Supporting Information

Transition-Metal-Free Oxidative Aliphatic C-H Fluorination

Xiaofei Zhang, Shuo Guo and Pingping Tang*

*To whom correspondence should be addressed. E-mail: ptang@nankai.edu.cn

Table of Contents

Materials and Methods
Experimental Data
Experimental Procedures and Compound Characterization
Effect of solvents on the reaction
Effect of fluorinating reagents on the reaction
Effect of persulfate salts on the reaction
Effect of persulfate salt amount on the reaction
Effect of fluorinating reagent amount on the reaction
Effect of persulfate salt purity on the reaction
Effect of temperature on the reaction
ICP data of potassium persulfate and selectfluor II (PF ₆) used in experimentsS10
Effect of oxygen amount on the reaction
Fluorination of selected substrates with elemental fluorine
EPR Spectra
Selectfluor II (PF ₆)S16
Pentyl benzoate (1b)S17
Hexyl benzoate (1c)
2-Methyl-6-nitroheptane (1s)
16β -Tetrahydrogibberellate diacetate methyl ester (1x)S18
3-Fluorobutyl benzoate (2a)
4-Fluoropentyl benzoate (2b)
5-Fluorohexyl benzoate (2c)
2-Fluoro-2-methylpropyl benzoate (2d)
3-Fluoro-3-methylbutyl benzoate (2e)
4-Fluoro-4-methylpentan-2-yl benzoate (2f)
5-Fluoro-5-methylhexan-2-yl benzoate (2g)
4-Fluoro-1,4-dimethylpentyl 4-(trifluoromethyl)benzoate (2h)
4-Fluoro-1,4-dimethylpentyl 4-cyanobenzoate (2i)
4-Fluoro-1,4-dimethylpentyl 4-(<i>tert</i> -butyl) benzoate (2j)
4-Fluoro-1,4-dimethylpentyl 2-bromobenzoate (2k)
4-Fluoro-1,4-dimethylpentyl 2-chlorobenzoate (21)
4-Fluoro-4-methyl-1-phenyl-1-pentanone (2m)
4-Fluoro-1,4-dimethylpentyl picolinate (2n)

<i>N</i> -phthaloyl-4-fluoro- <i>L</i> -leucine methyl ester (20)	S28
Methyl 4-fluoro-4-methylpentanoate (2p)	S28
4-Fluoro-4-methylpentanamide (2q)	S29
3-Fluoroadamantan-1-ylisoindoline-1,3-dione (2r)	S29
2-Fluoro-2-methyl-6-nitroheptane (2s)	S30
1-Bromo-3-fluoro-3-methylbutane (2t)	S30
Fluorocyclohexane (2u)	S31
Fluorocyclohexane (2v)	S31
2α -Fluorosclareolide (2w)	S32
16 β -Fluorotetrahydrogibberellate diacetate methyl ester (2x)	S32
7-O-Acetyl-13-O-(4-fluoro-4-methylpentanoyl) baccatine III (2y)	S33
The intermolecular kinetic isotope effect study	S34
Gram-scale synthesis of 5-fluoro-1,4-dimethylpentyl 2-bromobenzoate $(2k)$	S35
Spectroscopic Data	S36
X-ray Crystal Structure Data	S100
X-ray Crystal Structure Data for 2α -Fluorosclareolide (2w)	S100
X-ray Crystal Structure Data for 16β -Fluorotetrahydrogibberellate diacetate m	ethyl ester
(2x)	S109
Reference	S122

Materials and Methods

All reactions were performed under air condition without further degas procedure except as indicated otherwise. CH₃CN, DMF and DCM were dried by distillation over CaH₂. Toluene was dried by distillation over sodium/benzophenone. H_2O and acetone were distilled. $K_2S_2O_8$ was purchased from Alfa, Aesar and Aladdin. Selectfluor II, CDCl₃ and CD₃CN were purchased from Sigma-Aldrich. 5-Methylhexan-2- ol^4 , butyl benzoate $(1a)^4$, isobutyl benzoate $(1d)^4$, isopentyl benzoate $(1e)^4$, 4-methylhexan-2-ylbenzoate $(1f)^4$, 5-methylhexan-2-yl benzoate $(1g)^4$ 1,4-dimethylpentyl 4-(trifluoromethyl)benzoate $(1h)^4$, 1,4-dimethylpentyl 4-cyanobenzoate (**1i**)⁴, 1,4-dimethylpentyl 4-(*tert*-butyl)benzoate (**1j**)⁴, 1,4-dimethylpentyl 2-bromobenzoate 1,4-dimethylpentyl $(11)^4$, $(1k)^4$, 2-chlorobenzoate 4-methyl-1-phenyl-1-pentanone $(1m)^4$, 1,4-dimethylpentyl picolinate $(1n)^4$, N-phthaloyl-L-leucine ester $(10)^4$, methyl 4-methylpentanoate $(1p)^4$, methyl $(1q)^4$, 2-adamant-1-ylisoindole-1,3-dione 4-methylpentanamide $(1r)^4$, 7-O-acetyl-13-O-(4-methylpentanoyl) baccatine III $(1y)^4$ were prepared as corresponding reference reported. TLC was performed on silica gel Huanghai HSGF₂₅₄ plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm). Silica gel (200–300 mesh) was purchased from Qingdao Haiyang Chemical Co., China. ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded on a Bruker AVANCE AV 400 (400MHz, 101MHz and 376MHz). Signal positions were recorded in ppm with the abbreviations s, d, t and m denoting singlet, doublet, triplet, and multiplet respectively. All NMR chemical shifts were reported with the solvent resonance as internal standard. For ¹H NMR: CDCl₃ = δ 7.26 ppm, CD₃CN = δ 1.94 ppm. For ¹³C NMR: $CDCl_3 = \delta$ 77.16 ppm, $CD_3CN = \delta$ 118.26 ppm. Mass spectra were acquired on Agilent 6520 Q-TOF LC/MS, Varian 7.0T FTMS and Aligent 7890/5975C-GS/MSD. ICP-AES experiments were performed on Thermo Elemental IRIS Intrepid II XSP. EPR Spectras were acquired on Bruker EMX-6/1.

Experimental Data

Experimental Procedures and Compound Characterization

Effect of solvents on the reaction

(27.0)0.100 То potassium persulfate mg, mmol, 1.00equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg. 0.250 mmol, 2.50 equiv) were added solvent (0.5 mL) and 4-methylpentan-2-yl benzoate (1f) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (2f) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (2f) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S1.

Solvent	Yield [%] (¹⁹ FNMR)	Solvent 3:2 (v/v)	Yield [%] (¹⁹ FNMR)
MeCN	0	MeCN/H ₂ O	70
DMF	0	DMF/H ₂ O	0
DCM	0	DCM/H ₂ O	0
Acetone	0	Acetone/H ₂ O	51
Toluene	0	Toluene/H ₂ O	0
H_2O	0		

Table S1: Effect of solvents on the reaction

Effect of fluorinating reagents on the reaction

To potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and fluorinating reagent (0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S2.

Fluorinating reagent	Yield [%] (¹⁹ FNMR)
	0
⊕ N BF4 ⊕	0
N [⊕] 2 BF ₄ [⊖]	17
$ \begin{array}{c} $	37
É N⊕ 2 BF4 F	67
× N⊕ F 2 PF ₆ ⊖	70

Table S2: Effect of fluorinating reagentson the reaction

Effect of persulfate salts on the reaction

4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S3.

Persulfate salts	Yield [%] (¹⁹ FNMR)
-	0
$Na_2S_2O_8$	57
$K_2S_2O_8$	70
$(NH_4)_2S_2O_8$	55

 Table S3: Effect of persulfate salts on the reaction

Effect of persulfate salt amount on the reaction

To potassium persulfate and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S4.

Table S4: Effect of persulfate salt amount on the reaction

Amount of persulfate salts (equiv)	Yield [%] (¹⁹ FNMR)
0.2	0

0.6	38
1.0	70
1.5	65
2.0	65

Effect of fluorinating reagent amount on the reaction

0.100 То potassium persulfate (27.0)mg, mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) in H₂O (0.2 mL) were added MeCN (0.3 mL) and 4-methylpentan-2-yl benzoate (1f) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (2f) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (2f) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S5.

Amount of fluorination reagent (equiv)	Yield [%] (¹⁹ FNMR)	
1.2	57	
1.5	66	
2.0	67	
2.5	70	
3.0	69	

Table S5: Effect of fluorinating reagent amount on the reaction

Effect of persulfate salt purity on the reaction

То (27.0)0.100 1.00 potassium persulfate mg, mmol. equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv in $H_2O(0.2 \text{ mL})$ were added MeCN (0.3 mL) and 4-methylpentan-2-yl benzoate (1f) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (2f) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (2f) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S6.

Persulfate salt purity	Yield [%] (¹⁹ FNMR)	
99.5% Potassium peroxydisufate	68	
Recrystallized 99.5% potassium peroxydisufate	71	
Alfa Aesar 99.99% (metals basis) potassium peroxydisufate	69	
Recrystallized Alfa Aesar 99.99%(metals basis) potassium peroxydisufate	70	

Table S6: Effect of persulfate salt purity on the reaction

Effect of temperature on the reaction

To potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg,

0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added MeCN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred and heated for 10 hr in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (**2f**) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S7.

Temperature	Yield [%] (¹⁹ FNMR)
40 °C	0
50 °C	70
60 °C	20

Table S7: Effect of temperature on the reaction

ICP data of potassium persulfate and selectfluor II (PF₆) used in experiments

The potassium persulfate and selectfluor II (PF_6) used in experiments were examined by ICP-AES for possible critical transition metals including Fe, Co, Ni, and Cu. The results are reported in Table S8.

Element	$K_2S_2O_8$	Selectfluor II(PF ₆)
Fe	6.3	4.0
Со	ND	ND
Ni	1.7	1.4
Cu	ND	ND

Table S8: ICP data of potassium persulfate and selectfluor II (PF6) used in experiments

Unit: $\mu g/g$ (ppm), ND: Not detected.

Effect of oxygen amount on the reaction

To potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in corresponding sealed vial were degased and charged with corresponding gas, then added H₂O (0.2 mL), MeCN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred and heated at 50 °C for 10 hr.

After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 4-fluoro-4-methyl-2-pentyl benzoate (2f) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methyl-2-pentyl benzoate (2f) (-135.68 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). Yields are reported in Table S9.

Table 89: Effect of oxygen amount on the reaction			
		Yield [%]	Yield [%]
Entry	Atmosphere	(¹⁹ FNMR)	(¹⁹ FNMR)
		In 2.00 mL sealed vial	In 20.0 mL sealed schlenk
1	Air	70	3
2	N_2	70	73
3	O ₂	0	0

Table S0. Effect of .1. .

Fluorination of selected substrates with elemental fluorine

Method A: Elemental fluorine diluted in N_2 (v/v 10%, 1.00 mmol) was passed through the mixture of substrate (0.50 mmol, 1 equiv) and MeCN (2.5 mL) in an 8 mL sealed vial at 0 °C. Then the reaction mixture was poured into water (3 mL), neutralized with $NaHCO_3$ and extracted 3 times with EtOAc (5 mL). The combined organic layer was concentrated in vacuo to give the crude product. The crude product was dissolved in $CDCl_3$ and added 1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol). The yield was determined by comparing the integration of the ¹⁹F NMR resonance of the crude product with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). The results ¹⁹F NMR resonance reported on Table S10.

Method B: Elemental fluorine diluted in N₂ (v/v 10%) was passed at ca. 50 mL/min through the mixture of substrate (0.50 mmol, 1 equiv) and MeCN (2.5 mL) in an 8 mL sealed vial at 0 °C. The reaction was monitored by GC. When the reaction was finished, the reaction mixture was poured into water (3 mL), neutralized with NaHCO₃ and extracted 3 times with EtOAc (5 mL). The combined organic layer was concentrated in vacuo to give the crude product. The crude product was dissolved in CDCl₃ and added 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol). The yield was determined by comparing the integration of the ¹⁹F NMR resonance of the crude product with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). The results ¹⁹F NMR resonance reported on Table S10.

Table S10: Fluorination of selected substrates with elemental fluorine

ND: Not detected.

 $^{19}\mathrm{F}$ NMR spectrum of strustrate $\mathbf{1a}$ with elemental fluorine.

¹⁹F NMR spectrum of strustrate **1f** with elemental fluorine.

¹⁹F NMR spectrum of strustrate **1m** with elemental fluorine.

¹⁹F NMR spectrum of strustrate **1n** with elemental fluorine.

¹⁹F NMR spectrum of strustrate **10** with elemental fluorine.

¹⁹F NMR spectrum of strustrate **1w** with elemental fluorine.

EPR Spectra

Typical spectrometer parameters were: Receiver Gain = $2.00*10^5$; Phase = 0 deg; Harmonic= 1; Mod. Frequency = 100 kHz; Mod. Amplitude = 1G; Center Field = 3510; Sweep width = 120; Resolution = 1024; Conversion = 163.84 ms; Time const = 40.96 m; Sweep time = 167.77s; power= 1 mw. DMPO (5,5-dimethyl-1-pyrroline *N*-oxide) was employed as the radical trapper.

To potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added MeCN (0.3 mL) and 4-methylpentan-2-yl benzoate (**1f**) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 1 hr at 50 °C in a 2 mL sealed vial.

Figure 1: EPR spectra of condition A: reaction mixture without DMPO; condition B: **1f** (0.100 mmol) in a 1 mL tube was added 100 μ L DMPO (0.05 mol/L in MeCN); condition C: 10.0 μ L reaction mixture in a 1 mL tube was added 100 μ L DMPO (0.05 mol/L in MeCN) under air; condition D: 10.0 μ L reaction mixture in a 1 mL tube was added 100 μ L DMPO (0.05 mol/L in MeCN) under air; condition D: 10.0 μ L reaction mixture in a 1 mL tube was added 100 μ L DMPO (0.05 mol/L in MeCN) under N₂

Selectfluor II (PF₆)

To 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (0.957 g, 3.00 mmol, 1.00 equiv) in H₂O (9.0 mL) was added ammonium hexafluorophosphate (2.93 g, 18.0 mmol, 6.00 equiv) and stirred for 1 hr at 23 °C. The suspension was filtered and washed 3 times with H₂O (15.0 mL) and Et₂O (10.0 mL) to afford 1.17g Selectfluor II (PF₆) (4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate))¹ as a white solid (90% yield).

NMR Spectroscopy: ¹H NMR (400 MHz, CD₃CN) δ 4.63 (dd, J = 15.1, 7.4 Hz, 6H), 4.25 – 4.08 (m, 6H), 3.32 (s, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 58.3 (d, J = 14.7 Hz), 57.6, 53.5.

¹⁹F NMR (376 MHz, CD₃CN) δ 52.11 (s, 1F), -67.45 (d, J = 706.6 Hz, 12F).

Pentyl benzoate (1b)

To a solution of pentan-1-ol (0.880 g, 10.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (24.4 mg, 2.00 mmol, 0.200 equiv) and Et₃N (2.00 mL, 15.0 mmol, 1.50 equiv) in CH₂Cl₂ (50.0 mL) at 0 °C was added benzoyl chloride (1.68 g, 12.0 mmol, 1.20 equiv). The reaction mixture was warmed to 23 °C and stirred for 6 hr before quenched with H₂O (10.0 mL) and extracted 2 times with CH₂Cl₂ (20.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 1.73 g pentyl benzoate (**1b**)² as a colourless liquid (90% yield).

 $R_f = 0.50$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.32 (t, J = 6.7 Hz, 2H), 1.92 – 1.68 (m, 2H), 1.51 – 1.31 (m, 4H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 132.9, 130.7, 129.7, 128.5, 65.3, 28.6, 28.3, 22.5, 14.1.

Hexyl benzoate (1c)

solution of hexan-1-ol (1.02 g, 10.0 mmol, 1.00 equiv), To а DMAP (4-dimethylaminepyridine) (24.4 mg, 2.00 mmol, 0.200 equiv) and Et₃N (2.00 mL, 15.0 mmol, 1.50 equiv) in CH₂Cl₂ (50.0 mL) at 0 °C was added benzoyl chloride (1.68 g, 12.0 mmol, 1.20 equiv). The reaction mixture was warmed to 23 °C and stirred for 6 hr before quenched with H_2O (10.0 mL) and extracted 2 times with CH_2Cl_2 (20.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 1.77 g hexyl benzoate $(1c)^3$ as a colourless liquid (86% yield).

 $R_f = 0.50$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.31 (t, J = 6.7 Hz, 2H), 1.83 – 1.69 (m, 2H), 1.52 – 1.40 (m, 2H), 1.39 – 1.28 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 132.9, 130.7, 129.7, 128.5, 65.3, 31.6, 28.8, 25.9, 22.7, 14.2.

2-Methyl-6-nitroheptane (1s)

To a solution of 6-methylheptan-2-amine (1.29 g, 10.0 mmol, 1.00 equiv) in DCE (100 mL) was added m-CPBA (3-chloroperbenzoic acid, 6.00 g, 30.0 mmol, 3.00 equiv) at 0 °C. The reaction mixture was stirred and refluxed for 3 hr before cooling down to 23 °C and washed 3 times with aqueous NaOH (10%, 10.0 mL). The organic layer was washed with saturated brine then dried over Na₂SO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v), to afford 1.26 g 2-methyl-6-nitroheptane (**1s**) as a yellow liquid (79% yield).

 R_f = 0.6 (hexanes/EtOAc 1:20 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.70 − 4.42 (m, 1H), 2.06 − 1.93 (m, 1H), 1.78 − 1.61 (m, 1H), 1.60 − 1.47 (m, 4H), 1.41 − 1.27 (m, 2H), 1.26 − 1.14 (m, 2H), 0.88 (d, *J* = 5.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 83.7, 38.3, 35.5, 27.8, 23.6, 22.6, 22.5, 19.4. Spectrometry: MS-EI (m/z): calcd for C₈H₁₆NO₂ [M − H] 158.1, found 158.1.

16β -Tetrahydrogibberellate diacetate methyl ester (1x)

To a solution of gibberellic acid (1.04 g, 3.00 mmol, 1.00 equiv) and K_2CO_3 (0.800 g, 6.00 mmol, 2.00 equiv) in acetone (30.0 mL) was added MeI (0.380 mL, 6.00 mmol, 2.00 equiv). The reaction was stirred at 23 °C for 10 hr before quenched with H₂O (5.0 mL), then concentrated *in vacuo* and extracted 3 times with CH₂Cl₂ (10.0 mL). The combined organic layer was washed with saturated brine then dried over Na₂SO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 1:1 (v/v), to afford 0.875 g gibberellic acid methyl ester⁵ as a white solid (81% yield).

 R_f = 0.2 (hexanes/EtOAc 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.32 (d, *J* = 9.3 Hz, 1H), 5.91 (dd, *J* = 9.3, 3.7 Hz, 1H), 5.28 (s, 1H), 4.97 (s, 1H), 4.16 (s, 1H), 3.73 (d, *J* = 8.3 Hz, 3H), 3.21 (d, *J* = 10.8 Hz, 1H), 2.79 (d, *J* = 10.7 Hz, 1H), 2.28 – 1.53 (m, 11H), 1.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 172.7, 157.0, 133.1, 132.5, 107.8, 90.5, 78.3, 70.0, 53.6, 52.9, 52.4, 51.2, 50.7, 50.6, 44.9, 43.2, 38.4, 17.2, 14.6.

1x, 71% yield

To a solution of gibberellic acid methyl ester (720 mg, 2.00 mmol, 1.00 equiv) and FeCl₃ (16.2 mg, 0.100 mmol, 0.0500 equiv) in ethanol (30.0 mL) was added aqueous hydrazine (5.00 mL). The reaction mixture was stirred at 80 °C for 6 hr before quenched with H₂O (20.0 mL) at 23 °C, then concentrated *in vacuo* and extracted 3 times with CH₂Cl₂ (10.0 mL). The combined organic layer was washed with saturated brine then dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford the crude product.⁶ This crude product was used in next step without further purification. To the crude product dissolved in CH₂Cl₂ (20.0 mL) were added DMAP (244 mg, 2.00 mmol, 1.00 equiv) and acetic anhydride (5.00 ml, 45.0 mmol, 22.5 equiv). The reaction mixture was stirred at 23 °C for 10 hr before quenched with H₂O (5.0 mL), then extracted 3 times with CH₂Cl₂ (10.0 mL). The combined organic layer was washed with saturated brine then dried over Na₂SO₄, filtered, and DMAP (244 mg, 2.00 mmol, 1.00 equiv) and acetic anhydride (5.00 ml, 45.0 mmol, 22.5 equiv). The reaction mixture was stirred at 23 °C for 10 hr before quenched with H₂O (5.0 mL), then extracted 3 times with CH₂Cl₂ (10.0 mL). The combined organic layer was washed with saturated brine then dried over Na₂SO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v), to afford 0.636 g 16 β -tetrahydrogibberellate diacetate methyl ester (**1x**)⁵ as a white solid (71% yield for two steps).

 R_f = 0.30 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.95 (s, 1H), 3.73 (s, 3H), 3.14 (d, *J* = 10.7 Hz, 1H), 2.63 (t, *J* = 8.5 Hz, 1H), 2.58 (dd, *J* = 10.9, 1.9 Hz, 1H), 2.05 – 1.68 (m, 13H), 2.13 (s, 3H), 1.98 (s, 3H), 1.57 (s, 3H), 1.04 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 173.1, 170.4, 170.4, 93.1, 85.7, 71.5, 56.5, 53.4, 52.6, 52.3, 52.2, 50. 9, 42.8, 42.3, 40.8, 27.7, 26.0, 25.5, 22.1, 21.3, 17.0, 15.7, 14.6.

3-Fluorobutyl benzoate (2a)

То potassium persulfate (54.0)mg, 0.200 mmol, 2.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H_2O (0.4 mL) were added CH_3CN (0.6 mL) and butyl benzoate (1a) (17.8 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on

silica gel, eluting with hexanes/toluene 20:1 (v/v), to afford 12.8 mg 3-fluorobutyl benzoate (**2a**) as a colorless liquid (65% yield).

 $R_f = 0.30$ (hexanes/ Toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 4.90 (dm, J = 47.9 Hz, 1H), δ 4.50 – 4.41 (m, 2H), 2.21 – 1.86 (m, 2H), 1.40 (dd, J = 27.3, 13.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 133.1, 130.3, 129.7, 128.5, 88.0 (d, J = 165.5 Hz), 61.2, 36.2 (d, J = 21.0 Hz), 21.2 (d, J = 22.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -175.27 – -175.83 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₁H₁₃FO₂Na [M +Na], 219.0797. Found, 219.0787.

4-Fluoropentyl benzoate (2b)

1b

2b, 71% yield

0.200 2.00 To potassium persulfate (54.0)mg, mmol, equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in added H₂O (0.4 mL) were added CH₃CN (0.6 mL) and pentyl benzoate (1b) (19.2 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and $H_2O(1.0 \text{ mL})$, then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/toluene 4:1 (v/v), to afford 15.0 mg 4-fluoropentyl benzoate (2b) as a colorless liquid (71% yield).

 R_f = 0.30 (hexanes/toluene 4:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 4.74 (dm, *J* = 53.8 Hz, 1H), 4.40 – 4.33 (m, 2H), 2.02 – 1.50 (m, 4H), 1.36 (dd, *J* = 23.9, 6.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 166.6, 132.9, 130.3, 129.6, 128.4, 90.4 (d, *J* = 165.0 Hz), 64.6, 33.5 (d, *J* = 21.2 Hz), 24.6 (d, *J* = 4.6 Hz), 21.0 (d, *J* = 22.7 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -173.05 – -173.81 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₅FO₂Na [M +Na],233.0954. Found, 233.0944.

5-Fluorohexyl benzoate (2c)

1c

То potassium persulfate (54.0)0.200 mmol, 2.00equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H_2O (0.4 mL) were added CH_3CN (0.6 mL) and hexyl benzoate (1c) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) was added to the reaction mixture. The yield of 5-fluorohexyl benzoate (2c) was determined by comparing the integration of the ¹⁹F NMR resonance of 5-fluorohexyl benzoate $(2c)^7$ (-172.92 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm) (46% ¹⁹F NMR vield).

NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -172.51 – -173.21 (m, 1F).

2-Fluoro-2-methylpropyl benzoate (2d)

2d, 98% yield

То (27.0)0.100 potassium persulfate 1.00 equiv) mg, mmol, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and isobutyl benzoate (1d) (17.8 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 19.2 mg 2-fluoro-2-methylpropyl benzoate (2d) as a colorless liquid (98% yield).

 R_f = 0.30 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.1 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 4.33 (d, *J* = 12.0 Hz, 2H), 1.48 (d, *J* = 21.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 133.3, 130.0, 129.8, 128.5, 93.5 (d, *J* = 169.9 Hz), 69.6 (d, *J* = 25.1 Hz), 24.0 (d, *J* = 24.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -145.43 – -145.96 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₁H₁₃FO₂Na [M + Na], 219.0797, 219.0794.

3-Fluoro-3-methylbutyl benzoate (2e)

1e

То potassium persulfate (27.0)0.100 mmol, 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in $H_2O(0.2 \text{ mL})$ were added $CH_3CN(0.3 \text{ mL})$ and isopentyl benzoate (1e) (19.2 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 17.3 mg 3-fluoro-3-methylbutyl benzoate (2e) as a colorless liquid (82% yield).

 $R_f = 0.50$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 4.48 (t, J = 6.8 Hz, 2H), 2.13 (dt, J = 19.5, 6.8 Hz, 2H), 1.45 (d, J = 21.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 133.0, 130.2, 129.6, 128.4, 94.3 (d, J = 166.1 Hz), 61.0 (d, J = 6.1 Hz), 39.9 (d, J = 23.3 Hz), 27.1 (d, J = 24.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -137.83 - -138.37 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₅FO₂Na [M + Na], 233.0954. Found, 233.0950.

4-Fluoro-4-methylpentan-2-yl benzoate (2f)

0.100 То potassium persulfate (27.0)mmol, 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 4-methylpentan-2-yl benzoate (1f) (20.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 14.6 mg 4-fluoro-4-methylpentan-2-yl benzoate (2f) as a colorless liquid (65% yield).

R_f = 0.30 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 5.46 – 5.35 (m, 1H), 2.26 – 2.07 (m, 1H), 1.94 (td, J = 15.7, 4.2 Hz, 1H), 1.41 (d, J = 21.5 Hz, 6H), 1.40 (d, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 133.0, 130.8, 129.7, 128.5, 94.5 (d, J = 166.0 Hz), 68.6 (d, J = 4.4 Hz), 47.1 (d, J = 22.7 Hz), 28.1 (d, J = 24.6 Hz), 26.5 (d, J = 24.8 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.39 – -135.90 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₇FO₂Na [M + Na], 247.1110. Found, 247.1095.

5-Fluoro-5-methylhexan-2-yl benzoate (2g)

0.100 To potassium persulfate (27.0)mg, mmol. 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 5-methylhexan-2-yl benzoate (1g) (22.0 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 16.9 mg 5-fluoro-5-methylhexan-2-yl benzoate (2g) as a colorless liquid (71% yield).

 R_f = 0.40 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.8 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 5.22 − 5.11 (m, 1H), 1.93 − 1.58 (m, 4H), 1.37 (d, *J* = 6.4 Hz, 3H), 1.36 (d, *J* = 21.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 132.9, 130.8, 129.6, 128.4, 95.3 (d, *J* = 165.6 Hz), 71.7, 37.2 (d, *J* = 23.2 Hz), 30.5 (d, *J* = 4.9 Hz), 26.9 (d, *J* = 24.8 Hz), 26.7 (d, *J* = 24.8 Hz), 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.75 − -139.21 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₂₀FO₂ [M+H], 239.1447. Found, 239.1442.

4-Fluoro-1,4-dimethylpentyl 4-(trifluoromethyl)benzoate (2h)

To potassium persulfate (27.0)0.100 mmol. 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 1,4-dimethylpentyl 4-(trifluoromethyl)benzoate (1h) (28.8 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 26.6 mg 4-fluoro-1,4-dimethylpentyl 4-(trifluoromethyl)benzoate (2h) as a colorless liquid (87% yield).

 R_f = 0.40 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 5.28 – 5.07 (m, 1H), 2.05 – 1.55 (m, 4H), 1.39 (s, 3H), 1.38 (d, *J* = 3.6 Hz, 3H), 1.33 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 134.3 (q, *J* = 32.6 Hz), 133.9, 129.9, 125.4 (q, *J* = 3.6 Hz), 123.7 (q, *J* = 272.7 Hz), 95.1 (d, *J* = 165.9 Hz), 72.4, 37.0 (d, *J* = 23.3 Hz), 30.3 (d, *J* = 5.0 Hz), 26.7 (d, *J* = 24.8 Hz), 26.6 (d, *J* = 24.7 Hz), 20.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.10 (s, 3F), -138.98 – -139.49 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₁₈F₄O₂Na [M + Na], 329.1141. Found, 329.1140.

4-Fluoro-1,4-dimethylpentyl 4-cyanobenzoate (2i)

0.100 1.00 To potassium persulfate (27.0)mg, mmol, equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 1,4-dimethylpentyl 4-cyanobenzoate (1i) (24.5 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v), to afford 20.5 mg 4-fluoro-1,4-dimethylpentyl 4-cyanobenzoate (2i) as a colorless liquid (78% yield).

 R_f = 0.30 (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 7.9 Hz, 2H), 5.18 (dd, *J* = 11.9, 5.6 Hz, 1H), 1.99 – 1.58 (m, 4H), 1.43 – 1.28 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 134.6, 132.4, 130.2, 118.2, 116.4, 95.2 (d, *J* = 165.6 Hz), 72.9, 37.1 (d, *J* = 23.2 Hz), 30.4 (d, *J* = 4.7 Hz), 26.9 (d, *J* = 25.0 Hz), 26.7 (d, *J* = 24.7 Hz), 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -139.02 – -139.62 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₂₂FN₂O₂Na [M +NH₄],281.1665. Found, 281.1658.

4-Fluoro-1,4-dimethylpentyl 4-(tert-butyl) benzoate (2j)

1j

То potassium persulfate (27.0)0.100 mmol, 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 1,4-dimethylpentyl 4-(tert-butyl)benzoate (1j) (27.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 24.1 mg 4-fluoro-1,4-dimethylpentyl 4-(tert-butyl)benzoate (2j) as a colorless liquid (82% yield).

 R_f = 0.40 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 5.20 – 5.10 (m, 1H), 1.94 – 1.60 (m, 4H), 1.43 – 1.29 (m, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 156.6, 129.5, 128.0, 125.5, 95.4 (d, *J* = 165.5 Hz), 71.4, 37.2 (d, *J* = 23.2 Hz), 35.2, 31.3, 30.6 (d, *J* = 4.8 Hz), 26.9 (d, *J* = 22.9 Hz), 26.7 (d, *J* = 22.8 Hz), 20.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.66 – -139.53 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₂₈FO₂ [M +H], 295.2073. Found, 295.2066.

4-Fluoro-1,4-dimethylpentyl 2-bromobenzoate (2k)

То persulfate (27.0)0.100 1.00 potassium mg, mmol, equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 1,4-dimethylpentyl 2-bromobenzoate (1k) (29.8 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 28.7 mg 4-fluoro-1,4-dimethylpentyl 2-bromobenzoate (2k) as a colorless liquid (91% yield).

 $R_f = 0.40$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ7.74 (dd, J = 7.5, 1.9 Hz, 1H), 7.65 (dd, J = 7.8, 1.1 Hz, 1H), 7.36 (dt, J = 7.6, 3.8 Hz, 1H), 7.32 (td, J = 7.6, 1.9 Hz, 1H), 5.25 – 5.14 (m, 1H), 1.91 – 1.64 (m, 4H), 1.38 (s, 3H), 1.40 (d, J = 3.7 Hz, 3H), 1.33 (d, J = 3.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 134.4, 133.1, 132.5, 131.2, 127.3, 121.5, 95.3 (d, J = 165.4 Hz), 72.8, 37.2 (d, J = 23.2 Hz), 30.4 (d, J = 5.0Hz), 26.9 (d, J = 22.5 Hz), 26.7 (d, J = 22.5 Hz), 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.77 - -139.21 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈BrFO₂Na [M + Na], 339.0372. Found, 339.0366.

4-Fluoro-1,4-dimethylpentyl 2-chlorobenzoate (21)

0.100 То potassium persulfate (27.0)mg, mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and 1.4-dimethylpentyl 2-chlorobenzoate (11) (25.4 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H_2O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 18.2 mg 4-fluoro-1,4-dimethylpentyl 2-chlorobenzoate (21) as a colorless liquid (67% yield).

R_f = 0.30 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.5, 1.8 Hz, 1H), 7.65 (dd, J = 7.8, 1.1 Hz, 1H), 7.37 (td, J = 7.5, 1.3 Hz, 1H), 7.32 (td, J = 7.6, 1.9 Hz, 1H), 5.27 – 5.13 (m, 1H), 1.93 – 1.62 (m, 4H), 1.38 (s, 3H), 1.36 (dd, J = 24.8, 3.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 134.4, 133.1, 132.5, 131.2, 127.3, 121.5, 95.3 (d, J = 165.6 Hz), 72.8, 37.2 (d, J = 23.1 Hz), 30.4 (d, J = 5.0 Hz), 26.9 (d, J = 22.7 Hz), 26.7 (d, J = 23.4 Hz), 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.68 – -139.33 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₈ClFO₂Na [M + Na],295.0877. Found, 295.0868.

4-Fluoro-4-methyl-1-phenyl-1-pentanone (2m)

To (27.0)0.100 mmol, 1.00 potassium persulfate mg, equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 2.50 equiv) in H_2O (0.2 mL) were added CH_3CN (0.3 mL) mmol. and 4-methyl-1-phenyl-1-pentanone (1m) (17.6 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with

NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 13.2 mg 4-fluoro-4-methyl-1-phenyl-1-pentanone (**2m**) as a colorless liquid (68% yield).

 R_f = 0.40 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.67 – 7.39 (m, 3H), 3.13 (t, *J* = 7.6 Hz, 2H), 2.08 (dt, *J* = 21.0, 7.7 Hz, 2H), 1.45 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 137.0, 133.2, 128.8, 128.2, 95.2 (d, *J* = 166.2 Hz), 35.2 (d, *J* = 22.6 Hz), 33.2 (d, *J* = 3.5 Hz), 26.9 (d, *J* = 24.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -140.90 (dp, *J* = 42.6, 21.3 Hz, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₅FONa [M + Na],217.1005. Found, 217.1003.

4-Fluoro-1,4-dimethylpentyl picolinate (2n)

1n

2n, 86% yield

0.100 equiv) То potassium persulfate (27.0)mg, mmol, 1.00 and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H_2O (0.2 mL) were added CH_3CN (0.3 mL) and 1,4-dimethylpentyl picolinate (1n) (22.1 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v), to afford 20.6 mg 4-fluoro-1,4-dimethylpentyl picolinate (2n) as a colorless liquid (86% yield).

R_f = 0.20 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.0 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.84 (td, J = 7.7, 1.7 Hz, 1H), 7.47 (ddd, J = 7.6, 4.7, 1.1 Hz, 1H), 5.25 (dq, J = 12.4, 6.3 Hz, 1H), 1.98 – 1.86 (m, 1H), 1.85 – 1.61 (m, 3H), 1.42 (d, J = 6.3 Hz, 3H), 1.35 (dd, J = 21.4, 2.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 150.1, 148.6, 137.1, 126.8, 125.2, 95.3 (d, J = 165.5 Hz), 72.9, 37.3 (d, J = 23.2 Hz), 30.5 (d, J = 4.9 Hz), 26.9 (d, J = 24.8 Hz), 26.6 (d, J = 24.7 Hz), 20.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.58 – -138.98 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₉FNO₂ [M +H],240.1400. Found, 240.1396.

N-phthaloyl-4-fluoro-*L*-leucine methyl ester (20)

To N-phthaloyl-L-leucine methyl ester (10) (27.5 mg, 0.100 mmol, 1.00 equiv), potassium (27.0)0.100 mmol, 1.00 equiv) persulfate mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) was added H₂O (0.2 mL) then CH₃CN (0.3 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over $MgSO_4$. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v), to afford 20.8 mg *N*-phthaloyl-4-fluoro-*L*-leucine methyl ester $(20)^8$ as a colourless liquid (71% yield).

 R_f = 0.30 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.5, 3.0 Hz, 2H), 5.15 (dd, *J* = 11.0, 2.7 Hz, 1H), 3.74 (s, 3H), 2.86 – 2.70 (m, 1H), 2.49 (ddd, *J* = 29.0, 15.5, 2.7 Hz, 1H), 1.40 (dd, *J* = 33.5, 21.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 167.7, 134.3, 132.1, 123.7, 94.7 (d, *J* = 167.1 Hz), 53.2, 48.4, 38.7 (d, *J* = 21.0 Hz), 28.1 (d, *J* = 24.4 Hz), 25.6 (d, *J* = 24.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.99 – -143.43 (m, 1F).

Methyl 4-fluoro-4-methylpentanoate (2p)

1р

2p, 65% ¹⁹FNMR yield

То potassium persulfate (27.0)mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and methyl 4-methylpentanoate (1p) (13.1 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) was added to the reaction mixture. The yield of methyl 4-fluoro-4-methylpentanoate (2p) was determined by comparing the integration of the ¹⁹F NMR resonance of 4-fluoro-4-methylpentanoate $(2p)^9$ (-136.81 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm). (65% ¹⁹F NMR yield)

NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -136.61 – -137.01 (m, 1F).

4-Fluoro-4-methylpentanamide (2q)

To 4-methylpentanamide (**1q**) (11.5 mg, 0.100 mmol, 1.00 equiv), potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) was added H₂O (0.2 mL) then CH₃CN (0.3 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 2:1 (v/v), to afford 8.10 mg 4-fluoro-4-methylpentanamide (**2q**) as a white solid (61% yield).

 R_f = 0.30 (hexanes/EtOAc 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 5.81 – 5.44 (br, 2H), 2.41 – 2.30 (m, 2H), 2.03 – 1.91 (m, 2H), 1.36 (d, *J* = 21.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 95.3 (d, *J* = 166.5 Hz), 36.3 (d, *J* = 23.2 Hz), 30.2 (d, *J* = 4.0 Hz), 26.6 (d, *J* = 24.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -141.02 (dt, *J* = 42.5, 21.1 Hz). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₆H₁₂FNONa [M + Na],156.0801. Found, 156.0796.

3-Fluoroadamantan-1-ylisoindoline-1,3-dione (2r)

To 2-(adamantan-1-yl)isoindoline-1,3-dione (1r) (351 mg, 1.25 mmol, 5.00 equiv), potassium persulfate (27.0)0.100 mmol, 0.40 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 1.00 equiv) was added H₂O (0.4 mL) then CH₃CN (0.6 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 40:1 (v/v), to afford 53.10 mg 3-fluoroadamantan-1-ylisoindoline-1,3-dione (2r) as a white solid (71% yield).

 $R_f = 0.30$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ

7.77 (d, J = 2.9 Hz, 2H), 7.69 (d, J = 2.8 Hz, 2H), 2.69 (d, J = 6.0 Hz, 2H), 2.56 – 2.32 (m, 6H), 1.94 (d, J = 25.8 Hz, 4H), 1.57 (d, J = 11.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 134.0, 131.9, 122.9, 92.5 (d, J = 184.2 Hz), 62.1 (d, J = 12.4 Hz), 45.4 (d, J = 20.4 Hz), 41.7 (d, J = 17.6 Hz), 38.9, 34.6, 31.3 (d, J = 10.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -130.67 – -130.83 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₈H₁₉FNO₂ [M + H],300.1394. Found, 300.1393.

2-Fluoro-2-methyl-6-nitroheptane (2s)

To potassium persulfate (56.0)0.200 2.00 mg, mmol. equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) in H_2O (0.2 mL) were added CH_3CN (0.3 mL) and 2-methyl-6-nitroheptane (1s) (15.9 mg, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford the 11.2 mg 2-fluoro-2-methyl-6-nitroheptane (2s) as a colorless liquid (63% yield).

 $R_f = 0.40$ (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.63 – 4.53 (m, 1H), 2.03 (dt, J = 15.5, 8.3 Hz, 1H), 1.85 – 1.38 (m, 5H), 1.54 (d, J = 6.7 Hz, 3H), 1.33 (d, J = 21.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 95.4 (d, J = 165.5 Hz), 83.5, 40.6 (d, J = 23.3 Hz), 35.4, 26.7 (d, J = 24.8 Hz), 20.4 (d, J = 4.7 Hz), 19.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.43 – -138.84 (m, 1F). Mass Spectrometry: MS-EI (m/z): calcd for $C_8H_{16}F$ [M – NO₂] 131.1, found 131.1.

1-Bromo-3-fluoro-3-methylbutane (2t)

1t

2t, 71% ¹⁹FNMR yield

То potassium persulfate (54.0)mg, 0.200 mmol. 2.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 2.50 equiv) in H_2O (0.2 mL) were added CH_3CN (0.3 mL) mmol, and 1-bromo-3-methylbutane (1t) (12 μ L, 0.100 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature,

1-fluoro-3-nitrobenzene (6.0 μ L, 0.056 mmol) was added to the reaction mixture. The yield of 1-bromo-3-fluoro-3-methylbutane (**2t**) was determined by comparing the integration of the ¹⁹F NMR resonance of 1-bromo-3-fluoro-3-methylbutane (**2t**) (-140.12 ppm) with that of 1-fluoro-3-nitrobenzene (-109.00 ppm) (71% ¹⁹F NMR yield).

NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -139.92 – -140.31 (m, 1F). Mass Spectrometry: MS-EI (m/z): calcd for C₅H₁₀BrF [M] 168.0, found 168.0.

Fluorocyclohexane (2u)

То (27.0)0.100 0.400 potassium persulfate mg, mmol, equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 1.00 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and cyclohexane (1u) (135 μ L, 1.25 mmol, 5.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) and CD₃CN (4.0 mL) was added to the reaction mixture. The yield of fluorocyclohexane (2u) was determined by comparing the integration of the ¹H NMR resonance of fluorocyclohexane $(2\mathbf{u})^{10}$ with that of 1-fluoro-3-nitrobenzene (63% ¹H NMR yield).

NMR Spectroscopy: 19 F NMR (376 MHz, CDCl₃) δ -168.76 – -171.34 (br, 1F).

Fluorocyclohexane (2v)

То potassium persulfate (27.0)0.100 mmol, 0.400 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 1.00 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL) and cycloheptane (1v) (151 μ L, 1.250 mmol, 5.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, 1-fluoro-3-nitrobenzene (6.0 µL, 0.056 mmol) was added to the reaction mixture. The yield of fluorocycloheptane (2v) was determined by comparing the integration of the 19 F NMR resonance of fluorocycloheptane (2v) (-161.30 ppm)¹¹ with that of 1-fluoro-3-nitrobenzene (-109.00 ppm) (63% ¹⁹F NMR yield). NMR Spectroscopy: ¹⁹F NMR (376 MHz, CDCl₃) δ -161.51 – -162.08 (m, 1F).

2α-Fluorosclareolide (2w)

To sclareolide (1w) (25.0 mg, 0.100 mmol, 1.00 equiv), potassium persulfate (27.0 mg, 0.100 mmol, 1.00 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) was added H₂O (0.2 mL) then CH₃CN (0.3 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 10:1 (v/v), to afford 18.6 mg 2 α -fluorosclareolide (2w)¹² as a white solid (69% yield).

 R_f = 0.20 (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.85 (dddd, *J* = 48.0, 16.1, 11.4, 4.8 Hz, 1H), 2.46 (dd, *J* = 16.1, 14.8 Hz, 1H), 2.28 (dd, *J* = 16.1, 6.5 Hz, 1H), 2.19 – 1.88 (m, 6H), 1.71 (td, *J* = 12.5, 4.3 Hz, 1H), 1.45 – 1.35 (m, 3H), 1.34 (s, 3H), 1.01 (d, *J* = 3.5 Hz, 3H), 0.97 (d, *J* = 5.9 Hz, 3H), 0.89 (d, *J* = 9.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 88.6, 86.5 (d, *J* = 96.5 Hz), 58.9, 56.2 (d, *J* = 1.7 Hz), 48.0 (d, *J* = 15.9 Hz), 45.4 (d, *J* = 17.4 Hz), 38.5, 37.6 (d, *J* = 15.5 Hz), 35.1 (d, *J* = 12.2 Hz), 33.4, 31.1, 29.8, 28.8, 21.8 (d, *J* = 18.0 Hz), 20.3, 16.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.87 (dm, *J* = 48.6 Hz, 1F).

16β -Fluorotetrahydrogibberellate diacetate methyl ester (2x)

To 16β -tetrahydrogibberellate diacetate methyl ester (1x) (44.8 mg, 0.100 mmol, 1.00 equiv), potassium persulfate (27.0)0.100 mmol, 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 2.50 equiv) was added CH₃CN (0.3 mL) and H₂O (0.2 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1 mL), then quenched with NaHCO₃ (16.8 mg, 0.200 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was

purified by chromatography on silica gel, eluting with hexanes/EtOAc 3:1 (v/v), to afford 19.6 mg 16β -Fluorotetrahydrogibberellate diacetate methyl ester (**2x**) as a white solid (42% yield).

R_f = 0.30 (hexanes/EtOAc 2:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.95 (s, 1H), 3.74 (s, 3H), 3.13 (d, J = 10.4 Hz, 1H), 2.70 (d, J = 11.4 Hz, 1H), 2.66 (d, J = 10.5 Hz, 1H), 2.11 (s, 3H), 2.04 (s, 3H), 2.17 – 1.56 (m, 12H), 1.49 (d, J = 22.5 Hz, 3H), 1.05 (d, J = 12.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 173.1, 170.3, 170.3, 102.2 (d, J = 182.3 Hz), 92.8, 84.3 (d, J = 17.1 Hz), 71.5, 56.7, 53.4, 53.0, 52.6, 52.4, 50.2 (d, J = 23.3 Hz), 48.5, 37.6, 28.7, 27.4, 25.4, 21.9, 21.3, 19.4 (d, J = 28.6 Hz), 17.3, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.03 – -136.57 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₄H₃₁FO₈Na [M + Na],489.1901. Found, 489.1903.

To 7-O-Acetyl-13-O-(4-methylpentanoyl) baccatine III (1y) (18.0 mg, 0.025 mmol, 1.00 mmol, potassium persulfate (27.0)mg, 0.100 4.00 equiv) equiv). and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (27.0)mg, 0.063 mmol, 2.50 equiv) was added CH₃CN (0.3 mL) and H₂O (0.2 mL). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (2.0 mL) and H₂O (1.0 mL), then quenched with NaHCO₃ (4.20 mg, 0.050 mmol, 2.00 equiv) and extracted 2 times with EtOAc (5.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 4:1 (v/v), to afford 6.2 mg 7-O-acetyl-13-O-(4-fluoro-4-methylpentanoyl) baccatine III (2y) as a white solid (33% yield).

R_f = 0.30 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 6.26 (s, 1H), 6.19 (t, J = 8.9 Hz, 1H), 5.66 (d, J = 6.8 Hz, 1H), 5.59 (dd, J = 10.3, 7.2 Hz, 1H), 4.97 (d, J = 9.4 Hz, 1H), 4.33 (d, J = 8.6 Hz, 1H), 4.16 (d, J = 8.3 Hz, 1H), 3.96 (d, J = 6.8 Hz, 1H), 2.60 (dt, J = 16.0, 7.8 Hz, 2H), 2.35 (s, 3H), 2.25 (d, J = 8.1 Hz, 2H), 2.18 (d, J = 6.4 Hz, 3H), 2.04 (s, 3H), 1.96 (s, 3H), 1.90 – 1.81 (m, 1H), 1.81 (s, 3H), 1.65 (s, 1H), 1.43 (d, J = 3.0 Hz, 3H), 1.38 (d, J = 3.3 Hz, 3H), 1.25 (s, 3H), 1.22 (s, 3H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 173.1, 170.6, 169.8, 169.1, 167.1, 141.6, 133.9, 132.5, 130.2, 129.3, 128.8, 94.6 (d, J = 166.9 Hz), 84.1, 81.0, 78.9, 76.5, 75.5, 74.6, 71.6, 69.7, 56.2, 47.4, 43.3, 36.1 (d, J = 22.9 Hz), 35.7, 33.5, 29.3 (d, J = 4.3 Hz), 26.9 (d, J = 15.0 Hz), 26.7 (d, J = 14.9 Hz), 26.5, 22.6,

21.3, 20.9, 20.8, 15.0, 10.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -141.27 – -142.90 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₉H₄₉FNaO₁₃ [M + Na], 767.3055. Found, 767.3052.

The intermolecular kinetic isotope effect study

To potassium persulfate (27.0)mg, 0.100 mmol. 0.400 equiv) and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (109 mg, 0.250 mmol, 1.00 equiv) in H₂O (0.2 mL) were added CH₃CN (0.3 mL), cyclohexane (1u) (269 µL, 2.50 mmol, 10.0 equiv) and cyclohexane- d_{12} (**1u**- d_{12}) (273 µL, 2.50 mmol, 10.0 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 2 mL sealed vial. The ratio of fluorocyclohexane (2u) and fluorocyclohexane (2u- d_{11}) was determined by GC to be 63.9:36.0 on Agilent 7890A GC system.

Gram-scale synthesis of 5-fluoro-1,4-dimethylpentyl 2-bromobenzoate (2k)

То potassium persulfate (907 3.36 mmol, 1.00 equiv) mg, and 4-fluoro-1-methyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) (3.66 g, 8.40 mmol, 2.50 equiv) in a 25 mL sealed vial were added H₂O (6.7 mL), CH₃CN (10.0 mL) and 1,4-dimethylpentyl 2-bromobenzoate (1k) (1.00 g, 3.36 mmol, 1.00 equiv). The reaction mixture was stirred for 10 hr at 50 °C in a 25 mL sealed vial. After cooling to room temperature, the reaction was diluted with EtOAc (5.0 mL) and H₂O (2.0 mL), then quenched with NaHCO₃ (564 mg, 6.72 mmol, 2.00 equiv) and extracted 3 times with EtOAc (10.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 100:1 (v/v), to afford 881 mg 5-fluoro-1,4-dimethylpentyl 2-bromobenzoate (2k) as a colorless liquid (83% yield).

Spectroscopic Data

¹HNMR spectrum of **1s**

ő

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^{\circ}\text{C}$) of 1s

OAc

т

0

ò

AcO

Чe

Т

Me H

O OMe

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C}$) of 1x

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2a

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2a**

¹⁹FNMR spectrum (375 MHz, CDCl₃, 23 °C) of **2a**

¹H NMR spectrum (400 MHz, $CDCl_3$, 23 °C) of **2b**

 13 C NMR spectrum of **2b**

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2b**

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2d

¹³C NMR spectrum of 2d

 \neq

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C}$) of **2d**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2d

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2e

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2e**

. 09

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2e

y posteji na jedena teji na posteji na vondin iprovejetivni kradnih na kradnih na kradnih na se kunder i spelo

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2f

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C}$) of **2f**

¹⁹F NMR spectrum of **2f**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of **2f**

¹H NMR spectrum (400 MHz, CDCl₃, 23 $^{\circ}$ C) of **2g**

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C})$ of **2g**

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2h**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2h

¹H NMR spectrum of **2i**

Ś

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2i

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^{\circ}\text{C}$) of **2i**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $\,^\circ \text{C})$ of **2i**

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2j

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $\,^{\circ}\text{C})$ of **2j**

¹⁹FNMR spectrum (375 MHz, CDCl₃, 23 °C) of **2j**

¹H NMR spectrum of **2k**

ò

0

面

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2k**

_

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2k

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **2**l

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^{\circ}\text{C}$) of **21**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $\,^\circ \!\! \text{C})$ of **2l**

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of 2m

S75

¹H NMR spectrum (400 MHz, CDCl₃, 23 $^{\circ}$ C) of **2n**

Supporting Information

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2n**

¹⁹FNMR spectrum (375 MHz, $CDCl_3$, 23 °C) of **2n**

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2o

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C}$) of **20**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of **20**

¹H NMR spectrum (400 MHz, CDCl₃, 23 $^{\circ}$ C) of **2**q

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **2q**

 ^{19}F NMR spectrum of 2a

¹⁹FNMR spectrum (375 MHz, CDCl₃, 23 °C) of **2q**

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2r

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^{\circ}\text{C}$) of 2r

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2r

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2s

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^{\circ}\text{C}$) of **2s**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of **2s**

بالمطلطين والم

 \cap

Ξ.

Ľ

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of 2w

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2w

DAC

Т

0

AcO

¹H NMR spectrum of 2x

OMe

Me H.

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2x

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C}$) of **2x**

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 °C) of 2x

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 2y

 ^{13}C NMR spectrum (101 MHz, CDCl₃, 23 $^\circ\text{C})$ of 2y

 $^{19}\text{FNMR}$ spectrum (375 MHz, CDCl₃, 23 $^\circ\text{C}$) of 2y

X-ray Crystal Structure Data

X-ray Crystal Structure Data for 2α -Fluorosclareolide (2w)

Table S11. Crystal data and structure refinement for R131219D1.

Identification code	r131219d1		
Empirical formula	C16 H25 F O2		
Formula weight	268.36		
Temperature	173(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$		
Unit cell dimensions	a = 5.9958(12) A alpha = 90 deg.		
	b = 13.644(3) A beta = 90 deg.		
	c = 17.789(4) A gamma = 90 deg.		
Volume	1455.2(5) A^3		
Z, Calculated density	4, 1.225 Mg/m^3		
Absorption coefficient	0.087 mm^-1		
F(000)	584		
Crystal size	0.20 x 0.18 x 0.12 mm		
Theta range for data collection	1.88 to 27.98 deg.		
Limiting indices	-7<=h<=7, -17<=k<=17, -23<=l<=23		
Reflections collected / unique	17044 / 3480 [R(int) = 0.0470]		

Completeness to theta =	27.98 99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9896 and 0.9828		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3480 / 0 / 177		
Goodness-of-fit on F^2	1.052		
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.1577		
R indices (all data)	R1 = 0.0574, wR2 = 0.1600		
Absolute structure parameter	-1.0(12)		
Extinction coefficient	0.063(11)		
Largest diff. peak and hole	1.024 and -0.251 e.A^-3		

Table S12. Atomic coordinates (x 10^{4}) and equivalent isotropic displacement parameters (A² x 10^{3}) for R131219D1. U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)	
F(1)	9019(4)	1691(1)	5863(1)	60(1)	
O(1)	6716(3)	1267(1)	1960(1)	35(1)	
O(2)	5472(3)	2801(1)	1833(1)	50(1)	
C(1)	9864(4)	1155(1)	5251(1)	33(1)	
C(2)	8948(4)	1601(1)	4530(1)	29(1)	
C(3)	9616(3)	1005(1)	3829(1)	22(1)	
C(4)	8138(3)	1335(1)	3166(1)	23(1)	
C(5)	7969(4)	2388(2)	2883(1)	33(1)	
C(6)	6591(4)	2226(2)	2174(1)	34(1)	
C(7)	8402(3)	761(1)	2430(1)	27(1)	
C(8)	7782(4)	-300(2)	2573(1)	32(1)	
C(9)	9178(4)	-703(1)	3235(1)	29(1)	
C(10)	8919(3)	-92(1)	3956(1)	22(1)	
C(11)	9830(3)	-573(1)	4689(1)	28(1)	
C(12)	9170(4)	97(2)	5354(1)	33(1)	
C(13)	8677(4)	-1567(2)	4810(1)	41(1)	
C(14)	12367(4)	-760(2)	4692(1)	34(1)	
C(15)	12121(3)	1172(2)	3664(1)	30(1)	
C(16)	10589(4)	847(2)	1992(1)	38(1)	

F(1)-C(1)	1.406(2)
O(1)-C(6)	1.364(3)
O(1)-C(7)	1.483(2)
O(2)-C(6)	1.198(3)
C(1)-C(12)	1.512(3)
C(1)-C(2)	1.522(3)
C(1)-H(1)	1.0000
C(2)-C(3)	1.542(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.541(2)
C(3)-C(15)	1.547(2)
C(3)-C(10)	1.570(2)
C(4)-C(5)	1.526(3)
C(4)-C(7)	1.534(2)
C(4)-H(4)	1.0000
C(5)-C(6)	1.525(3)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(7)-C(8)	1.516(3)
C(7)-C(16)	1.531(3)
C(8)-C(9)	1.546(3)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.538(2)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.558(2)
C(10)-H(10)	1.0000
C(11)-C(13)	1.538(3)
C(11)-C(14)	1.542(3)
C(11)-C(12)	1.546(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-H(13A)	0.9800

Table S13.Bond lengths [A] and angles [deg] for R131219D1.

C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(6)-O(1)-C(7)	109.02(15)
F(1)-C(1)-C(12)	107.69(18)
F(1)-C(1)-C(2)	108.31(16)
C(12)-C(1)-C(2)	112.61(17)
F(1)-C(1)-H(1)	109.4
C(12)-C(1)-H(1)	109.4
C(2)-C(1)-H(1)	109.4
C(1)-C(2)-C(3)	112.16(15)
C(1)-C(2)-H(2A)	109.2
C(3)-C(2)-H(2A)	109.2
C(1)-C(2)-H(2B)	109.2
C(3)-C(2)-H(2B)	109.2
H(2A)-C(2)-H(2B)	107.9
C(4)-C(3)-C(2)	108.38(14)
C(4)-C(3)-C(15)	111.70(14)
C(2)-C(3)-C(15)	109.13(16)
C(4)-C(3)-C(10)	103.67(13)
C(2)-C(3)-C(10)	108.44(14)
C(15)-C(3)-C(10)	115.22(15)
C(5)-C(4)-C(7)	101.86(14)
C(5)-C(4)-C(3)	124.45(15)
C(7)-C(4)-C(3)	116.36(15)
C(5)-C(4)-H(4)	104.0
C(7)-C(4)-H(4)	104.0
C(3)-C(4)-H(4)	104.0
C(6)-C(5)-C(4)	99.92(16)

C(6)-C(5)-H(5A)	111.8
C(4)-C(5)-H(5A)	111.8
C(6)-C(5)-H(5B)	111.8
C(4)-C(5)-H(5B)	111.8
H(5A)-C(5)-H(5B)	109.5
O(2)-C(6)-O(1)	121.2(2)
O(2)-C(6)-C(5)	128.9(2)
O(1)-C(6)-C(5)	109.92(16)
O(1)-C(7)-C(8)	111.83(16)
O(1)-C(7)-C(16)	105.11(15)
C(8)-C(7)-C(16)	111.61(17)
O(1)-C(7)-C(4)	100.04(14)
C(8)-C(7)-C(4)	108.61(15)
C(16)-C(7)-C(4)	118.98(17)
C(7)-C(8)-C(9)	109.55(16)
C(7)-C(8)-H(8A)	109.8
C(9)-C(8)-H(8A)	109.8
C(7)-C(8)-H(8B)	109.8
C(9)-C(8)-H(8B)	109.8
H(8A)-C(8)-H(8B)	108.2
C(10)-C(9)-C(8)	112.86(15)
C(10)-C(9)-H(9A)	109.0
C(8)-C(9)-H(9A)	109.0
C(10)-C(9)-H(9B)	109.0
C(8)-C(9)-H(9B)	109.0
H(9A)-C(9)-H(9B)	107.8
C(9)-C(10)-C(11)	115.73(14)
C(9)-C(10)-C(3)	111.66(14)
C(11)-C(10)-C(3)	115.43(14)
C(9)-C(10)-H(10)	104.1
C(11)-C(10)-H(10)	104.1
C(3)-C(10)-H(10)	104.1
C(13)-C(11)-C(14)	107.28(17)
C(13)-C(11)-C(12)	107.46(17)
C(14)-C(11)-C(12)	110.32(17)
C(13)-C(11)-C(10)	109.32(16)
C(14)-C(11)-C(10)	114.74(17)

C(12)-C(11)-C(10)	107.50(14)
C(1)-C(12)-C(11)	113.65(16)
C(1)-C(12)-H(12A)	108.8
C(11)-C(12)-H(12A)	108.8
C(1)-C(12)-H(12B)	108.8
C(11)-C(12)-H(12B)	108.8
H(12A)-C(12)-H(12B)	107.7
C(11)-C(13)-H(13A)	109.5
C(11)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(11)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(11)-C(14)-H(14A)	109.5
C(11)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(3)-C(15)-H(15A)	109.5
C(3)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(3)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(7)-C(16)-H(16A)	109.5
C(7)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(7)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S14. Anisotropic displacement parameters (A² x 10³) for R131219D1. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12
F(1)	93(1)	55(1)	33(1)	-12(1)	1(1)	20(1)
O(1)	37(1)	40(1)	27(1)	1(1)	-6(1)	6(1)
O(2)	57(1)	49(1)	44(1)	14(1)	-5(1)	17(1)
C(1)	44(1)	31(1)	24(1)	-8(1)	-1(1)	5(1)
C(2)	35(1)	24(1)	26(1)	-3(1)	0(1)	3(1)
C(3)	20(1)	22(1)	24(1)	-1(1)	3(1)	-2(1)
C(4)	21(1)	23(1)	24(1)	1(1)	2(1)	0(1)
C(5)	38(1)	29(1)	30(1)	6(1)	1(1)	3(1)
C(6)	37(1)	37(1)	29(1)	7(1)	2(1)	5(1)
C(7)	28(1)	31(1)	23(1)	0(1)	-2(1)	3(1)
C(8)	36(1)	28(1)	31(1)	-6(1)	-6(1)	0(1)
C(9)	33(1)	22(1)	32(1)	-5(1)	-5(1)	2(1)
C(10)	20(1)	21(1)	26(1)	0(1)	0(1)	-1(1)
C(11)	29(1)	24(1)	31(1)	4(1)	-3(1)	1(1)
C(12)	40(1)	35(1)	24(1)	4(1)	2(1)	6(1)
C(13)	45(1)	29(1)	47(1)	10(1)	-5(1)	-4(1)
C(14)	31(1)	32(1)	38(1)	-1(1)	-9(1)	7(1)
C(15)	22(1)	33(1)	35(1)	-1(1)	1(1)	-6(1)
C(16)	40(1)	49(1)	27(1)	-3(1)	8(1)	5(1)

Table S15. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (A² x 10^{3}) for R131219D1.

_	Х	У	Z	U(eq)
H(1)	11528	1198	5248	40
H(2A)	9516	2279	4478	34
H(2B)	7302	1633	4562	34
H(4)	6588	1177	3335	27
H(5A)	7189	2817	3247	39
H(5B)	9454	2667	2767	39
H(8A)	8071	-694	2116	38
H(8B)	6174	-348	2694	38
H(9A)	8715	-1386	3340	35
H(9B)	10770	-714	3088	35
H(10)	7270	-61	4038	26
H(12A)	7531	70	5420	40

H(12B)	9863	-159	5819	40
H(13A)	9333	-2055	4471	61
H(13B)	7080	-1503	4703	61
H(13C)	8884	-1777	5332	61
H(14A)	12757	-1172	5124	50
H(14B)	13158	-133	4729	50
H(14C)	12798	-1093	4226	50
H(15A)	12733	596	3407	45
H(15B)	12921	1277	4137	45
H(15C)	12296	1750	3341	45
H(16A)	10369	604	1478	58
H(16B)	11745	457	2241	58
H(16C)	11055	1535	1975	58

Table S16.Torsion angles [deg] for R131219D1.

F(1)-C(1)-C(2)-C(3)	-174.93(17)
C(12)-C(1)-C(2)-C(3)	-55.9(2)
C(1)-C(2)-C(3)-C(4)	165.07(17)
C(1)-C(2)-C(3)-C(15)	-73.1(2)
C(1)-C(2)-C(3)-C(10)	53.1(2)
C(2)-C(3)-C(4)-C(5)	57.1(2)
C(15)-C(3)-C(4)-C(5)	-63.1(2)
C(10)-C(3)-C(4)-C(5)	172.21(16)
C(2)-C(3)-C(4)-C(7)	-174.69(15)
C(15)-C(3)-C(4)-C(7)	65.0(2)
C(10)-C(3)-C(4)-C(7)	-59.61(19)
C(7)-C(4)-C(5)-C(6)	37.94(18)
C(3)-C(4)-C(5)-C(6)	171.91(17)
C(7)-O(1)-C(6)-O(2)	173.8(2)
C(7)-O(1)-C(6)-C(5)	-8.0(2)
C(4)-C(5)-C(6)-O(2)	158.5(2)
C(4)-C(5)-C(6)-O(1)	-19.5(2)
C(6)-O(1)-C(7)-C(8)	146.77(17)
C(6)-O(1)-C(7)-C(16)	-91.96(18)
C(6)-O(1)-C(7)-C(4)	31.92(19)
C(5)-C(4)-C(7)-O(1)	-42.94(18)

C(3)-C(4)-C(7)-O(1)	178.54(14)
C(5)-C(4)-C(7)-C(8)	-160.21(16)
C(3)-C(4)-C(7)-C(8)	61.3(2)
C(5)-C(4)-C(7)-C(16)	70.7(2)
C(3)-C(4)-C(7)-C(16)	-67.8(2)
O(1)-C(7)-C(8)-C(9)	-163.84(15)
C(16)-C(7)-C(8)-C(9)	78.7(2)
C(4)-C(7)-C(8)-C(9)	-54.4(2)
C(7)-C(8)-C(9)-C(10)	56.2(2)
C(8)-C(9)-C(10)-C(11)	166.83(16)
C(8)-C(9)-C(10)-C(3)	-58.4(2)
C(4)-C(3)-C(10)-C(9)	55.73(18)
C(2)-C(3)-C(10)-C(9)	170.77(15)
C(15)-C(3)-C(10)-C(9)	-66.6(2)
C(4)-C(3)-C(10)-C(11)	-169.36(14)
C(2)-C(3)-C(10)-C(11)	-54.3(2)
C(15)-C(3)-C(10)-C(11)	68.3(2)
C(9)-C(10)-C(11)-C(13)	-57.2(2)
C(3)-C(10)-C(11)-C(13)	169.72(17)
C(9)-C(10)-C(11)-C(14)	63.3(2)
C(3)-C(10)-C(11)-C(14)	-69.7(2)
C(9)-C(10)-C(11)-C(12)	-173.58(16)
C(3)-C(10)-C(11)-C(12)	53.4(2)
F(1)-C(1)-C(12)-C(11)	175.62(17)
C(2)-C(1)-C(12)-C(11)	56.3(2)
C(13)-C(11)-C(12)-C(1)	-170.46(18)
C(14)-C(11)-C(12)-C(1)	72.9(2)
C(10)-C(11)-C(12)-C(1)	-52.9(2)

Symmetry transformations used to generate equivalent atoms:
X-ray Crystal Structure Data for 16β -Fluorotetrahydrogibberellate diacetate methyl ester (2x)

 Table S17.
 Crystal data and structure refinement for shelxl.

Identification code	shelxl		
Empirical formula	C24 H31 F O8		
Formula weight	466.49		
Temperature	113(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)		
Unit cell dimensions	a = 8.7359(17) A alpha = 90 deg.		
	b = 12.804(3) A beta = 90 deg.		
	c = 20.625(4) A gamma = 90 deg.		
Volume	2307.0(8) A^3		
Z, Calculated density	4, 1.343 Mg/m^3		
Absorption coefficient	0.105 mm^-1		
F(000)	992		
Crystal size	0.20 x 0.18 x 0.12 mm		
Theta range for data collection	1.87 to 28.02 deg.		
Limiting indices	-11<=h<=9, -16<=k<=16, -27<=l<=27		
Reflections collected / unique	22246 / 5526 [R(int) = 0.1118]		
Completeness to theta $= 28.02$	99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max and min transmission	0.9875 and 0.9793		

Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5526 / 0 / 304
Goodness-of-fit on F^2	1.003
Final R indices [I>2sigma(I)]	R1 = 0.0615, wR2 = 0.1225
R indices (all data)	R1 = 0.0843, wR2 = 0.1344
Absolute structure parameter	0.7(10)
Extinction coefficient	0.0128(14)
Largest diff. peak and hole	0.330 and -0.268 e.A^-3

Table S18. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for shelxl. U (eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
F(1)	1920(2)	4204(1)	10226(1)	39(1)
O(1)	-492(2)	5961(2)	5431(1)	33(1)
O(2)	455(2)	5426(1)	6394(1)	28(1)
O(3)	1516(3)	8350(2)	7571(1)	40(1)
O(4)	-119(2)	7249(1)	8064(1)	29(1)
O(5)	4251(2)	4864(2)	8709(1)	30(1)
O(6)	3104(2)	3998(2)	7896(1)	29(1)
O(7)	268(2)	5713(2)	10674(1)	31(1)
O(8)	-239(3)	7419(2)	10531(1)	43(1)
C(1)	305(4)	4177(2)	5583(1)	32(1)
C(2)	40(3)	5276(2)	5771(1)	27(1)
C(3)	275(4)	6466(2)	6657(1)	29(1)
C(4)	-1373(4)	6667(2)	6862(1)	33(1)
C(5)	-1837(3)	6077(2)	7480(1)	29(1)
C(6)	-559(3)	6124(2)	7977(1)	23(1)
C(7)	923(3)	5662(2)	7722(1)	23(1)
C(8)	1412(3)	6493(2)	7232(1)	27(1)
C(9)	985(4)	7484(2)	7622(1)	31(1)
C(10)	3060(4)	6488(2)	7007(1)	33(1)
C(11)	1921(3)	5549(2)	8332(1)	22(1)
C(12)	789(3)	5330(2)	8906(1)	22(1)
C(13)	1121(3)	5991(2)	9515(1)	24(1)
C(14)	16(3)	5472(2)	9991(1)	25(1)

C(15)	-1658(3)	5686(2)	9798(1)	29(1)	
C(16)	-1803(3)	6199(2)	9125(1)	28(1)	
C(17)	-829(3)	5615(2)	8628(1)	23(1)	
C(18)	3140(3)	4724(2)	8272(1)	23(1)	
C(19)	5380(3)	4035(2)	8736(2)	35(1)	
C(20)	766(3)	4200(2)	9188(1)	24(1)	
C(21)	451(3)	4311(2)	9914(1)	26(1)	
C(22)	-544(4)	3489(2)	10223(2)	42(1)	
C(23)	81(4)	6695(3)	10888(1)	33(1)	
C(24)	314(4)	6757(3)	11601(1)	45(1)	

 Table S19.
 Bond lengths [A] and angles [deg] for shelxl.

F(1)-C(21)	1.442(3)
O(1)-C(2)	1.216(3)
O(2)-C(2)	1.349(3)
O(2)-C(3)	1.447(3)
O(3)-C(9)	1.206(3)
O(4)-C(9)	1.361(4)
O(4)-C(6)	1.501(3)
O(5)-C(18)	1.336(3)
O(5)-C(19)	1.449(3)
O(6)-C(18)	1.212(3)
O(7)-C(23)	1.342(4)
O(7)-C(14)	1.459(3)
O(8)-C(23)	1.216(4)
C(1)-C(2)	1.478(4)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(3)-C(4)	1.522(4)
C(3)-C(8)	1.547(4)
C(3)-H(3)	1.0000
C(4)-C(5)	1.536(4)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.517(4)

C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(17)	1.512(4)
C(6)-C(7)	1.518(4)
C(7)-C(8)	1.527(4)
C(7)-C(11)	1.539(3)
C(7)-H(7)	1.0000
C(8)-C(10)	1.513(4)
C(8)-C(9)	1.549(4)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(18)	1.504(4)
C(11)-C(12)	1.568(4)
C(11)-H(11)	1.0000
C(12)-C(13)	1.543(4)
C(12)-C(20)	1.560(4)
C(12)-C(17)	1.568(4)
C(13)-C(14)	1.529(4)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(15)	1.540(4)
C(14)-C(21)	1.543(4)
C(15)-C(16)	1.542(4)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-C(17)	1.528(4)
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900
C(17)-H(17)	1.0000
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-C(21)	1.530(4)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-C(22)	1.506(4)

C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-C(24)	1.488(4)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(2)-O(2)-C(3)	117.3(2)
C(9)-O(4)-C(6)	108.3(2)
C(18)-O(5)-C(19)	115.0(2)
C(23)-O(7)-C(14)	119.8(2)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(1)-C(2)-O(2)	123.3(3)
O(1)-C(2)-C(1)	126.5(3)
O(2)-C(2)-C(1)	110.1(2)
O(2)-C(3)-C(4)	111.2(2)
O(2)-C(3)-C(8)	103.7(2)
C(4)-C(3)-C(8)	113.0(2)
O(2)-C(3)-H(3)	109.6
C(4)-C(3)-H(3)	109.6
C(8)-C(3)-H(3)	109.6
C(3)-C(4)-C(5)	113.4(2)
C(3)-C(4)-H(4A)	108.9
C(5)-C(4)-H(4A)	108.9
C(3)-C(4)-H(4B)	108.9
C(5)-C(4)-H(4B)	108.9
H(4A)-C(4)-H(4B)	107.7
C(6)-C(5)-C(4)	110.3(2)
C(6)-C(5)-H(5A)	109.6
C(4)-C(5)-H(5A)	109.6
C(6)-C(5)-H(5B)	109.6
C(4)-C(5)-H(5B)	109.6

H(5A)-C(5)-H(5B)	108.1
O(4)-C(6)-C(17)	110.3(2)
O(4)-C(6)-C(5)	107.9(2)
C(17)-C(6)-C(5)	117.9(2)
O(4)-C(6)-C(7)	101.3(2)
C(17)-C(6)-C(7)	105.8(2)
C(5)-C(6)-C(7)	112.2(2)
C(6)-C(7)-C(8)	101.3(2)
C(6)-C(7)-C(11)	103.7(2)
C(8)-C(7)-C(11)	116.6(2)
C(6)-C(7)-H(7)	111.5
C(8)-C(7)-H(7)	111.5
С(11)-С(7)-Н(7)	111.5
C(10)-C(8)-C(7)	117.8(2)
C(10)-C(8)-C(3)	112.0(2)
C(7)-C(8)-C(3)	108.2(2)
C(10)-C(8)-C(9)	113.0(3)
C(7)-C(8)-C(9)	99.2(2)
C(3)-C(8)-C(9)	105.2(2)
O(3)-C(9)-O(4)	122.4(3)
O(3)-C(9)-C(8)	128.0(3)
O(4)-C(9)-C(8)	109.7(2)
C(8)-C(10)-H(10A)	109.5
C(8)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(8)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(18)-C(11)-C(7)	113.6(2)
C(18)-C(11)-C(12)	112.5(2)
C(7)-C(11)-C(12)	106.1(2)
C(18)-C(11)-H(11)	108.2
C(7)-C(11)-H(11)	108.2
C(12)-C(11)-H(11)	108.2
C(13)-C(12)-C(20)	102.0(2)
C(13)-C(12)-C(11)	113.4(2)
C(20)-C(12)-C(11)	117.1(2)

C(13)-C(12)-C(17)	109.9(2)
C(20)-C(12)-C(17)	109.9(2)
C(11)-C(12)-C(17)	104.6(2)
C(14)-C(13)-C(12)	99.5(2)
C(14)-C(13)-H(13A)	111.9
C(12)-C(13)-H(13A)	111.9
C(14)-C(13)-H(13B)	111.9
C(12)-C(13)-H(13B)	111.9
H(13A)-C(13)-H(13B)	109.6
O(7)-C(14)-C(13)	115.6(2)
O(7)-C(14)-C(15)	110.8(2)
C(13)-C(14)-C(15)	110.9(2)
O(7)-C(14)-C(21)	105.3(2)
C(13)-C(14)-C(21)	101.4(2)
C(15)-C(14)-C(21)	112.3(2)
C(14)-C(15)-C(16)	112.7(2)
C(14)-C(15)-H(15A)	109.1
C(16)-C(15)-H(15A)	109.1
C(14)-C(15)-H(15B)	109.1
C(16)-C(15)-H(15B)	109.1
H(15A)-C(15)-H(15B)	107.8
C(17)-C(16)-C(15)	110.5(2)
C(17)-C(16)-H(16A)	109.6
C(15)-C(16)-H(16A)	109.6
C(17)-C(16)-H(16B)	109.6
C(15)-C(16)-H(16B)	109.6
H(16A)-C(16)-H(16B)	108.1
C(6)-C(17)-C(16)	118.1(2)
C(6)-C(17)-C(12)	106.5(2)
C(16)-C(17)-C(12)	111.8(2)
C(6)-C(17)-H(17)	106.6
C(16)-C(17)-H(17)	106.6
C(12)-C(17)-H(17)	106.6
O(6)-C(18)-O(5)	123.6(3)
O(6)-C(18)-C(11)	124.9(2)
O(5)-C(18)-C(11)	111.4(2)
O(5)-C(19)-H(19A)	109.5

O(5)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
O(5)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(21)-C(20)-C(12)	106.4(2)
C(21)-C(20)-H(20A)	110.5
C(12)-C(20)-H(20A)	110.5
C(21)-C(20)-H(20B)	110.5
C(12)-C(20)-H(20B)	110.5
H(20A)-C(20)-H(20B)	108.6
F(1)-C(21)-C(22)	105.0(2)
F(1)-C(21)-C(20)	105.6(2)
C(22)-C(21)-C(20)	116.9(2)
F(1)-C(21)-C(14)	105.4(2)
C(22)-C(21)-C(14)	119.2(2)
C(20)-C(21)-C(14)	103.5(2)
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(8)-C(23)-O(7)	123.0(3)
O(8)-C(23)-C(24)	126.0(3)
O(7)-C(23)-C(24)	111.0(3)
C(23)-C(24)-H(24A)	109.5
C(23)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(23)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S20. Anisotropic displacement parameters (A² x 10³) for shelxl. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12
F(1)	42(1)	38(1)	38(1)	1(1)	-6(1)	10(1)
O(1)	37(1)	35(1)	28(1)	3(1)	-6(1)	0(1)
O(2)	41(1)	19(1)	23(1)	1(1)	-2(1)	4(1)
O(3)	56(2)	19(1)	46(1)	-1(1)	7(1)	-7(1)
O(4)	37(1)	18(1)	31(1)	-3(1)	3(1)	1(1)
O(5)	26(1)	29(1)	35(1)	-7(1)	-7(1)	3(1)
O(6)	31(1)	27(1)	30(1)	-7(1)	0(1)	1(1)
O(7)	39(1)	31(1)	23(1)	-4(1)	-2(1)	6(1)
O(8)	60(2)	29(1)	39(1)	-1(1)	-1(1)	-1(1)
C(1)	35(2)	30(2)	31(2)	-7(1)	-1(1)	1(1)
C(2)	24(2)	32(2)	24(1)	1(1)	1(1)	0(1)
C(3)	45(2)	16(1)	25(1)	-2(1)	1(1)	5(1)
C(4)	44(2)	26(2)	28(2)	1(1)	-5(1)	9(1)
C(5)	30(2)	29(2)	29(2)	-4(1)	-4(1)	5(1)
C(6)	30(2)	15(1)	25(1)	-1(1)	-2(1)	-1(1)
C(7)	29(2)	18(1)	22(1)	-4(1)	-2(1)	-3(1)
C(8)	35(2)	19(1)	26(1)	2(1)	3(1)	0(1)
C(9)	39(2)	24(2)	29(2)	1(1)	-3(1)	0(1)
C(10)	40(2)	26(2)	32(2)	3(1)	8(1)	-7(1)
C(11)	27(1)	14(1)	24(1)	-1(1)	1(1)	1(1)
C(12)	21(1)	22(1)	22(1)	-1(1)	1(1)	-1(1)
C(13)	26(2)	23(2)	24(1)	-2(1)	0(1)	0(1)
C(14)	28(2)	27(2)	20(1)	-1(1)	1(1)	-2(1)
C(15)	25(2)	33(2)	29(2)	-4(1)	2(1)	2(1)
C(16)	26(2)	27(2)	31(2)	-2(1)	-2(1)	2(1)
C(17)	22(1)	22(1)	24(1)	-3(1)	0(1)	2(1)
C(18)	20(1)	25(1)	23(1)	1(1)	2(1)	-2(1)
C(19)	29(2)	34(2)	44(2)	-1(1)	-6(1)	7(1)
C(20)	25(1)	20(1)	28(1)	-1(1)	0(1)	0(1)
C(21)	25(2)	26(2)	29(1)	1(1)	5(1)	2(1)
C(22)	55(2)	28(2)	44(2)	6(1)	16(2)	1(2)
C(23)	32(2)	36(2)	32(2)	-2(1)	1(1)	-1(1)
C(24)	62(2)	47(2)	26(2)	-5(1)	-1(2)	5(2)

Table S21. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (A² x 10^{3}) for shelxl.

	X	У	Z	U(eq)
H(1A)	95	4092	5119	48
H(1B)	-377	3722	5832	48
H(1C)	1372	3989	5671	48
H(3)	588	6993	6325	35
H(4A)	-2064	6457	6504	39
H(4B)	-1512	7425	6935	39
H(5A)	-2776	6393	7663	35
H(5B)	-2062	5339	7372	35
H(7)	746	4972	7507	27
H(10A)	3741	6496	7384	49
H(10B)	3254	7108	6740	49
H(10C)	3254	5859	6750	49
H(11)	2436	6234	8415	26
H(13A)	2199	5923	9657	29
H(13B)	874	6737	9447	29
H(15A)	-2131	6149	10126	35
H(15B)	-2231	5019	9798	35
H(16A)	-2888	6192	8986	33
H(16B)	-1464	6936	9149	33
H(17)	-1363	4938	8540	27
H(19A)	4859	3358	8758	53
H(19B)	6022	4126	9121	53
H(19C)	6021	4061	8346	53
H(20A)	-47	3780	8978	29
H(20B)	1762	3851	9114	29
H(22A)	-104	2797	10142	63
H(22B)	-1575	3522	10036	63
H(22C)	-602	3612	10691	63
H(24A)	255	7487	11740	67
H(24B)	1322	6473	11712	67
H(24C)	-482	6351	11821	67

Table S22.	Torsion	angles	[deg]	for	shelxl	•
------------	---------	--------	-------	-----	--------	---

C(3)-O(2)-C(2)-O(1)	-1.2(4)
C(3)-O(2)-C(2)-C(1)	179.8(2)

C(2)-O(2)-C(3)-C(4)	80.9(3)
C(2)-O(2)-C(3)-C(8)	-157.4(2)
O(2)-C(3)-C(4)-C(5)	72.5(3)
C(8)-C(3)-C(4)-C(5)	-43.7(3)
C(3)-C(4)-C(5)-C(6)	42.0(3)
C(9)-O(4)-C(6)-C(17)	141.0(2)
C(9)-O(4)-C(6)-C(5)	-88.8(3)
C(9)-O(4)-C(6)-C(7)	29.2(3)
C(4)-C(5)-C(6)-O(4)	52.2(3)
C(4)-C(5)-C(6)-C(17)	178.0(2)
C(4)-C(5)-C(6)-C(7)	-58.6(3)
O(4)-C(6)-C(7)-C(8)	-43.4(2)
C(17)-C(6)-C(7)-C(8)	-158.5(2)
C(5)-C(6)-C(7)-C(8)	71.5(3)
O(4)-C(6)-C(7)-C(11)	77.9(2)
C(17)-C(6)-C(7)-C(11)	-37.3(3)
C(5)-C(6)-C(7)-C(11)	-167.2(2)
C(6)-C(7)-C(8)-C(10)	162.7(2)
C(11)-C(7)-C(8)-C(10)	51.0(3)
C(6)-C(7)-C(8)-C(3)	-69.0(2)
C(11)-C(7)-C(8)-C(3)	179.3(2)
C(6)-C(7)-C(8)-C(9)	40.5(2)
C(11)-C(7)-C(8)-C(9)	-71.3(3)
O(2)-C(3)-C(8)-C(10)	69.8(3)
C(4)-C(3)-C(8)-C(10)	-169.6(2)
O(2)-C(3)-C(8)-C(7)	-61.7(3)
C(4)-C(3)-C(8)-C(7)	58.9(3)
O(2)-C(3)-C(8)-C(9)	-167.0(2)
C(4)-C(3)-C(8)-C(9)	-46.4(3)
C(6)-O(4)-C(9)-O(3)	177.6(3)
C(6)-O(4)-C(9)-C(8)	-3.0(3)
C(10)-C(8)-C(9)-O(3)	29.7(4)
C(7)-C(8)-C(9)-O(3)	155.3(3)
C(3)-C(8)-C(9)-O(3)	-92.8(4)
C(10)-C(8)-C(9)-O(4)	-149.6(2)
C(7)-C(8)-C(9)-O(4)	-24.0(3)
C(3)-C(8)-C(9)-O(4)	87.8(3)

C(6)-C(7)-C(11)-C(18)	155.6(2)
C(8)-C(7)-C(11)-C(18)	-94.0(3)
C(6)-C(7)-C(11)-C(12)	31.5(3)
C(8)-C(7)-C(11)-C(12)	141.9(2)
C(18)-C(11)-C(12)-C(13)	101.3(3)
C(7)-C(11)-C(12)-C(13)	-133.9(2)
C(18)-C(11)-C(12)-C(20)	-17.1(3)
C(7)-C(11)-C(12)-C(20)	107.7(2)
C(18)-C(11)-C(12)-C(17)	-139.0(2)
C(7)-C(11)-C(12)-C(17)	-14.2(3)
C(20)-C(12)-C(13)-C(14)	-44.8(2)
C(11)-C(12)-C(13)-C(14)	-171.6(2)
C(17)-C(12)-C(13)-C(14)	71.7(2)
C(23)-O(7)-C(14)-C(13)	64.8(3)
C(23)-O(7)-C(14)-C(15)	-62.6(3)
C(23)-O(7)-C(14)-C(21)	175.8(2)
C(12)-C(13)-C(14)-O(7)	165.1(2)
C(12)-C(13)-C(14)-C(15)	-67.6(3)
C(12)-C(13)-C(14)-C(21)	51.8(2)
O(7)-C(14)-C(15)-C(16)	139.5(2)
C(13)-C(14)-C(15)-C(16)	9.6(3)
C(21)-C(14)-C(15)-C(16)	-103.0(3)
C(14)-C(15)-C(16)-C(17)	48.0(3)
O(4)-C(6)-C(17)-C(16)	46.3(3)
C(5)-C(6)-C(17)-C(16)	-78.3(3)
C(7)-C(6)-C(17)-C(16)	155.2(2)
O(4)-C(6)-C(17)-C(12)	-80.4(3)
C(5)-C(6)-C(17)-C(12)	155.0(2)
C(7)-C(6)-C(17)-C(12)	28.5(3)
C(15)-C(16)-C(17)-C(6)	-167.5(2)
C(15)-C(16)-C(17)-C(12)	-43.4(3)
C(13)-C(12)-C(17)-C(6)	113.6(2)
C(20)-C(12)-C(17)-C(6)	-135.0(2)
C(11)-C(12)-C(17)-C(6)	-8.5(3)
C(13)-C(12)-C(17)-C(16)	-16.8(3)
C(20)-C(12)-C(17)-C(16)	94.6(3)
C(11)-C(12)-C(17)-C(16)	-138.8(2)

C(19)-O(5)-C(18)-O(6)	-4.2(4)
C(19)-O(5)-C(18)-C(11)	173.1(2)
C(7)-C(11)-C(18)-O(6)	-22.1(4)
C(12)-C(11)-C(18)-O(6)	98.4(3)
C(7)-C(11)-C(18)-O(5)	160.6(2)
C(12)-C(11)-C(18)-O(5)	-78.9(3)
C(13)-C(12)-C(20)-C(21)	21.5(3)
C(11)-C(12)-C(20)-C(21)	145.9(2)
C(17)-C(12)-C(20)-C(21)	-95.0(2)
C(12)-C(20)-C(21)-F(1)	-100.4(2)
C(12)-C(20)-C(21)-C(22)	143.3(3)
C(12)-C(20)-C(21)-C(14)	10.1(3)
O(7)-C(14)-C(21)-F(1)	-48.5(2)
C(13)-C(14)-C(21)-F(1)	72.3(2)
C(15)-C(14)-C(21)-F(1)	-169.2(2)
O(7)-C(14)-C(21)-C(22)	69.0(3)
C(13)-C(14)-C(21)-C(22)	-170.2(3)
C(15)-C(14)-C(21)-C(22)	-51.7(3)
O(7)-C(14)-C(21)-C(20)	-159.2(2)
C(13)-C(14)-C(21)-C(20)	-38.3(3)
C(15)-C(14)-C(21)-C(20)	80.1(3)
C(14)-O(7)-C(23)-O(8)	-2.9(5)
C(14)-O(7)-C(23)-C(24)	177.0(3)

Symmetry transformations used to generate equivalent atoms:

Reference

(1) Banks, R. E.; Besheesh, M. K.; Mohialdin-Khaffaf, S. N.; Sharif, I. *Journal of the Chemical Society, Perkin Transactions 1* **1996**, 2069.

(2) Gowrisankar, S.; Neumann, H.; Beller, M. Angewandte Chemie International Edition **2011**, *50*, 5139.

(3) Tamura, M.; Hakim Siddiki, S. M. A.; Shimizu, K.-i. *Green Chemistry* 2013, 15, 1641.

(4) Guo, S.; Zhang, X.; Tang, P. Angew. Chem. Int. Ed. 2015, 54, 4065.

(5) Peddibhotla, S.; Dang, Y.; Liu, J. O.; Romo, D. *Journal of the American Chemical Society* **2007**, *129*, 12222.

(6) Chen, M. S.; White, M. C. Science 2007, 318, 783.

(7) Riswoko, A.; Aoki, Y.; Hirose, T.; Nohira, H. Enantiomer 2002, 7, 33.

(8) Padmakshan, D.; Bennett, S. A.; Otting, G.; Easton, C. J. Synlett 2007, 2007, 1083.

(9) Xia, J.-B.; Ma, Y.; Chen, C. Organic Chemistry Frontiers 2014, 1, 468.

(10) Chambers, R. D.; Kenwright, A. M.; Parsons, M.; Sandford, G.; Moilliet, J. S. *Journal of the Chemical Society, Perkin Transactions 1* **2002**, 2190.

(11) Bucsi, I.; Török, B.; Marco, A. I.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. Journal of the American Chemical Society **2002**, 124, 7728.

(12) Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. Science **2012**, 337, 1322.