure for asymmetric hydrogenation of 6-alkyl-2-aryl-3-(trifluoromethyl)pyridinium salts $\mathbf{1} \cdot \mathbf{H C l}$

To a stirred solution of the substituted 6-alkyl-2-aryl-3-(trifluoromethyl)pyridine 1 (0.50 g , 2.4 mmol) in ether (10 mL) was added 1.0 mL of HCl conc. (or $2 N$ diethylether solution) at room temperature. A white solid formed immediately, and the reaction mixture was stirred at room temperature for around 30 min . All volatiles were removed under reduced pressure to give the corresponding 6-alkyl-2-aryl-3-(trifluoromethyl)pyridineium salt $\mathbf{1} \cdot \mathrm{HCl}$ as a white solid.

In a nitrogen-filled glove box, a mixture of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.1 \mathrm{mg}, 0.0031 \mathrm{mmol})$ and (R)-DifluorPhos ($4.7 \mathrm{mg}, 0.0069 \mathrm{mmol}$) in dichloromethane/isopropanol $(3: 1,1.0 \mathrm{~mL})$ was stirred at room temperature for $15-20 \mathrm{~min}$, the mixture was transferred by a syringe to a stainless steel autoclave, in which substrate $\mathbf{1} \cdot \mathrm{HCl}(0.20 \mathrm{mmol})$ and TCCA $(2.9 \mathrm{mg}, 0.0125 \mathrm{mmol})$ had been placed beforehand. Dichloromethane/isopropanol ($3: 1,2.0 \mathrm{~mL}$) was then added to the mixture. The hydrogenation was performed at $25^{\circ} \mathrm{C}$ under 800 psi of hydrogen for 36 h . After carefully releasing the hydrogen, triethylamine ($56 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was added and the mixture was stirred for 30 min . The organic layer was separated and extracted with dichloromethane twice, and the combined organic extracts were dried over sodium sulfate and concentrated in vacuo. Purification was performed on a silica gel column eluted with petroleum ether/ ethyl acetate to give the desired product 2.

A mixture of benzoyl chloride ($42 \mathrm{mg}, 0.30 \mathrm{mmol}$) and triethylamine ($56 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) and 2 dissolved in 3 mL of dichloromethane was stirred at room temperature for 30 min . After concentrating in vacuo, the resulting precipitate was directly purified by column chromatography on silica gel using hexanes/ethyl acetate to give the corresponding N-4-benzoyl derivatives. The enantiomeric excesses were then determined by chiral HPLC.
(2R,3S,6R)-6-Methyl-2-phenyl-3-(trifluoromethyl)piperidine (2a): 95% yield, pale oil, R_{f} $=0.70$ (petroleum ether /ethyl acetate $=1 / 1), 90 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+54.0\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H})$, 2.99-2.76 (m, 1H), 2.65-2.44 (m, 1H), 2.36-2.17 (m, 1H), 1.99-1.70 (m, 1H), $1.65-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6$, $128.2,127.5(\mathrm{q}, ~ J=282.0 \mathrm{~Hz}) .127 .1,126.4,61.3,53.1,42.6(\mathrm{q}, J=2.0 \mathrm{~Hz}), 29.4$, $25.5(\mathrm{q}, J=3.0 \mathrm{~Hz}), 22.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide ($\mathrm{OJ}-\mathrm{H}$, elute: $\mathrm{Hexanes} / \mathrm{i}-\mathrm{PrOH}=90 / 10$,
detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=10.6 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=15.3 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$244.1308, found 244.1305.
(2R,3S,6R)-6-Methyl-2-p-tolyl-3-(trifluoromethyl)piperidine (2b): 95\% yield, pale oil, R_{f} $=0.60$ (petroleum ether /ethyl acetate $=1 / 1), 89 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+44.8\left(c 0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{dd}, J=9.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.09(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=20.0,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.82(\mathrm{t}$, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 2 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.6, 136.6, 128.8, 127.5 (q, $J=282.0$ Hz), 126.3, 61.1, 53.2, $42.6(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.4,25.4(\mathrm{q}, J=2.0 \mathrm{~Hz}), 22.8,21.1 ;{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), 30 ${ }^{\circ} \mathrm{C}, \mathrm{t}_{1}=11.4 \mathrm{~min}, \mathrm{t}_{2}=13.0 \mathrm{~min}$ (maj); HRMS (ESI) m/z Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 258.1464, found 258.1463
(2R,3S,6R)-6-Methyl-2-m-tolyl-3-(trifluoromethyl)piperidine (2c): 84\% yield, pale oil, $\mathrm{R}_{f}=0.61$ (petroleum ether /ethyl acetate $\left.=1 / 1\right), 88 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+50.4\left(c 0.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$
 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.05(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.56-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}) 1.83(\mathrm{t}, \mathrm{J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H})$, 1.46-1.31 (m, 1H), $1.19(\mathrm{~d}, J=6.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5$, $137.7,131.7,128.0,127.8,127.5(\mathrm{q}, J=282.0 \mathrm{~Hz}), 127.0,61.3,53.2,42.6$ $(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.5,25.5(\mathrm{q}, ~ J=3.0 \mathrm{~Hz}), 22.8,21.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.2 ;$ Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30{ }^{\circ} \mathrm{C}, \mathrm{t}_{1}=7.6 \mathrm{~min}, \mathrm{t}_{2}=8.8$ $\min (\mathrm{maj}) ; ~ H R M S ~(E S I) ~ m / z ~ C a l c u l a t e d ~ f o r ~ \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$258.1464, found 258.1464.
(2R,3S,6R)-2-(4-Methoxyphenyl)-6-methyl-3-(trifluoromethyl)piperidine (2d): 94\% yield, pale oil, $\mathrm{R}_{f}=0.50$ (petroleum ether /ethyl acetate $=1 / 1$), 88% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+55.5\left(c 0.64, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27 (ddd, $J=5.9,3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.37(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,133.8,127.5(\mathrm{q}, J=282.0 \mathrm{~Hz}), 127.4,113.6,60.8,55.2,53.2,42.6(\mathrm{q}, J=$ $22.0 \mathrm{~Hz}), 29.4,25.4(\mathrm{q}, ~ J=2.0 \mathrm{~Hz}), 22.8 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ i-\mathrm{PrOH}$ $=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30{ }^{\circ} \mathrm{C}, \mathrm{t}_{1}=13.7 \mathrm{~min}, \mathrm{t}_{2}=18.5 \mathrm{~min}$ (maj); HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$274.1413, found 274.1418.
(2R,3S,6R)-6-Methyl-2-(naphthalen-2-yl)-3-(trifluoromethyl)piperidine (2e): 93\% yield, pale oil, $\mathrm{R}_{f}=0.65$ (petroleum ether /ethyl acetate $=1 / 1$), $89 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+75.3\left(c 0.68, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, J=13.2,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.45$ (dd, J
 $=11.5,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1$, $133.4,132.7,128.9,128.0,127.6(\mathrm{~d}, ~ J=7.5 \mathrm{~Hz}), 127.5(\mathrm{q}, ~ J=282.0 \mathrm{~Hz}), 126.0,125.7,125.0$, 124.7, $61.3,53.2,42.5(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.5,25.5(\mathrm{q}, J=2.0 \mathrm{~Hz}), 22.8 ;{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-59.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ i-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=$
$13.0 \mathrm{~min}, \mathrm{t}_{2}=16.8 \mathrm{~min}(\mathrm{maj}) ;$ HRMS (ESI) m/z Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$294.1464, found 294.1472.
(2R,3S,6R)-2-(Biphenyl-4-yl)-6-methyl-3-(trifluoromethyl)piperidine (2f): 90\% yield, pale solid, $\mathrm{mp}=135-136^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.62$ (petroleum ether /ethyl acetate $=1 / 1$), $87 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+$
 55.5 (c 0.70, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.53(\mathrm{~m}, 4 \mathrm{H})$, 7.43-7.40 (m, 4H), $7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H})$, 2.63-2.49 (m, 1H), 2.36-2.24 (m, 1H), $1.85(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.53$ (m, 2H), $1.42(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9,140.7,140.0,128.8,128.7,127.5(\mathrm{q}, J=282.0 \mathrm{~Hz}) 127.2,127.0,126.9$, $61.1,53.2,42.6(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.4,25.4(\mathrm{q}, J=2.0 \mathrm{~Hz}), 22.8 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -59.1; Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}$, $\mathrm{t}_{1}=13.0 \mathrm{~min}, \mathrm{t}_{2}$ $=18.3 \mathrm{~min}(\mathrm{maj}) ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 320.1621$, found 320.1620.
(2R,3S,6R)-6-Methyl-3-(trifluoromethyl)-2-(4-(trifluoromethyl)phenyl)piperidine (2g): 90% yield, pale oil, $\mathrm{R}_{f}=0.48$ (petroleum ether /ethyl acetate $=1 / 1$), 86% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+57.8(\mathrm{c}$
 $\left.0.58, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.54(\mathrm{~m}, 1 \mathrm{H})$, 2.34-2.28 (m, 1H), 1.94-1.77 (m, 1H), 1.65-1.57 (m, 2H), 1.47-1.31 (m, $1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.8(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}), 129.4(\mathrm{t}, J=32.0 \mathrm{~Hz}), 127.4(\mathrm{q}, J=281.0 \mathrm{~Hz}), 127.0(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 125.3(\mathrm{q}, J=4.0 \mathrm{~Hz})$, $124.3(\mathrm{q}, J=271.0 \mathrm{~Hz}), 61.0,53.2,42.6(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.4,25.5(\mathrm{q}, J=3.0 \mathrm{~Hz}), 22.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.2$, -62.5; Enantiomeric excess was determined by HPLC for the corresponding benzamide (AD-H, elute: Hexanes $/ i-\operatorname{PrOH}=90 / 10$, detector: 220 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$), $30{ }^{\circ} \mathrm{C}, \mathrm{t}_{1}=7.5 \mathrm{~min}, \mathrm{t}_{2}=14.0 \mathrm{~min}(\mathrm{maj}) ; \mathrm{HRMS}$ (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 312.1187$, found 312.1179.
(2R,3S,6R)-2-(3,5-Difluorophenyl)-6-methyl-3-(trifluoromethyl)piperidine (2h): 72\% yield, pale oil, $\mathrm{R}_{f}=0.61$ (petroleum ether /ethyl acetate $=1 / 1$), 87% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+62.5$ (c 0.36,
 CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), ~ 6.71-6.66(\mathrm{~m}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.23 (m, 1H), 1.92-1.73 (m, 1H), 1.63-1.52 (m, 1H), 1.44-1.35 (m, 2H), $1.19(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0(\mathrm{dd}, J=$ $246.0,13.0 \mathrm{~Hz}), 145.8(\mathrm{t}, J=9.0 \mathrm{~Hz}), 127.2(\mathrm{q}, J=282.0 \mathrm{~Hz}), 109.4(\mathrm{dd}, J=$ $18.0,7.0 \mathrm{~Hz}), 102.5(\mathrm{t}, J=25.0 \mathrm{~Hz}), 60.4,52.9,42.4(\mathrm{q}, J=3.0 \mathrm{~Hz}), 29.2,25.2(\mathrm{q}, J=3.0 \mathrm{z}), 22.7$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.4,110.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H, elute: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30{ }^{\circ} \mathrm{C}$, $\mathrm{t}_{1}=3.9 \mathrm{~min}(\mathrm{maj}), \mathrm{t}_{2}=4.7 \mathrm{~min}$; HRMS (ESI) m / z Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$280.1119, found 280.1124.
(2R,3S,6R)-6-Ethyl-2-phenyl-3-(trifluoromethyl)piperidine (2i): 82% yield, pale oil, $\mathrm{R}_{f}=$ 0.64 (petroleum ether /ethyl acetate $=1 / 1), 87 \%$ ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+52.1\left(c 0.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\begin{array}{ll}.{ }^{\prime \prime} \mathrm{CF}_{3} & \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), \\ 2.65-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.39(\mathrm{~m}, 5 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz},\end{array}$ $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.7,128.2,127.5(\mathrm{q}, J=282.0 \mathrm{~Hz})$, 127.1, $126.4(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 61.3,59.1,43.1(\mathrm{q}, J=22.0 \mathrm{~Hz}), 29.8,27.1,25.4(\mathrm{q}, J=2.0 \mathrm{~Hz})$, 10.2; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.3$; Enantiomeric excess was determined by HPLC for
the corresponding benzamide (AD-H, elute: Hexanes $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30{ }^{\circ} \mathrm{C}, \mathrm{t}_{1}=7.5 \mathrm{~min}, \mathrm{t}_{2}=8.8 \mathrm{~min}(\mathrm{maj}) ;$ HRMS (ESI) m / z Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$258.1464, found 258.1473 .
(2R,6R)-2-Methyl-6-phenylpiperidine (4a): 89% conv., pale oil, $\mathrm{R}_{f}=0.16$ (Dichloromethane $/ \mathrm{MeOH}=15 / 1$), $78 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+38.0\left(c 0.20, \mathrm{CHCl}_{3}\right)$, Lit: ${ }^{[6]}((+)-(2 R, 6 R)$:
 $[\alpha]^{20}{ }_{\mathrm{D}}=+22.17(c 0.69, \mathrm{EtOH})^{[6 \mathrm{ab}]} ;(-)-(2 S, 6 S):[\alpha]_{\mathrm{D}}^{25}=-22.4\left(c 0.80, \mathrm{CHCl}_{3}\right)$ (for an ee of $80 \%)^{[6 \mathrm{~b}]}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30$ (dd, $J=8.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=4.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.55-1.41 (m, 2H), 1.18-1.15 (m, 1H), $1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $145.5,128.5,127.2,126.9,62.7,53.4,34.3,34.0,25.5,23.2$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OJ-H, elute: Hexanes/i-PrOH $=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=11.2 \mathrm{~min}, \mathrm{t}_{2}=17.2 \mathrm{~min}(\mathrm{maj})$.
(2R,6R)-2-Methyl-6-(4-(trifluoromethyl)phenyl)piperidine (4b): 83\% conv., pale oil, R_{f} $=0.10$ (ethyl acetate), $79 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+17.4\left(c 0.46, \mathrm{CHCl}_{3}\right), \mathrm{Lit}^{[:[6 b]}\left((-)-(2 S, 6 S):[\alpha]^{25}{ }_{\mathrm{D}}=-15.3\right.$
 $\left.\left(c 0.77, \mathrm{CHCl}_{3}\right)(\text { for an ee of } 55 \%)^{[6 \mathrm{~b}]}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=10.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 1 \mathrm{H})$, $1.12(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,129.4(\mathrm{q}, \mathrm{J}=$ $32.0 \mathrm{~Hz}), 127.3,125.4(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.4(\mathrm{q}, J=270.0 \mathrm{~Hz}), 62.2,53.2,34.6,33.8,25.4,23.1$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OG , elute: $\mathrm{Hexanes} / \mathrm{i}-\mathrm{PrOH}=90 / 10$, detector: 220 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=8.3 \mathrm{~min}, \mathrm{t}_{2}=10.7 \mathrm{~min}(\mathrm{maj})$.
(2R,6R)-2-(3,5-Difluorophenyl)-6-methylpiperidine (4c): [CAS: 1341965-51-2]; 93\% conv., pale oil, $\mathrm{R}_{f}=0.30$ (ethyl acetate), 79% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+27.1$ (c $0.42, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.99-6.85 (m, 2H), 6.68-6.63 (m, 1H), $3.64(\mathrm{dd}, J=11.0,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.07$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2(\mathrm{dd}, J=246.0,13.0 \mathrm{~Hz}), 109.7$ (d, $J=6.0$), $109.5(\mathrm{~d}, J=6.0), 102.3(\mathrm{t}, J=25.4 \mathrm{~Hz}), 61.8(\mathrm{t}, J=2.0 \mathrm{~Hz}), 53.1$, $34.5,33.8,25.3,23.2 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.3$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OJ-H, elute: Hexanes $/ i-\mathrm{PrOH}=95 / 5$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=11.4 \mathrm{~min}, \mathrm{t}_{2}=13.1 \mathrm{~min}(\mathrm{maj})$.
(2R,6R)-2-Methyl-6-(naphthalen-1-yl)piperidine (4d): [CAS: 1488821-66-4]; >95\% conv., pale oil, $\mathrm{R}_{f}=0.15$ (ethyl acetate), 64% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+21.7$ (c $0.48, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H})$, $2.20-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,134.0,131.0,129.2,127.5,126.0$, $126.0,125.5,123.3,123.1,57.9,53.9,34.3,33.6,25.8,23.3$; Enantiomeric excess was determined by HPLC for the corresponding benzamide (OD-H, elute: Hexanes/i-PrOH $=90 / 10$, detector: 220 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$), $30^{\circ} \mathrm{C}, \mathrm{t}_{1}=8.3 \mathrm{~min}$ (maj), $\mathrm{t}_{2}=10.0 \mathrm{~min}$.

4. The determination of the absolute configuration of $2 f$

The absolute configuration of hydrogenation product 2-(biphenyl -4-yl)-6-methyl-3-(trifluoromethyl)piperidine $2 f$ [87% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+55.5$ (c $0.70, \mathrm{CHCl}_{3}$)] was determined by X-ray diffraction analysis by recrystallization from mixture solvent of dichloromethane $/ n$-hexane to upgrade ee to $>99 \%$, The configurations of the other chiral products are assigned by analogy. CCDC 1009006 contains the structure and supplementary crystallographic data for the structure of (2R,3S,6R)-2-(biphenyl-4-yl)-6-methyl-3-(trifluoromethyl)piperidine $2 f$. These data can be obtained free of charge via www.ccdc.com.ac.uk/data_request/cif from the Cambridge Crystallographic Data Centre.

Figure 1. The X-ray structure of ($2 R, 3 S, 6 R$)-2-(biphenyl-4-yl)-6-methyl-3-(trifluoromethyl)piperidine 2f.

5. References

[1] Liu, C.; Han, N.; Song, X.; Qiu, J. Eur. J. Org. Chem. 2010, 5548.
[2] Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.
[3] Sharma, K. S.; Kumari. S.; Sing, R. P. Synthesis 1981, 316.
[4] Ahmed, S.; Sharif, M. Shoaib, K.; Reimann, S.; Iqbal, J.; Patonay, T.; Spannenberg, A.; Langer, P. Tetrrahedron Lett. 2013, 54, 1699
[5] Vandromme, L.; Reißig. H.-U.; Gröper, S.; Rabe, J. P. Eur. J. Org. Chem. 2008, 2049.
[6] (a) Katritzky, A. R.; Qiu, G.; Yang, B.; Steel, P. J. J. Org. Chem. 1998, 63, 6699; (b) Kita, Y.; Iimuro, A.; Hida, S.; Mashima, K. Chem. Lett. 2014, 43, 284.

6.1 Copy of NMR for trifluoromethyl pyridines

1 H NMR MC-9-44A in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 が

13C NMR MC-9-44A in CDCl3
 $\stackrel{\sim}{\sim}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllll}138 & 136 & 134 & 132 & 130 & 128 & 126 & 124 \\ \mathrm{f} 1(\mathrm{ppm}) & 122\end{array}$

 凶o

1H NMR MC-9-83 in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR MC-9-83 in CDCl

票

19F NMR MC-9-83 in CDCl3

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad

1 H NMR MC-9-34B in CDCl 3

13C NMR MC-9-34B in CDCl3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR MC-9-36A in CDCl

1a
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR MC-9-36A in CDCI

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1 H NMR MC-9-45A in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(40)

1H NMR MC-9-45B in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\circ}{\stackrel{\circ}{0}}$

1 H NMR MC-9-36B in CDCl 3

19F NMR MC-9-36B in CDCl 3

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR MC-9-47B in CDCl3

19F NMR MC-9-47B in CDCl3

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR MC-9-88 in CDCl3

F |
F |
% % < % % %
% % < % % %

19F NMR MC-9-88 in CDCl3

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No

1H NMR MC-9-92 in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

器爱

19F NMR MC-9-92 in CDCl3

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1 H NMR MC-9-47A in CDCl3

13C NMR MC-9-47A in CDCl3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

19F NMR MC-9-47A in CDCI3


```
NNNNNNNNN
```

```
\
\Omega
NNN
MN心N
```

1H NMR MC-10-9 in CDCl3

H NMR (400 MHz, CDCl_{3})

13C NMR MC-10-9 in CDCl3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19F NMR MC-10-9 in CDCl3

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6.2 Copy of NMR for trifluoromethyl piperidines

NiNNNJNN

1H NMR MC-9-68 in CDCl3

等 NNNNNNNNN NNNNN

2a
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 へN八分

1 H NMR MC－9－74B in CDCl 3

13C NMR MC-9-74B in CDCl 3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad

1 H NMR MC-9-76B in CDCl 3

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1 H NMR MC-9-74A in CDCl 3

19F NMR MC-9-74A in CDCl 3

${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR MC-9-76A in CDCl3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\begin{array}{rrrr}132 & 130 & 128 & 126 \\ & & \text { f1 (ppm) }\end{array}$

[^0]
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1 H NMR MC-9-97A in CDCl3

- $\int \sqrt{ }$ rard

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 l

19F NMR MC-9-97A in CDCl3

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\}

19 F NMR MC-9-97B in CDCl3

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR MC-9-98A in CDCl3

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$

19F NMR MC-9-98A in CDCl3

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
NへiNNNN

1H NMR MC-10-12 in CDCl3

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\infty}_{\text {No }}$

```
" 马
| NNNNNNNNNNNNMNNNNN
```


${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
NiNMNNNNNNN
```

1H NMR MC-10-20 in CDCl3

13C NMR ZY-6-92A in DMSO

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR ZY-6-94B in CDCl3

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 20

1

-
$\begin{array}{lllll}129 & 127 & 125 & 123 & 121\end{array}$ f1 (ppm)
$\stackrel{8}{4}$
$\stackrel{8}{4}$

4b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 -

1H NMR ZY-6-94D in CDCl3

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \stackrel{\mathbf{4 c}}{\mathbf{4 c}} \mathrm{MMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR ZY-6-94C in CDCl3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 l

I Mo min in ind

| 88 |
| :--- | :--- |
| |
| |

タ88

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{array}{lll}
\text { Totals : } & 5031.53516 & 92.24801
\end{array}
$$

Acc. Operatar	${ }_{\text {B }}^{\text {E }}$,	Tacarion: Visl 1
${ }_{\text {act }}^{\text {Anjection Date }}$	Instrument 1	Lacation : Vial 1
${ }_{\text {Inctection Date }}$	11/6:2013 8:10:19 PM	
Acq. Method		
st chanced	11/6/2013 8:08:05 PM by B (modified after loading)	
Analysis Method		
	109	

Sample Info : : $0 \mathrm{JT}-\mathrm{H}_{\mathrm{f}} \mathrm{H} / \mathrm{i}-\mathrm{FrOH} /=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, 30$ oc, 220 nm

$===$

Sorted BF
Multiplier:
${ }^{\text {simmal }}$

Signal 1: VWD 1 A , Wavelength=220 nim

$(+1-)-2 b^{\prime}$
$\begin{array}{lllll}\text { Totals : } & 4105.01465 & 241.50266\end{array}$

$\begin{aligned} & \text { Soxted Bv } \\ & \text { Hultiplier: }\end{aligned} \quad: \quad \stackrel{\text { Siomal }}{:} \quad$ 1.000

sigmal 1: VID 1 À, Wavelength=220 nm

(+)-2b'
$\begin{array}{lll}\text { Totals: } & 1.03645=4 & 570.91042\end{array}$

Sarted By
Multiplier
simal

signal 1: VWIF 1 A , Wavelength $=220 \mathrm{nt}$

Totals:
4224.99097 $\quad 367.37747$

Signal 1: vid $1 \hat{A}$, wavelength $=220 \mathrm{n}$

$\begin{array}{rlrrr}\frac{1}{2} & 8.8511 \mathrm{EE} & 0.1863 & 4039.81006 & 337.31100 \\ \text { Totals }: & 4292.99152 & 361.78810\end{array}$

(+)-2c


```
*)
Location: wial
```



```
fast chanced : \(12 / 2 / 2013\) 9:30:17 AM b\% B
```


(+l-)-2d'
Totals: $8202.34692 \quad 361.72029$

Act. Operatar	B	Tocarion
Injection Date	12/2/2013 10:03:38 an	Lucation : Vial 1
Acq. Method		
Last chanced	12/2/2013 10:02:01 M11 by B	
alysis Method	c: Chemszuluethodsidef lc.	
	7/11/2014 3:35:13 pry by ${ }^{\text {c }}$	

$\begin{array}{lll}\text { Totals : } & 5465.48660 & 213.12159\end{array}$

$=======================================-1$

Signal 1: WWW 1 A , Wavelength $=220 \mathrm{mi}$

$(+\mid-)-2 e^{\prime}$
Totale :
$2.66030 \mathrm{e} \quad 1239.77655$

sigmal 1: VID 1 À, Wavelength=220 nm

(+)-2e'

Totals: $\quad 6346.78720 \quad 264.54477$ *=-=-=-=-=-=-=-=-=-=-

Acc.
Act.
Tnerator $\quad Z$

Last chanced :7/22/2014 5:35:20 pm bv z

$=-==================-================$
Sorted BF
Multiplier

Dilution:
Signal 1: WWD $1 A$, Wavelength- 220 nil

Totals:
$3251.99426 \quad 144.31327$

Acq. Operator Acq. Instrument	Instrument 1	Location: Wial 1
Injection Date	7/22/2014 1:38:02 PM	
Acq. Method		
Last chanced	7/22/2014 1:36:40 pra bv Z	
	Roditied after loadis	
	(Ludificd aiter loading)	
pule Info	M $\mathrm{MD}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=90 / 10,1$.	in, 30 oc, 220

$\underset{\substack{\text { Pilution: } \\ \text { Ise Multiplier } \\ \text { \& Dilution Factor with ISTD }}}{\substack{1.0000 \\ 1.0000}}$
Signal 1: VWI 1 A, Wavelength=220 min

Totals :
$1494.29401 \quad 57.20758$
(+)-2f'

 Area Percent Report

Signal 1: VWP 1 A , Wavelength $=220$ mu

Totals: $5167.29958 \quad 374.42609$

Sata File C: CHEM32\1:DATA ZHOU-13\YzNOO4360.D


```
wat)
```



```
Sample Info : (modified aiter lor, loading)
```


\qquad
Sarted BY
Siqmal

Sigmal 1: VWD 1 A , Wavelength $=220 \mathrm{~mm}$

Totals:
$940.07828 \quad 173.68440$

Acc. Act. Operatar Instrument	B ${ }^{\text {B }}$	
Acq. Instruwent		Location : Wial 1
Acq. Method	C:\CHEM3Z	
IETHODS \backslash DEF LC.m		
Last chanced	1/3/2014 4: 47:46 Pr bv в	
	(modified after loadi	
Analvsis Method		
Last changed	8/19/2014 10:20:46 AM	
mple Info	(modiried aiter 10	

$\begin{gathered}\text { Sarted BV } \\ \text { Hultiplier: }\end{gathered} \quad: \quad \stackrel{\text { Sicmal }}{:} \quad 1.000$

Signal 1: VWD 1 A , Wavelength- 220 nm

Totals :
$493.15940 \quad 97.16082$
$\pi===-===-====-===-=$

Acq. Operator	E
hcq. Instrument	Instrument 1 Location : Vial 1
Injection Date	1/20/2014 5:15:26 PM
Acq. Method	
Last chanced	
	(modir led after loading
Last changed	
	imodified after 109
Sample Info	$\mathrm{AL}^{\text {H }} \mathrm{H} \mathrm{H} / 1-\mathrm{Pr} \mathrm{OH}=90 / 10$,

Sigmal 1: ViD 1 A, Wavelength $=220 \mathrm{~nm}$

Totals
$5295.73312 \quad 443.17843$
(+)-2i'
$===================$

Inieection Date : 1z/20;2012 12:13:3

Sigmal 1: VID 1 À, Wavelength=220 nm

Totals: $9770.81543 \quad 200.60844$
$=-=-=-=-=-=-=-=-==$

Acc. operator :
Acc. Instrument : $\begin{aligned} & \text { wh } \\ & \text { Instrument }\end{aligned}$

Last chanced $\quad: 1 / 47 / 20131: 45: 57$ MM by wh

Sorted By
Multipliver
Area Percent Report

- : sicmal

Stgnal 1: VIDP A , Waveleng $h=220 \mathrm{~mm}$

Totals:
$7239.31104 \quad 162.57453$
(+)-4a'
$\pi=-====-=======-==$


```
lollol
```



```
Last changed : 3/14/2013 8:10:18 m.mpy wH
M,
Sample Info : (modified after loading)
```


\qquad
\qquad

$$
\begin{aligned}
& \text { Soxted By } \\
& \text { Multiplier: }
\end{aligned} \quad: \quad \begin{gathered}
\text { Siqma } \\
:
\end{gathered}
$$

$$
\begin{aligned}
& \vdots \quad 1.0000 \\
& \text { pilution: } \\
& \text { Use Mlutiplier \& Dilution Factor with ISTD }
\end{aligned}
$$

$$
\text { Signal 1: VWI } 1 \text { A, Wavel ength=220 nil }
$$

Totals: 2734.24133 99.64309
*=-=-=-=-=-=-=-=-==-

Data File G:MC-1才YZ004027.

Acc. aperator		
Acq. Instrument	Instrument 1	Location : Wial 1
Injection Date	3/16/2013 3:13:49 AM	
Acc. Method		
Last chanced	3/16/2013 3:05:14 AM bw wH modified after loading	
Analveis Meth		
Last changed	8/19/2014 11:03:05 AM bY Z (nodified after loading	
mple		

Sorted BY
Mutitipliper:
Dilution:
Diutint
$\stackrel{\text { Sicmal }}{\vdots} 1.0000$

Signal 1: VWP 1 A , Wavelength $=220 \mathrm{mi}$

Totale :
$\quad 9666.29492 \quad 302.57607$

hcc. aperator	TH/	Location : Wial
Act. Instrument	Instrument 1	Location: wial
Injection Date	3/16/2013 1:49:45 m.	
neq. Merhod		
chanced	3/16/2013 1:30:34 AM bw wH (modified after loading)	
alvsis Heth		
t changed	8/19/2014 11:06:51 AM by	

$$
\begin{aligned}
& \text { Totals : } \quad 6495.63373 \quad 223.79744
\end{aligned}
$$

$\begin{aligned} & \text { Soxted Bv } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Siqmal }}{;} \quad 1.0000$

Signal 1: VWD 1 A , Wavelength $=220 \mathrm{~mm}$

Totals:
$1.15237 \mathrm{e} 4 \quad 729.19276$

Data File G: MC-11YZ004023.D
Sample Name: $Z 7-6-95 c$

ACq. Operator Acq. Instrument	wH Instrument 1	Lacarion : Visl 1
Injection Date	3/16/2013 2:25:33 Am	Lucation : Vial 1
Acq. Method		
Last chanced	3/16/2013 2:09:09 4M bv wH (modified after loading)	
Analysis Method Last changed	8/19/2014 11:04: 48 inl by 2 (modified aiter loading	

\qquad
\qquad
Sorted By
Multiplier
:

sigmal_{1} 1: viD $1 \hat{\mathrm{~h}}$, Wavelength=220 nim

[^0]:

[^1]:

