CuBr₂-Catalyzed Enantioselective Routes to Highly Functionalized and Naturally Occurring Allenes

Xinjun Tang,^{*a*} Xin Huang,^{*b*} Tao Cao,^{*a*,†} Yulin Han,^{*a*,†} Xingguo Jiang,^{*a*,†} Weilong Lin,^{*a*,†} Yang Tang,^{*a*,†} Jiasheng Zhang,^{*a*,†} Qiong Yu,^{*c*,†} Chunling Fu,^{*b*} and Shengming Ma^{*a*,*b*}* ^{*a*} State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.

^b Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.

^c Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Lu, Shanghai, 200062, P. R. China.

[†] These authors contributed equally to this work.

Fax: (+86)21-6260-9305; E-mail: masm@sioc.ac.cn

Supporting Information

Figure S1	S3
Figure S2	S4
The photo of the apparatus for Typical Procedure I (130 °C)	S5
The photo of the apparatus for Typical Procedure II (70 °C)	S6
General experimental methods	S7
Synthesis of functionalized axially chiral allenes (R_a) -4aa~ (R_a) -4fa	S8-S18
Synthesis of naturally occurring allenes	S18-S27
References	S28
¹ H NMR, ¹³ C NMR, and HPLC spectra of the compounds prepared	S29-S108

Problems:

(1) expensive nature of the terminal propargylic alcohols

(2) efficiency of chirality transfer

(3) R¹, R²: simple alkyl or aryl

(4) Low synthetical efficiency with 4 or 5 steps

Figure S1. Enantioselective synthesis of simple 1,3-allenes via chirality transfer

strategy.

Figure S2. Pd-catalyzed enantioselective syntheses of amines and malonates with 1,3-disubstituted allene unit.

Figure S3. The photo of the apparatus for Typical Procedure I (130 °C).

Figure S4. The photo of the apparatus for Typical Procedure II (70 $^{\circ}$ C).

General Experimental Methods

¹H and ¹³C nuclear magnetic resonance spectra were recorded on an instrument operated at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR spectra. Infrared spectra were recorded from the films of pure samples on sodium chloride plates for liquid or in the form of KBr discs for the solid samples. Mass and HRMS spectra were carried out in EI or ESI mode. Thin layer chromatography was performed on pre-coated glass-back plates and visualized with UV light at 254 nm. Flash column chromatography was performed on silica gel. Copper(II) bromide was purchased from J&K. (*S*)- α , α -Diphenylprolinol and (*R*)- α , α -diphenylprolinol were purchased from Shanghai Darui Fine Chemicals. Aldehydes were distilled right before use. Dioxane were dried over sodium wire with benzophenone as the indicator and distilled freshly before use. All the temperatures are referred to the oil baths used. Synthesis of functionalized axially chiral allenes (R_a) -4aa~ (R_a) -4fa.

1. Preparation of (R_a) -N-(4-cyclohexylbuta-2,3-dienyl)-4-methylbenzenesul-

fonamide (*R_a*)-4aa. (hx-11-3)

Typical Procedure I: To a flame-dried Schlenk tube with a polytetrafluoroethylene plug were added CuBr₂ (45.0 mg, 0.2 mmol), (S)-3 (253.9 mg, 1.0 mmol), 1a (313.4 mg, 1.5 mmol)/dioxane (1.5 mL), and 2a (167.8 mg, 1.5 mmol)/dioxane (1.5 mL) sequentially under nitrogen atmosphere. The Schlenk tube was then sealed by screwing a polytetrafluoroethylene plug tightly with the outlet connected to the vacuum line and the nitrogen flow being closed (For an apparatus, see Fig. S3). The reaction was complete after being stirred in an oil bath preheated at 130 °C for 12 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 5/1). Then the resulting mixture was diluted with ether (30 mL) and washed with an aqueous solution of hydrochloric acid (3 M, 20 mL). The organic layer was separated, and the aqueous layer was extracted with ether (20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 5/1) on silica gel to afford (R_a)-4aa (180.0 mg, 59%) as a liquid:¹ 98% ee (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 95/5, 0.5 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 34.1 min, $t_{\rm R}({\rm minor}) = 35.6$ min); $[\alpha]_{\rm D}^{20} = -102.0$ (c = 1.05, CHCl₃) (reported value: 99% ee; $[\alpha]_D^{20} = -105.5$ (c = 1.07, CHCl₃)); ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.72

(m, 2 H, ArH), 7.30 (d, J = 7.8 Hz, 2 H, ArH), 5.21-5.12 (m, 1 H, one proton of CH=C=CH), 5.11-5.01 (m, 1 H, one proton of CH=C=CH), 4.85 (t, J = 5.9 Hz, 1 H, NH), 3.60-3.50 (m, 2 H, NCH₂), 2.42 (s, 3 H, CH₃), 1.98-1.82 (m, 1 H, CH from Cy), 1.73-1.53 (m, 5 H, five protons from Cy), 1.32-0.89 (m, 5 H, five protons from Cy); ¹³C NMR (75 MHz, CDCl₃) δ 202.3, 143.3, 137.0, 129.6, 127.0, 100.4, 88.4, 42.0, 36.7, 32.8, 32.7, 25.9, 25.8, 21.4; IR (neat) v (cm⁻¹) 3284, 2924, 2850, 1962, 1598, 1495, 1418, 1329, 1161, 1094; MS (EI) m/z (%): 305 (M⁺, 1.14), 91 (100).

The following compounds (R_a)-4bb~(R_a)-4fa were prepared at 130 °C according to the **Typical Procedure I** or at 70 °C according to the **Typical Procedure II** (see page S11) and their corresponding racemic enantiomers were prepared by following the same procedure using racemic diphenylprolinol *rac-3*.

2. Preparation of (R_a) -N-(6-methylhepta-2,3-dienyl)benzamide (R_a) -4bb.

(hx-11-51)

The reaction of CuBr₂ (44.9 mg, 0.2 mmol), **1b** (238.4 mg, 1.5 mmol), (*S*)-**3** (254.3 mg, 1.0 mmol), and **2b** (129.9 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4bb** (136.8 mg, 59%) (eluent: petroleum ether/ethyl acetate = 5/1) as a liquid: 93% ee (HPLC conditions: Chiralcel AY-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R (major) = 9.8 min, t_R (minor) = 11.2 min); $[\alpha]_D^{20}$ = -92.5 (c = 0.78, CHCl₃);

¹H NMR (300 MHz, CDCl₃) δ 7.82-7.73 (m, 2 H, ArH), 7.51-7.35 (m, 3 H, ArH), 6.52 (bs, 1 H, NH), 5.30-5.19 (m, 2 H, CH=C=CH), 4.05-3.95 (m, 2 H, NCH₂), 1.96-1.86 (m, 2 H, CH₂), 1.73-1.55 (m, 1 H, CH), 0.894 (d, *J* = 6.6 Hz, 3 H, Me), 0.891 (d, *J* = 6.6 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 203.8, 167.3, 134.5, 131.3, 128.4, 126.8, 92.9, 87.8, 38.5, 38.0, 28.3, 22.1, 22.0; IR (neat) v (cm⁻¹) 3320, 3064, 2955, 2927, 2869, 1964, 1727, 1644, 1603, 1578, 1538, 1489, 1465, 1308, 1076; MS (EI) m/z (%): 229 (M⁺, 7.05), 105 (100); HRMS calcd for C₁₅H₁₉NO [M⁺]: 229.1467, found: 229.1469.

3. Preparation of (R_a) -tert-butyl (dodeca-2,3-dienyl)carbamate (R_a) -4cc. (zjs-3-097)

The reaction of CuBr₂ (45.4 mg, 0.2 mmol), **1c** (231.9 mg, 1.5 mmol), (*S*)-**3** (254.1 mg, 1.0 mmol), and **2c** (214.5 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4cc** (220.9 mg, 78%) (eluent: petroleum ether/ethyl acetate = 100/1) as a liquid: 97% ee (HPLC conditions: Chiralcel AD-R column, MeOH/H₂O = 85/15, 1.0 mL/min, λ = 214 nm, t_R (major) = 12.2 min, t_R (minor) = 16.2 min); [α]_D²⁰ = -60.4 (c = 1.02, CHCl₃)); ¹H NMR (400 MHz, CDCl₃) δ 5.28-5.22 (m, 1 H, one proton of CH=C=CH), 5.18-5.12 (m, 1 H, one proton of CH=C=CH), 4.72 (bs, 1 H, NH), 3.78-3.60 (m, 2 H, NCH₂), 2.00 (qd, J_I = 6.8 Hz, J_2 = 2.8 Hz, 2 H, CH₂), 1.45 (s, 9 H, t-Bu), 1.43-1.27 (m, 12 H, (CH₂)₆), 0.88 (t, J = 6.8 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 155.6, 93.9, 89.0, 79.1, 39.3, 31.8, 29.3, 29.2, 29.0, 28.6, 28.3, 22.6, 14.0; IR (neat) v

(cm⁻¹) 3354, 2925, 2854, 1965, 1696, 1503, 1458, 1389, 1366, 1247, 1167; MS (EI) m/z (%): 225 ((M-^{*t*}Bu+H)⁺, 34.93), 57 (100); HRMS calcd for $C_{13}H_{23}NO_2$ [(M-^{*t*}Bu+H)⁺]: 225.1729, found: 225.1732.

4. Preparation of (*R_a*)-*tert*-butyl (dodeca-2,3-dienyl)carbamate (*R_a*)-4cc at 70 °C. (tangy-1-113)

Typical Procedure II: To a flame-dried Schlenk tube with a rubber plug were added CuBr₂ (45.2 mg, 0.2 mmol), (S)-3 (254.1 mg, 1.0 mmol), 1c (231.9 mg, 1.5 mmol)/dioxane (1.5 mL), and 2c (214.1 mg, 1.5 mmol)/dioxane (1.5 mL) sequentially under nitrogen atmosphere (For an apparatus, see Fig. S4). The reaction mixture was then stirred in an oil bath preheated at 70 °C for 24 h as monitored by TLC (eluent: petroleum ether/ethyl acetate = 10/1). The resulting mixture was diluted with ether (30 mL) and washed with an aqueous solution of hydrochloric acid (3 M, 20 mL). The organic layer was separated and the aqueous layer was extracted with ether (20 mL). The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford (R_a)-4cc (153.6 mg, 54%) as a liquid: 98% ee (HPLC conditions: Chiralcel AD-R column, MeOH/H₂O = 85/15, 1.0 mL/min, $\lambda = 214$ nm, $t_{\rm R}$ (major) = 12.4 min, $t_{\rm R}$ (minor) = 16.1 min); $[\alpha]_{\rm D}^{20} = -55.2$ $(c = 0.91, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 5.29-5.22 (m, 1 H, one proton of CH=C=CH), 5.17-5.15 (m, 1 H, one proton of CH=C=CH), 4.63 (bs, 1 H, NH),

3.75-3.65 (m, 2 H, NCH₂), 2.00 (qd, *J*₁ = 6.8 Hz, *J*₂ = 2.8 Hz, 2 H, CH₂), 1.45 (s, 9 H, t-Bu), 1.43-1.25 (m, 12 H, (CH₂)₆), 0.88 (t, *J* = 6.8 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 203.2, 155.7, 94.0, 89.0, 79.2, 39.3, 31.8, 29.4, 29.2, 29.0, 28.7, 28.3, 22.6, 14.1.

5. Preparation of (R_a) -tert-butyl (pentadeca-2,3-dienyl)carbamate (R_a) -4cd. (zjs-3-101)

The reaction of CuBr₂ (45.2 mg, 0.2 mmol), **1c** (233.5 mg, 1.5 mmol), (*S*)-**3** (253.3 mg, 1.0 mmol), and **2d** (275.9 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4cd** (239.2 mg, 74%) (eluent: petroleum ether/ethyl acetate = 100/1) as a liquid: 96% ee (HPLC conditions: Chiralcel AD-R column, MeOH/H₂O = 90/10, 0.5 mL/min, λ = 214 nm, t_R (major) = 27.8 min, t_R (minor) = 38.0 min); $[\alpha]_D^{20}$ = -50.4 (c = 1.00, CHCl₃)); ¹H NMR (400 MHz, CDCl₃) δ 5.28-5.21 (m, 1 H, one proton of CH=C=CH), 5.17-5.14 (m, 1 H, one proton of CH=C=CH), 4.75 (bs, 1 H, NH), 3.75-3.60 (m, 2 H, NCH₂), 2.00 (qd, J_I = 6.8 Hz, J_2 = 2.8 Hz, 2 H, CH₂), 1.45 (s, 9 H, t-Bu), 1.43-1.26 (m, 18 H, (CH₂)₉), 0.88 (t, J = 6.8 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 155.6, 93.9, 89.0, 79.0, 39.2, 31.8, 29.6, 29.5, 29.4, 29.2, 29.0, 28.6, 28.3, 22.6, 14.0; IR (neat) v (cm⁻¹) 3352, 2924, 2854, 1965, 1699, 1503, 1460, 1389, 1366, 1247, 1168, 1053; MS (EI) m/z (%): 267 ((M-'Bu+H)⁺, 72.62), 57 (100); HRMS calcd for C₁₆H₂₉NO₂ [(M-'Bu+H)⁺]: 267.2198, found: 267.2203.

6. Preparation of (R_a) -tert-butyl (5-ethylhepta-2,3-dienyl)carbamate (R_a) -4ce.

(hx-11-52)

The reaction of CuBr₂ (44.9 mg, 0.2 mmol), **1c** (232.8 mg, 1.5 mmol), (*S*)-**3** (253.2 mg, 1.0 mmol), and **2e** (150.6 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4ce** (160.3 mg, 67%) (eluent: petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate = 20/1) as a liquid: 96% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 1.0 mL/min, λ = 214 nm, t_R (minor) = 19.7 min, t_R (major) = 20.4 min); $[\alpha]_D^{20}$ = -63.5 (c = 1.055, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.22-5.12 (m, 1 H, one proton of CH=C=CH), 5.11-5.03 (m, 1 H, one proton of CH=C=CH), 4.71 (bs, 1 H, NH), 3.77-3.63 (m, 2 H, NCH₂), 1.93-1.78 (m, 1 H, CH), 1.53-1.21 (m, 13 H, Me × 3 and CH₂ × 2), 0.90 (t, J = 7.4 Hz, 3 H, Me), 0.89 (t, J = 7.4 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 203.0, 155.6, 97.7, 89.0, 79.1, 42.7, 39.3, 28.3, 27.5, 27.2, 11.6, 11.4; IR (neat) v (cm⁻¹) 3351, 2965, 2931, 2875, 1963, 1698, 1505, 1456, 1392, 1366, 1250, 1172, 1053; MS (EI) m/z (%): 239 (M⁺, 0.01), 183 ((M-^tBu+H)⁺, 45.91), 57 (100); HRMS calcd for C₁₄H₂₅NO₂ [M⁺]: 239.1885, found: 239.1878.

7. Preparation of (R_a)-tert-butyl (4-bromophenyl-2,3-dienyl)carbamate (R_a)-4cf.
 (zjs-3-105)

The reaction of CuBr₂ (90.0 mg, 0.4 mmol), **1c** (233.1 mg, 1.5 mmol), (*S*)-**3** (254.0 mg, 1.0 mmol), and **2f** (278.2 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4cf** (195.0 mg, 60%) (eluent: petroleum ether/ethyl acetate = 25/1) as a oil: 97% ee (HPLC conditions: Chiralcel IB column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R (minor) = 7.5 min, t_R (major) = 8.1 min); [α]_D²⁰ = -207.4 (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.37 (m, 2 H, ArH), 7.13 (d, J = 8.4 Hz, 2 H, ArH), 6.23-6.17 (m, 1 H, one proton of CH=C=CH), 5.62 (q, J = 5.6 Hz, 1 H, one proton of CH=C=CH), 4.93 (bs, 1 H, NH), 3.93-3.70 (m, 2 H, NCH₂), 1.39 (s, 9 H, t-Bu); ¹³C NMR (100 MHz, CDCl₃) δ 204.4, 155.5, 132.8, 131.5, 128.3, 120.6, 96.3, 93.9, 79.3, 38.8, 28.2; IR (neat) v (cm⁻¹) 3366, 2976, 2928, 1951, 1687, 1515, 1366, 1248, 1165, 1062, 1008; MS (EI) m/z (%): 269 ((M(⁸¹Br)-'Bu+H)⁺, 68.6), 267 ((M(⁷⁹Br)-'Bu+H)⁺, 70.66), 57 (100); HRMS calcd for C₁₁H₁₀NO₂⁷⁹Br [(M(⁷⁹Br)-'Bu+H)⁺]: 266.9895, found: 266.9891.

8. Preparation of (R_a) -dimethyl 2-(4-cyclohexylbuta-2,3-dienyl)malonate (R_a) -4da. (hx-11-5)

The reaction of CuBr₂ (44.8 mg, 0.2 mmol), **1d** (255.7 mg, 1.5 mmol), (S)-**3** (252.8 mg, 1.0 mmol), and **2a** (168.2 mg, 1.5 mmol) in dioxane (3.0 mL) afforded

(R_a)-4da (135.7 mg, 51%) (eluent: petroleum ether/ethyl acetate = 15/1) as a liquid:¹ 95% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/1, 1.0 mL/min, λ = 214 nm, t_R (minor) = 9.0 min, t_R (major) = 9.6 min); $[\alpha]_D^{20}$ = -84.0 (c = 1.045, CHCl₃) (reported value: 99% ee; $[\alpha]_D^{20}$ = -85.4 (c = 1.05, CHCl₃)); ¹H NMR (300 MHz, CDCl₃) δ 5.20-5.08 (m, 2 H, CH=C=CH), 3.740 (s, 3 H, Me), 3.737 (s, 3 H, Me), 3.51 (t, J = 7.5 Hz, 1 H, CH), 2.63-2.54 (m, 2 H, CH₂), 2.00-1.85 (m, 1 H, CH from Cy), 1.78-1.57 (m, 5 H, five protons from Cy), 1.35-0.95 (m, 5 H, five protons from Cy); ¹³C NMR (75 MHz, CDCl₃) δ 202.7, 169.33, 169.29, 98.9, 88.2, 52.4, 51.2, 37.1, 32.82, 32.78, 28.0, 26.0, 25.9; IR (neat) v (cm⁻¹) 2926, 2851, 1959, 1757, 1738, 1617, 1436, 1343, 1233, 1155, 1035; MS (EI) m/z (%): 266 (M⁺, 6.72), 91 (100).

9. Preparation of (R_a) -dimethyl 2-(6-methylhepta-2,3-dienyl)malonate (R_a) -4db.

(hx-11-25)

The reaction of CuBr₂ (45.0 mg, 0.2 mmol), **1d** (255.7 mg, 1.5 mmol), (*S*)-**3** (252.5 mg, 1.0 mmol), and **2b** (129.6 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4db** (121.9 mg, 51%) (eluent: petroleum ether/ethyl acetate = 20/1) as a liquid: 94% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/1, 0.7 mL/min, λ = 214 nm, $t_R(\text{minor}) = 10.9$ min, $t_R(\text{major}) = 11.7$ min); $[\alpha]_D^{20} = -64.4$ (c = 0.87, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.15-5.04 (m, 2 H, CH=C=CH), 3.74 (s, 6 H, Me × 2), 3.51 (t, J = 7.5 Hz, 1 H, CH), 2.62-2.54 (m, 2 H, CH₂), 1.90-1.82 (m, 2 H, CH₂),

1.72-1.56 (m, 1 H, CH), 0.910 (d, J = 6.6 Hz, 3 H, Me), 0.906 (d, J = 6.6 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 204.6, 169.3, 169.2, 91.3, 86.6, 52.4, 51.3, 38.2, 28.3, 28.0, 22.09, 22.06; IR (neat) v (cm⁻¹) 2956, 2927, 2869, 1964, 1754, 1739, 1436, 1342, 1271, 1232, 1154, 1044; MS (EI) m/z (%): 240 (M⁺, 27.06), 97 (100); HRMS calcd for C₁₃H₂₀O₄ [M⁺]: 240.1362, found: 240.1362.

10. Preparation of (R_a) -dimethyl 2-(pentadeca-2,3-dienyl)malonate (R_a) -4dd. (ty-1-68)

The reaction of CuBr₂ (45.1 mg, 0.2 mmol), **1d** (255.8 mg, 1.5 mmol), (*S*)-**3** (253.8 mg, 1.0 mmol), and **2d** (277.1 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4dd** (170.4 mg, 50%) (eluent: petroleum ether/ethyl acetate = 100/1) as a liquid: 94% ee (HPLC conditions: Chiralcel PC-4 column, MeOH/H₂O = 82/18, 0.7 mL/min, λ = 214 nm, t_R (minor) = 37.5 min, t_R (major) = 39.7 min); [α]_D²⁶ = -49.9 (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.19-5.06 (m, 2 H, CH=C=CH), 3.74 (s, 6 H, Me × 2), 3.51 (t, J = 7.4 Hz, 1 H, CH), 2.63-2.53 (m, 2 H, CH₂), 1.98-1.90 (m, 2 H, CH₂), 1.42-1.24 (m, 18 H, (CH₂)₉), 0.88 (t, J = 6.6 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 169.4, 169.3, 93.0, 87.3, 52.5, 51.2, 31.9, 29.6, 29.5, 29.3, 29.15, 29.07, 28.8, 28.0, 22.7, 14.1; IR (neat) v (cm⁻¹) 2923, 2853, 1964, 1755, 1738, 1436, 1340, 1262, 1230, 1151, 1080, 1041; MS (EI) m/z (%): 338 (M⁺, 5.34), 138 (100); HRMS calcd for C₂₀H₃₄O₄ [M⁺]: 338.2457, found: 338.2458.

11. Preparation of (R_a)-phenyltrideca-3,4-diene (R_a)-4eg. (hx-11-74)

The reaction of CuBr₂ (44.9 mg, 0.2 mmol), **1e** (207.8 mg, 1.5 mmol), (*S*)-**3** (253.4 mg, 1.0 mmol), and **2g** (201.5 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4eg** (119.3 mg, 47%) (eluent: petroleum ether) as a liquid: 90% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.3 mL/min, λ = 214 nm, t_R (minor) = 17.9 min, t_R (major) = 19.7 min); [α]_D²⁰ = -50.0 (c = 0.84, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.21 (m, 2 H, ArH), 7.21-7.12 (m, 3 H, ArH), 5.16-5.02 (m, 2 H, CH=C=CH), 2.72 (t, J = 7.8 Hz, 2 H, CH₂), 2.35-2.20 (m, 2 H, CH₂), 1.99-1.87 (m, 2 H, CH₂), 1.42-1.18 (m, 12 H, CH₂× 6), 0.88 (t, J = 6.8 Hz, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 204.0, 141.9, 128.5, 128.2, 125.8, 91.5, 90.2, 35.5, 31.9, 30.7, 29.4, 29.3, 29.2, 29.1, 28.9, 22.7, 14.1; IR (neat) v (cm⁻¹) 3086, 3063, 3027, 2924, 2854, 1962, 1721, 1604, 1496, 1455, 1373, 1331, 1284, 1075, 1028; MS (EI) m/z (%): 256 (M⁺, 12.85), 91 (100); HRMS calcd for C₁₉H₂₈ [M⁺]: 256.2191, found: 256.2194.

12. Preparation of (*R_a*)-3-cyclohexyl-1-phenylpropa-1,2-diene (*R_a*)-4fa. (hx-11-18)

The reaction of CuBr₂ (44.8 mg, 0.2 mmol), **1f** (153.2 mg, 1.5 mmol), (*S*)-**3** (253.1 mg, 1.0 mmol), and **2a** (168.4 mg, 1.5 mmol) in dioxane (3.0 mL) afforded (R_a)-**4fa** (90.1 mg, 46%) (eluent: petroleum ether) as a liquid:³ 96% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.3 mL/min, λ = 214 nm,

 $t_{\rm R}(\text{major}) = 20.1 \text{ min}, t_{\rm R}(\text{minor}) = 22.1 \text{ min}); [\alpha]_{\rm D}^{20} = -355.3 (c = 1.01, CHCl_3)$ (reported value: 99% ee; $[\alpha]_{\rm D}^{19} = -330.3$ (c = 0.94, CHCl_3)) (We repeated the reaction reported in ref. 3 and measured the ee and the specific optical rotation of this compound again: 99% ee; $[\alpha]_{\rm D}^{20} = -379.0$ (c = 1.125, CHCl_3), thus, the data in ref. 3 for this specific compound should be corrected); ¹H NMR (300 MHz, CDCl_3) δ 7.32-7.23 (m, 4 H, ArH), 7.21-7.11 (m, 1 H, ArH), 6.15 (dd, $J_I = 6.6$ Hz, $J_2 = 3.0$ Hz, 1 H, one proton from CH=C=CH), 5.56 (t, J = 6.3 Hz, 1 H, one proton from CH=C=CH), 2.20-2.04 (m, 1 H, CH), 1.90-1.57 (m, 5 H, five protons from Cy), 1.38-1.09 (m, 5 H, five protons from Cy); ¹³C NMR (75 MHz, CDCl_3) δ 204.1, 135.2, 128.5, 126.6, 126.4, 101.0, 95.4, 37.6, 33.2, 33.1, 26.1, 26.0; IR (neat) v (cm⁻¹) 3082, 3062, 3030, 2924, 2851, 1946, 1597, 1496, 1458, 1257, 1071, 1028; MS (EI) m/z (%): 198 (M⁺, 30.22), 130 (100).

Synthesis of naturally occurring allenes

1. Synthesis of naturally occurring insect pheromone (R_a) -6

(1) Preparation of (R)-dimethyl 2-(dodeca-2,3-dienyl)malonate (R_a)-4rk on 4.0

mmol scale. (tangxj-8-154)

Following **Typical Procedure I**, the reaction of CuBr_2 (44.5 mg, 0.2 mmol), **1d** (340.2 mg, 2.0 mmol), (*S*)-**3** (254.1 mg, 1.0 mmol), and **2c** (285.1 mg, 2.0 mmol) in dioxane (3.0 mL) afforded (R_a)-4dc (166.3 mg, 56%) (eluent: petroleum ether/ethyl

acetate = 50/1) as a liquid: 94% ee (HPLC conditions: Chiralcel PC-4 column, MeOH/H₂O = 82/18, 0.7 mL/min, λ = 214 nm, $t_R(\text{minor})$ = 19.9 min, $t_R(\text{major})$ = 21.0 min); $[\alpha]_D^{29.5}$ = -61.8 (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.24-5.04 (m, 2 H, CH=C=CH), 3.74 (s, 6 H, 2 × CH₃), 3.51 (t, J = 7.6 Hz, 1 H, CH), 2.64-2.51 (m, 2 H, CH₂), 2.00-1.86 (m, 2 H, CH₂), 1.41-1.19 (m, 12 H, 6 × CH₂), 0.88 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 169.34, 169.28, 93.0, 87.3, 52.4, 51.2, 31.8, 29.4, 29.2, 29.1, 29.0, 28.7, 28.0, 22.6, 14.0; IR (neat) v (cm⁻¹) 2954, 2925, 2854, 1965, 1738, 1436, 1340, 1261, 1230, 1152, 1081, 1040; MS (EI) m/z (%): 296 (M⁺, 4.51), 138 (100); HRMS calcd. for C₁₇H₂₈O₄ (M⁺): 296.1988; Found: 296.1992.

(2) Preparation of (*R*)-methyl tetradeca-4,5-dienoate (R_a)-5.⁴ (hanyl-3-81)

To a Schlenk tube were added LiCl (145.0 mg, purity = 98%, 3.36 mmol), (R_a) -4dc (499.6 mg, 1.68 mmol), DMSO (9.0 mL), and H₂O (119.5 mg, 6.72 mmol) sequentially. The Schlenk tube was then equipped with a condenser and heasated with stirring with a preheated 180 °C oil bath. The reaction was complete after being stirred for 1.5 h as monitored by TLC. Then the resulting mixture was diluted with ethyl acetate (20 mL) and quenched with H₂O (7.0 mL). The organic layer was separated, washed with H₂O (3 × 10 mL) and brine (3 × 10 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford (R_a)-5 (301.0 mg, 75%) as a liquid: 95% ee (HPLC conditions: Chiralcel OD-H

column, hexane/*i*-PrOH = 100/0, 0.8 mL/min, λ = 214 nm, $t_R(minor)$ = 12.7 min, $t_R(major)$ = 13.4 min); $[\alpha]_D^{26.0}$ = -52.4 (c = 1.00, CHCl₃); ¹H NMR (400M Hz, CDCl₃) δ 5.21-5.09 (m, 2 H, C=CH), 3.72-3.65 (s, 3 H, CO₂CH₃), 2.43 (t, J = 7.4 Hz, 2 H, COCH₂), 2.35-2.26 (m, 2 H, C=CCH₂), 2.03-2.19 (m, 2 H, C=CCH₂), 1.42-1.21 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100M Hz, CDCl₃) δ 203.6, 173.6, 92.6, 89.4, 51.5, 33.2, 31.8, 29.4, 29.3, 29.1, 28.8, 23.8, 22.6, 14.1; IR (neat) v (cm⁻¹) 2954, 2924, 2854, 1963, 1699, 1458, 1436, 1362, 1298, 1254, 1224, 1197, 1159, 1058, 1017; MS (EI) m/z (%): 238 (M⁺, 8.93), 80 (100); HRMS calcd. for C₁₅H₂₆O₂ (M⁺): 238.1933; Found: 238.1930.

(3) Preparation of (*R*)-methyl tetradeca-4,5-dienoate (R_a)-5.⁴ (hanyl-3-81)

To a Schlenk tube were added LiCl (145.0 mg, purity = 98%, 3.36 mmol), (R_a) -4dc (499.6 mg, 1.68 mmol), DMSO (9.0 mL), and H₂O (119.5 mg, 6.72 mmol) sequentially. The Schlenk tube was then equipped with a condenser and heated in an oil bath preheated at 180 °C. The reaction was complete after being stirred for 1.5 h as monitored by TLC. Then the resulting mixture was diluted with ethyl acetate (20 mL) and quenched with H₂O (7.0 mL). The organic layer was separated, washed with H₂O (3 × 10 mL) and brine (3 × 10 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford (R_a)-5 (301.0 mg, 75%) as a liquid: 95% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.8

mL/min, $\lambda = 214$ nm, $t_R(\text{minor}) = 12.7$ min, $t_R(\text{major}) = 13.4$ min); $[\alpha]_D^{26.0} = -52.4$ ($c = 1.00, \text{ CHCl}_3$); ¹H NMR (400 MHz, CDCl}3) δ 5.21-5.09 (m, 2 H, CH=C=CH), 3.68 (s, 3 H, OCH_3), 2.43 (t, J = 7.4 Hz, 2 H, CH₂), 2.35-2.25 (m, 2 H, CH₂), 2.03-1.90 (m, 2 H, CH₂), 1.42-1.20 (m, 12 H, 6 × CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 203.6, 173.6, 92.6, 89.4, 51.5, 33.2, 31.8, 29.4, 29.3, 29.1, 28.9, 23.8, 22.6, 14.1; IR (neat) v (cm⁻¹) 2954, 2924, 2854, 1963, 1741, 1458, 1436, 1362, 1298, 1254, 1224, 1197, 1159, 1058, 1017; MS (EI) m/z (%): 238 (M⁺, 8.93), 80 (100); HRMS calcd. for C₁₅H₂₆O₂ (M⁺): 238.1933; Found: 238.1930.

(4) Preparation of (R,E)-methyl tetradeca-2,4,5-trienoate (R_a) -6.⁴ (zjs-3-109)

To a flame-dried Schlenk tube was added LDA (0.55 mL, 2 M in THF, 1.1 mmol) under nitrogen atmosphere. Then a solution of (R_a)-5 (120.6 mg, 0.5 mmol) in THF (2.0 mL) was added dropwise in 5 minutes at -78 °C. After the reaction mixture was stirred for 0.5 h, a solution of PhSeSePh (191.1 mg, purity = 98%, 0.6 mmol) in THF (2.0 mL) was added dropwise in 5 minutes at -78 °C. After being stirred for another 1.0 h at -78 °C, the reaction was quenched with a saturated aq. solution of NH₄Cl (1.0 mL). The resulting mixture was extracted with ether (10 mL) and the organic layer was separated, which was washed with brine (3 × 3 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford a yellow oil,

which was transferred to another Schlenk tube with THF (2.0 mL). Then a solution of NaIO₄ (268.7 mg, 1.25 mmol) in water (1.0 mL) was added. After being stirred for 10 h at room temperature, the resulting mixture was diluted with ether (15.0 mL) and washed with brine $(3 \times 3 \text{ mL})$. The organic layer was separated and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography (eluent: petroleum ether/ethyl acetate = 500/1) on silica gel to afford (R_a) -6 (82.6 mg, 69%) as a liquid: 95% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 0.5 mL/min, λ = 214 nm, $t_{\rm R}$ (minor) = 9.0 min, $t_{\rm R}$ (major) = 10.3 min); $[\alpha]_{D}^{26.0} = -130.9$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, $J_1 = 15.4$ Hz, $J_2 = 11.0$ Hz, 1 H, =CH), 5.96-5.80 (m, 2 H, one proton of CH=C=CH and =CH), 5.44 (q, J = 6.4 Hz, 1 H, one proton of CH=C=CH), 3.73 (s, 3 H, Me), 2.12-2.00 (m, 2 H, CH₂), 1.49-1.19 (m, 12 H, CH₂ × 6), 0.88 (t, J = 6.6 Hz, 3 H, Me); ¹³C NMR (100 MHz, CDCl₃) δ 211.5, 167.1, 142.9, 118.8, 92.9, 92.8, 51.4, 31.8, 29.3, 29.2, 29.0, 28.8, 28.0, 22.6, 14.0; IR (neat) v (cm⁻¹) 2924, 2854, 1942, 1719, 1628, 1460, 1436, 1304, 1263, 1240, 1175, 1137, 1094, 1039, 1016; MS (EI) m/z (%): 236 $(M^+, 4.79)$, 79 (100); HRMS calcd. for $C_{15}H_{24}O_2$ (M^+): 236.1776; Found: 236.1773.

To a flame-dried three-necked 250-mL round-bottom flask was added $ZnBr_2$ powder (3.3341 g, 15 mmol) under an argon atmosphere. Then the flask was dried under vacuum with a heating gun for about 1 minute. After cooling to room

temperature, (*S*)-**3** (5.0631 g, 20 mmol) and **1g** (3.7430 g, 22 mmol) were added sequentially with stirring under argon atmosphere at room temperature. The suspension was allowed to stir for 5 minutes at room temperature before 60 mL of freshly distilled toluene were added. Then freshly distilled aldehyde **2c** (5.1 mL, d = 0.83 g/mL, 4.23 g, 30 mmol) was added. The resulting mixture was stirred for 3 minutes at room temperature. The flask was then heated in a pre-heated oil bath of 130 °C for 12 h with stirring. After cooling to room temperature, the crude reaction mixture was concentrated by rotary evaporation, flash chromatography on silica gel (eluent: petroleum ether/ethyl ether = 40/1) afforded an orange-red liquid.

To a 250-mL flask cooled with an ice-water bath were added the crude product prepared above, 60 mL of THF, and TBAF (5.2203 g, 20 mmol) sequentially. Then the ice-water bath was removed and the resulting mixture was allowed to stir at room temperature. After 3 h, the reaction was complete as monitored by TLC, and the resulting mixture was poured into 30 mL of water and extracted with ethyl ether (100 mL). The organic layer was separated, washed sequentially with water (3 × 20 mL) and brine (3 × 20 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30/1) to afford (R_a)-4gc (1.7847 g, 49% yields over the two steps) as an oil:⁵ 98% ee (HPLC conditions: Chiralcel AS-H column, hexane/i-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R (major) = 10.3 min, t_R (minor) = 11.0 min); [α]_D²² = - 69.1 (c = 1.02, hexane) (reported value: 95% ee; [α]_D^{26.1} = -61.7 (c = 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.36-5.24 (m, 2 H, CH=C=CH), 4.15-4.07 (m, 2 H, OCH₂), 2.08-1.94 (m, 2 H, CH₂), 1.53-1.15 (m, 13 H, OH and 6 × CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃).

(6) Synthesis of (*R*)-dimethyl 2-(2,3-dodecadienyl)maloate (R_a)-4dc (yq-11-88)

To a flame-dried 100 mL Schlenk bottle were added DMAP (122.4 mg, 1 mmol), anhydrous NEt₃ (2.1 mL, d = 0.726 g/mL, 1.515 g, 12 mmol), (R_a)-4gc (1.8209 mg, 10 mmol, 98% ee), and dry DCM (30 mL) sequentially under Ar atmosphere at room temperature. MsCl (0.9 mL, d =1.475, 1.33 g, 0.6 mmol) was added dropwise within 10 min via a syringe at 0 °C. The resulting mixture was stirred at 0 °C for 1 h and quenched with sat. NaHCO₃ (aq., 5 mL). DCM (50 mL) was added and the organic layer was washed sequentially with water (3 × 10 mL) and brine (3 × 10 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was used in the next step without further purification.

To another flame-dried Schlenk bottle were added NaH (480.7 mg, 12 mmol, 60% in mineral oil) and dry THF (30 mL). Dimethyl malonate (2.3 mL, d = 1.151 g/mL, 2.64 g, 12 mmol) were then added dropwise within 5 min via a syringe at Ar atmosphere at room temperature. The resulting mixture was allowed to stir for 30 min at rt. The crude mesylate prepared above was then dissolved in 10 mL of dry THF and added dropwise within 5 h via a syringe pump (2 mL/hour) at rt. After 12.4 h, the reaction was complete as monitored by TLC, quenched with H₂O (5 mL), and

extracted with Et₂O (50 mL). The organic layer was separated, washed with H₂O (3 × 10 mL) and brine (3 × 10 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel to afford (R_a)-**4dc** (2.2201 g, 75% over the two steps) (eluent: petroleum ether/ethyl ether = 30/1) as a liquid: 97% ee (HPLC conditions: Chiralcel OD-H column, hexane/i-PrOH = 100/1, 1 mL/min, λ = 214 nm, t_R (minor) = 8.3 min, t_R (major) = 9.0 min); [α]_D²² = - 58.2 (c = 1.01, hexane); ¹H NMR (300 MHz, CDCl₃) δ 5.19-5.05 (m, 2 H, CH=C=CH), 3.74 (s, 6 H, 2 × OCH₃), 3.50 (t, *J* = 7.7 Hz, 1 H, CH), 2.61-2.53 (m, 2 H, CH₂), 1.99-1.87 (m, 2 H, CH₂), 1.43-1.18 (m, 12 H, 6 × CH₂), 0.87 (t, J = 6.8 Hz, 3 H, CH₃).

2. Preparation of (*R*)-octadeca-5,6-dienoic acid (laballenic acid)

(1) Preparation of (R)-methyl octadeca-5,6-dienoate (R_a)-4hd. (jxg-1-55)

Following **Typical Procedure I**, the reaction of CuBr₂ (178.4 mg, 0.8 mmol), **1h** (781.0 mg, 6.0 mmol), (*S*)-**3** (1.0181 g, 4.0 mmol), and **2d** (1106.2 mg, 6.0 mmol) in dioxane (12 mL) afforded (R_a)-**4hd** (560.6 mg, 47%) (eluent: petroleum ether/ethyl ether = 200/1) as a liquid:⁶ 93% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.5 mL/min, λ = 214 nm, t_R (major) = 21.0 min, t_R (minor) = 20.0 min); [α]_D^{27.1} = -41.0 (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.13-5.00 (m, 2 H, CH=C=CH), 3.67 (s, 3 H, CH₃), 2.36 (t, J = 7.4 Hz, 2 H, CH₂), 2.06-1.94 (m, 4 H, 2 × CH₂), 1.74 (quint, J = 7.4 Hz, 2 H, CH₂), 1.43-1.20 (m, 18 H,

 $9 \times CH_2$), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 174.0, 91.4, 89.7, 51.4, 33.3, 31.9, 29.65, 29.61, 29.5, 29.3, 29.2, 29.1, 28.9, 28.3, 24.2, 22.7, 14.1; IR (neat, cm⁻¹): 2923, 2853, 1962, 1741, 1458, 1437, 1364, 1242, 1199, 1154, 1061, 1018; MS (EI) m/z (%): 294 (M⁺, 2.11), 80 (100).

(2) Preparation of (*R*)-octadeca-5,6-dienoic acid (laballenic acid) (*R_a*)-7. (jxg-1-66)

To a round bottom flask, KOH (140.8 mg, 2.5 mmol), mixed solvent (5 mL, MeOH/H₂O = 4/1 by volume), and (R_a)-4hd (294.7 mg, 1 mmol)/mixed solvent (5 mL, MeOH/H₂O = 4/1 by volume) were added sequentially. The resulting mixture was then stirred at 60 °C. After 2 h as monitored by TLC, the reaction was complete. HCl (3 M, 1 mL) was added dropwise after the mixture was cooled with an ice bath. MeOH was removed by rotary evaporation. 30 mL of CH₂Cl₂ and water were added. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (15 mL \times 3). The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. After filtration and evaporation, the residue was purified by chromatography on silica gel to afford (R_a)-7 (257.6 mg, 92%) (eluent: petroleum ether/ethyl acetate = 10/1 to 2/1) as a liquid:⁶ 93% ee (determined after esterification; HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.5 mL/min, λ = 214 nm, $t_{\rm R}({\rm major}) = 21.7$ min, $t_{\rm R}({\rm minor}) = 21.0$ min); $[\alpha]_{\rm D}^{27.0} = -50.6$ (c = 1.025, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 10.99 (br s, 1 H, COOH) 5.15-5.01 (m, 2 H,

CH=C=CH), 2.40 (t, J = 7.6 Hz, 2 H, CH₂), 2.08-1.94 (m, 4 H, 2 × CH₂), 1.75 (quint, J = 7.4 Hz, 2 H, CH₂), 1.45-1.22 (m, 18 H, 9 × CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 180.3, 91.6, 89.6, 33.3, 31.9, 29.67, 29.65, 29.5, 29.4, 29.2, 29.1, 28.9, 28.2, 23.9, 22.7, 14.1; IR (neat, cm⁻¹): 2922, 2853, 1962, 1708, 1457, 1439, 1413, 1378, 1287, 1240, 1204, 1157, 1061, 1056; MS (EI) m/z (%): 280 (M⁺, 1.65), 140 (100).

(3) Determination of ee for (*R*)-octadeca-5,6-dienoic acid. (jxg-1-69)

To a round bottom flask, (R_a)-7 (55.9 mg, 0.2 mmol) and mixed solvent (5 mL, Et₂O/MeOH = 4/1 by volume) were added. TMSCHN₂ (2 M in hexane, 0.2 mL, 0.4 mmol) was added dropwise after the mixture was cooled to 0 °C. The reaction mixture was then warmed up to room temperature naturally. When the reaction was complete as monitored by TLC after 2.5 h, the solvent was evaporated under vacuum, and the residue was purified by chromatography on silica gel on silica gel to afford (R_a)-4hd (55.0 mg, 94%) (eluent: petroleum ether then petroleum ether /ethyl acetate = 50/1) as a liquid:⁶ 93% ee (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/0, 0.5 mL/min, λ = 214 nm, t_R (major) = 21.7 min, t_R (minor) = 21.0 min); [α]_D^{27.2} = -44.4 (c = 0.970, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.15-4.99 (m, 2 H, CH=C=CH), 3.67 (s, 3 H, CH₃), 2.36 (t, J = 7.6 Hz, 2 H, CH₂), 2.09-1.91 (m, 4 H, 2 × CH₂), 1.74 (quint, J = 7.4 Hz, 2 H, CH₂), 1.45-1.19 (m, 18 H, 9 × CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 174.0, 91.5, 89.7, 51.4, 33.3, 31.9, 29.65,

29.62, 29.5, 29.3, 29.2, 29.1, 28.9, 28.3, 24.3, 22.7, 14.1

3. Preparation of (*R*)-methyl 8-hydroxyocta-5,6-dienoate (R_a)-8. (jxg-1-74)

Following **Typical Procedure I**, the reaction of CuBr₂ (22.5 mg, 0.1 mmol), **1i** (42.5 mg, 0.75 mmol), (*S*)-**3** (126.9 mg, 0.5 mmol), and **2h** (97.9 mg, 0.75 mmol) in dioxane (1.5 mL) afforded (R_a)-**8** (44.6 mg, 52%) (eluent: petroleum ether/ethyl acetate = 10/1 to 8/1 to 6/1) as a liquid:^{7,8} 94% ee (HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 95/5, 0.6 mL/min, λ = 214 nm, t_R (major) = 25.7 min, t_R (minor) = 27.3 min); $[\alpha]_D^{27.0}$ = -48.9 (c = 0.99, CHCl₃) (reported value: 90% ee; $[\alpha]_D^{22}$ = -42.0 (c = 0.3, CHCl₃); from nature: $[\alpha]_D^{12}$ = -51.3 (c = 0.94, CHCl₃)); ¹H NMR (400 MHz, CDCl₃) δ 5.39-5.32 (m, 1 H, CH), 5.30-5.22 (m, 1 H, CH), 4.12 (dd, J_I = 6.0 Hz, J_2 = 2.8 Hz, 2 H, OCH₂), 3.68 (s, 3 H, OCH₃), 2.41-2.35 (m, 2 H, CH₂), 2.16-2.03 (m, 3 H, CH₂ and OH), 1.84-1.72 (m, 2 H, CH₂) ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 174.2, 92.32, 92.29, 60.6, 51.6, 33.1, 27.7, 24.0; IR (neat) v (cm⁻¹) 3404, 2951, 2869, 1963, 1732, 1438, 1365, 1317, 1244, 1201, 1154, 1056, 1009; MS (EI) m/z (%): 170 (M⁺, 1.64), 110 (100).

References

- 1. J. Ye, W. Fan, S. Ma, Chem. Eur. J., 2013, 19, 716.
- J. Ye, S. Li, B. Chen, W. Fan, J. Kuang, J. Liu, Y. Liu, B. Miao, B. Wan, Y. Wang,
 X. Xie, Q. Yu, W. Yuan, S. Ma, *Org. Lett.*, 2012, 14, 1346.
- R. Lü, J. Ye, T. Cao, B. Chen, W. Fan, W. Lin, J. Liu, H. Luo, B. Miao, S. Ni, X. Tang, N. Wang, Y. Wang, X. Xie, Q. Yu, W. Yuan, W. Zhang, C. Zhu, S. Ma, *Org. Lett.*, 2013, 15, 2254.
- 4. M. Ogasawara, T. Nagano, T. Hayashi, J. Org. Chem., 2005, 70, 5764.
- X. Huang, T. Cao, Y. Han, X. Jiang, W. Lin, J. Zhang, S. Ma, *Chem. Commun.*, 2015, **51**, 6956.
- 6. S. R. Landor, B. J. Miller, A. R. Tatchell, J. Chem. Soc. C, 1966, 1822.
- O. W. Gooding, C. C. Beard, D. Y. Jackson, D. L. Wren, G. F. Cooper, J. Org. Chem., 1991, 56, 1083.
- 8. Y. Zhang, H. Hao, Y. Wu, Synlett, 2010, 905.

S30

hx-11-3-ad-h-95-5-0. 5-214

实验时间: 2014-05-20, 17:43:15 **报告时间: 2014-05-20, 19:28:39** 谱图文件:D:\zhuguangjiong\hx\20140515\hx-11-3-ad-h-95-5-0.5-214. org

实验内容简介: ad-h 95/5 0.5ml/min 214nm

总计

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

hx-10-198-ad-h-95-5-0. 5-214

实验时间: 2014-05-20, 17:00:14 谱图文件:D:\zhuguangjiong\hx\20140515\hx-10-198-ad-h-95-5-0.5-214.org 报告时间: 2014-05-20, 19:23:40

实验内容简介:

总计

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

hx-11-51-ay-h-90-10-1-214

实验时间: 2014-06-10, 14:53:46 诸图文件:D:\zhuguangjiong\hx\20140610\hx-11-51-ay-h-90-10-1-214..org

实验内容简介:

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn
hx-11-49-ay-h-90-10-1-214

实验时间: 2014-06-10, 14:03:24 **报告时间: 2014-06-12, 16:5**4:25 谱图文件:D:\zhuguangjiong\hx\20140610\hx-11-49-ay-h-90-10-1-214. org

实验内容简介:

峰兮	暭名	保留时间	峰向	峰山积	百重	
1		9.713	1064048. 250	16257308.000	49.5138	
2		11.040	767563. 438	16576580.000	50.4862	
 总计			1831611.688	32833888.000	100. 0000	

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

instr1 10/10/2014 17:55:56 WXL

Page 1 of 1

Data File D:\CHEM32\1\DATA\WXL\20140818000002.D Sample Name: ZJS-101 AD-R M9W1 214 0.5 20

Data File D:\CHEM32\1\DATA\WXL\20140818000001.D Sample Name: ZJS-102+- AD-R M9W1 214 0.5 20

instr1 20/08/2014 09:25:41 LXG

Page 1 of 1

中国科学院上海有机化学研究所

Project Name: Reported by User: defaults for copy

Breeze user (Breeze)

						SAME	기도		TION	
	Sample Namer Sample Typer Vial: Injection # Injection Volume: Run Time: Column Type:		h k - 耕 1 10 60(11-52-cd-10 11 11 11 11 11 11 11 11 11 11 11 11 1	00-1-214			Acquired By: Date Acquired Acq. Method Date Processed Channel Name: Channel Desc.: Sample Set Name	Breeze 2014/6/11 11:18:59 CST 2gi100 2014/6/11 13:20:51 CST W2489 CrA W2489 CrA 214/rm	
AU	0.20 0.15 0.10 0.06		~			Μ		20.433	BocHN (<i>R_a</i>)- 4ce	H
	αœ	.,	200	10,00)	15.00		20.00 2 分钟	500 30.00 30	.00 4 0.00
			RT (min)	Area (礸sec)	%Area	Height (确)	% Height			
		1	19.717	308558	1.88	11803	5.06			
		2	20,433	16106249	98.12	221546	94.94			

Report Method: Individual Report HP Page: 1 (共计1) Rinted: 2014/6/12 16:19:23/FFC

中国科学院上海有机化学研究所

Reject Name: defaults for copy Reported by User: Breeze user (Breeze)

Report Method: Individual Report HP Page: 1 (共计1)

Rinted 2014/6/12 16:19:36 FRC

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

总计

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

hx-11-5

实验时间: 2014-05-20,18:29:25 报告时间: 2014-05-20,18:33:05 谱图文件:F:\slf\huangxin\hx-11-5\新建文件夹(3)\hx-11-5-0d-H-100+1-1.0-214.org

实验内容简介: OD-H 100+1 214nm 1.0ml/min

hx-11-9

实验时间; 2014-05-20, 17:31:11 谱图文件:F:\slf\huangxin\hx-11-9\新建文件夹\hx-11-9-0d-H-100+1-1.0-214.org

报告时间: 2014-05-20, 17:35:07

实验内容简介: OD-H 100+1 214nm 1.0m1/min

11 American American American

hx-11-25-od-h-100-1-0.7-214

实验时间: 2014/5/27, 15:54:23 谱图文件:D:\zhuguangjiong\hx\20140527\hx-11-25-od-100-1-0.7-214..org

实验内容简介:

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

hx-11-26-od-h-100-1-0.7-214

实验时间: 2014/5/27,15:17:20 报告时间: 2014/5/27,16:24:54 谱图文件:D:\zhuguangjiong\hx\20140527\hx-11-26-od-100-1-0.7-214.org

实验内容简介:

1229108.500

总计

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

instr1 14/08/2014 08:38:37 LXG

Page 1 of 1

instr1 14/08/2014 08:38:22 LXG

Page 1 of 1

hx-11-74

实验单位: zju 实验时间: 2014-06-27,18:20:05 谱图文件:D:\浙大智达\N2000\样品\B0287.org

实验者: hx 报告时间: 2014-06-27, 18:46:31 积分方法:面积归一法

实验内容简介: OD-H column, n-hexane/iPrOH = 100/0, 214 nm, 0.3 ml/min

浙江大学智能信息研究所
hx-11-60

实验单位: zju 实验时间: 2014-06-27,16:38:14 谱图文件:D:\浙大智达\N2000\样品\B0285.org

实验者: hx 报告时间: 2014-06-27, 17:48:18 积分方法:面积归一法

实验内容简介: OD-H column, n-hexane/iPrOH = 100/0, 214 nm, 0.3 ml/min

2014-06-27

浙江大学智能信息研究所

N2000 数据工作站

hx-11-18

实验单位: zju 实验时间: 2014-05-21, 19:31:00 谱图文件:D:\浙大智达\N2000\样品\B0175.org

实验者: hx 报告时间: 2014-05-21,20:03:25 积分方法:面积归一法

实验内容简介: OD-H column, n-hexane/iPrOH = 100/0, 214 nm, 0.3 ml/min

分析结果表

峰号	峰名	保留时间	峰高	峰面积	含量	
1		20. 102	1365809.875	69352888.000	98.1229	
2		22.147	27621.168	1326733.250	1.8771	
 总计			1393431.043	70679621.250	100.0000	

浙江大学智能信息研究所

hx-11-19

实验单位: zju 实验时间: 2014-05-21,20:05:59 谱图文件:D:\浙大智达\N2000\样品\B0176.org

实验者: hx 报告时间: 2014-05-21,20:45:28 积分方法:面积归一法

实验内容简介: OD-H column, n-hexane/iPrOH = 100/0, 214 nm, 0.3 ml/min

519076.766

总计

浙江大学智能信息研究所

2014-05-21

hany1-3-81-od-h-100-0-1-214

实验时间: 2014-08-17,16:49:22 报告时间: 2014-08-17,18:03:28 谱图文件:D:\zhuguangjiong\20140817\hany1-3-81-od-h-100-0-0.8-214..org

实验内容简介:

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

ct-6-36-rac-od-h-100-0-0.8-214

实验时间: 2014-08-17, 17:41:24 报告时间: 2014-08-17, 17:59:38 请图文件:D:\zhuguangjiong\20140817\ct-6-36-rac-od-h-100-0-0.8-214.org

实验内容简介:

峰号	峰名	保留时间	峰高	峰面积	含量
1		12.470	66481.930	920333.750	49.5642
2		13. 423	61443.684	936517.688	50. 4358
总计			127925.613	1856851.438	100. 0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

zjs-3-109-od-h-95-5-0.5-214

实验时间: 2014-08-18, 16:44:35 谱图文件:D:\zhuguangjiong\20140818\zjs-3-109-od-h-95-5-0.5-214.org 报告时间: 2014-08-18, 17:03:04

实验内容简介:

2031490. 426

总计

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

1w1-5-47-rac-od--95-5-0.5-214

实验时间: 2014-08-18,15:49:19 谱图文件:D:\zhuguangjiong\20140818\1w1-5-47-od-h-95-5-0.5-214.org

总计

1055407.156

10968378.000

100.0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

yq-11-71-as-h-200-1-1-214

实验时间: 2014-01-06,12:09:04 报告时间: 2014-01-06,15:52:00 谱图文件:D:\zhuguangjiong\yq\20140106\yq-11-71-as-h-200-1-1-214..org

实验内容简介:

DF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

yq-11-86-as-h-200-1-1-214

捡时间: 2014-01-06,11:28:09 图文件:D:\zhuguangjiong\yq\20140106\yq-11-86-as-h-200-1-1-1.org 报告时间: 2014-01-06, 15:50:12

验内容简介:

总计

[?] 文件使用 "pdfFactory Pro" 试用版本创建 <u>www.fineprint.cn</u>

yq-11-88-od-h-100-1-1-214

实验时间: 2014-01-06,15:17:43 报告时间: 2014-01-06,15:54:18 谱图文件:D:\zhuguangjiong\yq\20140106\yq-11-88-od-h-100-1-1-214..org

实验内容简介:

峰号	峰名	保留时间	峰咼	峰面积	含重
1		8.347	6206. 786	61485. 645	1. 2879
2	A	8. 985	420678.813	4712760.000	98.7121
总计	·	426.23462	426885.599	4774245. 645	100.0000

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

yq-11-87-od-h-100-1-1-214

验时间: 2014-01-06,14:54:37 图文件:D:\zhuguangjiong\yq\20140106\yq-11-87-od-h-100-1-1-4.org

验内容简介:

1080896.250

11660393. 500

100.0000

总计

文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

jxg-1-55-od-h-100-0-0. 5-214

验时间: 2014-09-28, 16:16:24 报告时间: 2014-09-28, 17:15:03 图文件:D:\zhuguangjiong\jxg\20140928\jxg-1-55-od-h-100-0-5-214. org

验内容简介:

		ル	初年末代		
峰号	峰名	保留时间	峰高	峰面积	含量
1		19.982	9589. 253	187023.844	3. 4458
2		21.020	196304.203	5240627.500	96.5542
总计			205893.456	5427651.344	100.0000

· 文件使用 "pdfFactorv Pro" 试用版本创建 www.fineprint.cn

jxg-1-62-od-h-100-0-0. 5-214

实验时间: 2014-09-29,14:55:52 谱图文件:D:\zhuguangjiong\jxg\20140929\jxg-1-62-od-h-100-0-0.5-214.org

实验内容简介:

11 11 11 11 -	
	2
/ \ #I .//F FE 3	

		· · · · · · · · · · · · · · · · · · ·	M-HANN		
峰号	峰名	保留时间	峰髙	峰面积	含量
1		20. 205	257249.156	7231222. 500	49.2490
2		21.463	227788.125	7451751.500	50.7510
总计			485037.281	14682974.000	100.0000

jxg-1-69-od-h-100-0-0.5-214

实验时间: 2014-09-29,16:01:38 报告时间: 2014-09-29,16:57:45 谱图文件:D:\zhuguangjiong\jxg\20140929\jxg-1-69-od-h-100-0-0.5-214..org

实验内容简介:

		a di kacamatan kata da kata 🖌	小川 泊不仅		
峰号	峰名	保留时间	峰高	峰面积	含量
1		20.958	19871.551	402086.531	3. 4339
2		21.683	310348.094	11307082.000	96. 5661
总计			330219.645	11709168.531	100.000

)F 文件使用 "pdfFactorv Pro" 试用版本创建 www.fineprint.cn

jxg-1-62-od-h-100-0-0.5-214

实验时间: 2014-09-29,14:55:52 谱图文件:D:\zhuguangjiong\jxg\20140929\jxg-1-62-od-h-100-0-0.5-214.org

报告时间: 2014-09-29,16:56:18

实验内容简介:

		ガ	们站朱衣		
峰号	峰名	保留时间	峰髙	峰面积	含量
1		20. 205	257249.156	7231222. 500	49.2490
2		21.463	227788.125	7451751.500	50.7510
总计			485037.281	14682974.000	100,0000

)F 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

jxg-1-74-as-95-5-0.6-214

实验时间: 2014-10-10,15:20:00 报告时间: 2014-10-10,16:16:58 潜图文件:D:\zhuguangjiong\jxg\20141009\jxg-1-74-as-95-5-0.6-214..org

实验内容简介:

		分	·析结果表		
峰号	峰名	保留时间	峰高	峰面积	含量
1	양~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25.718	335966.844	14645433.000	97.2489
2		27.300	11620. 171	414312.875	2.7511
总计			347587.015	15059745.875	100.0000

F 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn
jxg-1-77-rac-as-95-5-0.6-214

:验时间: 2014-10-10, 13:51:18 摺文件:D:\zhuguangjiong\jxg\20141009\jxg-1-77-rac-as-95-5-6-214..org

:验内容简介:

分析结果表					
峰号	峰名	保留时间	峰髙	峰面积	含量
1.1		25. 472	118111.883	4550166.000	49.8643
2		26.828	116403.398	4574926.000	50, 1357
总计			234515.281	9125092.000	100.0000

[?] 文件使用 "pdfFactory Pro" 试用版本创建 <u>www.fineprint.cn</u>