Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

Supporting Information

for

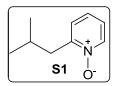
Pd-Catalyzed Intermolecular Enantioselective Hydroamination of Styenes Coupled with Alochol Oxidation

Feng Yu, Pinhong Chen* and Guosheng Liu*

State Key Laboratory of Organometallics Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, China, 200032.

Email: Pinhongchen@mail.sioc.ac.cn; gliu@mail.sioc.ac.cn

Table of Contents


1. General	S1
2. Synthesis of chiral pyridine-oxazoline ligands	S1
3. General Procedure for Pd-catalyzed hydroamination of styrenes	S8
4. New compounds characterization	S11
5. X-Ray structure of enantiopure 2a and (L12)PdCl ₂	S16
6. Reference	S20
7. NMR spectra of ligands and products	S21
8. HPLC of products	S84

1. General

All reactions were run under N₂ in oven-dried Schlenk tubes. Palladium acetate was purchased from Strem Chemical. Other commercial reagents with high purity were purchased and used without further purification, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) carried out on 25 mm silica gel plates using UV light as a visualizing agent. ¹H and ¹³C spectra were recorded on a Varian Mercury-400 MHz or an Agilent-400 MHz spectrometer. CDCl₃ was purchased from J&K. The chemical shifts (δ) are given in parts per million relative to internal standard TMS (0 ppm for ¹H), CDCl₃ (77.0 ppm for ¹³C). High performance liquid chromatography was performed on Waters 2487-600E Series HPLC using DAICEL Chiralpak AD-H chiral column eluted with a mixture of hexane and isopropyl alcohol. Optical rotation was measured on a Rudolph-Autopol I. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate (PE/EA). Ethyl acetate was purified according to the procedure from "Purification of Laboratory Chemicals book".

2. Synthesis of chiral pyridine-oxazoline ligands

Chiral pyridine-oxazoline ligands were synthesized according to the literatures and we take **L12** as an example for the operation in detail. [S1-3] Some new ligands with different substituents were characterized as below.

To a stirred solution of 2-isobutylpyridine (5.0 g, 37 mmol) in CH₂Cl₂ (120 mL), 85% m-CPBA (11.2 g, 63 mmol, 1.7 equiv) was added portion-wise at 0 °C. The resulting mixture was stirred at room temperature for 12 h. After the reaction was completed, the reaction mixture was diluted with CH₂Cl₂, and solid Na₂CO₃ (4.0 equiv) was added. The mixture was stirred for 10 min, and filtered. The filtrate was dried over Na₂SO₄ and concentrated under vacuum. The crude residue was purified by silica gel chromatography to afford the pure product **S1** as a white solid (5.0 g, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 6.4 Hz, 1H), 7.22 – 7.08 (m, 3H), 2.78 (d, J = 6.8 Hz, 2H), 2.35 – 2.19 (m, 1H), 0.96 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 139.8, 126.6, 125.4, 123.4, 39.7, 25.3, 22.5; HRMS (ESI) calcd for C₉H₁₃NO [M+H]⁺: 152.1075, found: 152.1071.

To a solution of **S1** (5.6 g, 37 mmol) in CH₂Cl₂ (100 mL) was added trimethylsilyl cyanide (TMSCN, 4.58 g, 46.3 mmol, 1.25 equiv). Then a solution of diethylcarbamide chloride (6.79 g, 46.3 mmol, 1.25 equiv) in CH₂Cl₂ (50 mL) was slowly added in 30 min, and the reaction mixture was stirred at room temperature for 24 h. After K₂CO₃ (100 mL, 10 % aq.) was added, the mixture was extracted several times with CH₂Cl₂. The combined organic phases was washed with water and then dried over MgSO₄. The organic phase was concentrated and purified by silica gel chromatography to afford the product **S2** as a white solid (5.16 g, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 2.68 (d, J = 7.2 Hz, 2H), 2.18 – 2.03 (m, 1H), 0.91 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 136.9, 133.3, 127.0, 125.9, 117.5, 47.2, 29.1, 22.3; HRMS (ESI) calcd for C₁₀H₁₃N₂ [M+H]⁺: 161.1073, found: 161.1075.

To a stirred solution of **S2** (4.8 g, 30 mmol) in MeOH (50 mL), NaOMe (540 mg, 10 mol) was added portion-wise under N₂. The mixture was stirred at 40 °C for 12 h. The solvent was removed under vacuum, and the residue was then dissolved in 50 mL of EtOAc and then washed with water and brine. The organic phase was separated and dried over MgSO₄. After removal of the solvent, the crude product **S3** was used in next step without further purification. Colorless oil, yield: 5.50 g (95%). ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 7.69 – 7.56 (m, 2H), 7.15 (d, J = 6.4 Hz, 1H), 3.98 (s, 3H), 2.66 (d, J = 7.2 Hz, 2H), 2.14 (td, J = 13.6, 6.4 Hz, 1H), 0.91 (d, J = 6.4 Hz, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 161.2, 146.6, 137.1, 125.2, 118.0, 53.8, 47.2, 28.9, 22.4; HRMS (ESI) calcd for C₁₁H₁₇N₂O [M+H]⁺:193.1335, found: 193.1337.

To a mixture of **S3** (1.47 g, 7.7 mmol, 1.0 equiv) and (S)-2-amino-1-*tert*-butylethanol (1.1 g, 9.2 mmol, 1.2 equiv) in dry THF (20 mL), HCl (1 drop, 37% aq.) was added, and the mixture was refluxed under argon atmosphere until all the starting materials were consumed with monitored by TLC. After the reaction was complete (12 h), the mixture was diluted with saturated NaHCO₃ (aq., 60 mL) and extracted with EtOAc (3 x 50 mL). After the removal of solvent under reduced pressure, the residue was purified by silica gel chromatography (1:1 hexanes/EtOAc) to afford product **L12** as a white solid (1.45 g 72% yield). $[\alpha]_D^{27.7}$ -55.90 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 4.42 (dd, J = 10.4, 8.8 Hz, 1H), 4.28 (t, J = 8.4 Hz, 1H), 4.07 (dd, J = 10.4, 8.8 Hz, 1H), 2.73 (dd, J = 13.6, 7.6 Hz, 1H), 2.69 (dd, J = 13.6, 7.6 Hz, 1H), 2.17 – 2.02 (m,

1H), 0.94 (s, 9H), 0.91 (d, J = 7.2 Hz, 3H), 0.89 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 161.7, 146.6, 136.3, 125.20, 121.5, 76.2, 69.4, 47.4, 34.0, 29.0, 25.9, 22.34, 22.30; HRMS (ESI) calcd for C₁₆H₂₅N₂O [M+H]⁺: 261.1961, found: 261.1965.

Colrless oil, $[\alpha]_D^{27.5}$ -42.16 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 4.45 (dd, J = 10.4, 8.8 Hz, 1H), 4.31 (t, J = 8.8 Hz, 1H), 4.09 (dd, J = 10.4, 8.0 Hz, 1H), 2.91 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 162.8, 146.4, 136.8, 123.8, 121.5, 76.2, 69.4, 34.0, 31.5, 25.9, 14.2; HRMS (ESI) calcd for C1₄H₂₁N₂O [M+H]⁺: 233.1648, found: 233.1655.

White solid, $[\alpha]_D^{27.5}$ -55.49 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 4.45 (dd, J = 10.0, 8.8 Hz, 1H), 4.31 (t, J = 8.4 Hz, 1H), 4.09 (dd, J = 10.0, 8.4 Hz, 1H), 2.84 (dd, J = 8.8 Hz, 6.8 Hz, 2H), 1.75 (dq, J = 14.8, 7.2 Hz, 2H), 0.97 (t, J = 7.2 Hz, 3H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 162.5, 146.5, 136.6, 124.5, 121.5, 76.2, 69.4, 40.4, 34.0, 25.9, 23.4, 13.9; HRMS (ESI) calcd for $C_{15}H_{23}N_2O$ [M+H]⁺: 247.1805, found: 247.1808.

White solid, $[\alpha]_D^{27.6}$ -55.29 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 4.45 (dd, J = 10.4, 8.8 Hz, 1H), 4.31 (t, J = 8.4 Hz, 1H), 4.09 (dd, J = 10.4, 8.4 Hz, 1H), 3.27 – 3.14 (m, 1H), 1.30 (d, J = 6.8 Hz, 6H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 162.9, 146.1, 136.9, 121.8, 121.7, 76.2, 69.4, 36.6, 34.0, 25.9, 22.9, 22.8; HRMS (ESI) calcd for $C_{15}H_{23}N_2O$ [M+H]⁺: 247.1805, found: 247.1807.

White solid, $[\alpha]_D^{27.6}$ -33.65 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 7.99 (m, 3H), 7.88 – 7.76 (m, 2H), 7.55 – 7.35 (m, 3H), 4.48 (dd, J = 10.4, 8.8 Hz, 1H), 4.35 (t, J = 8.4 Hz, 1H), 4.14 (dd, J = 10.4, 8.4 Hz, 1H), 0.99 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 157.4, 147.0, 138.8, 137.2, 129.2, 128.7, 127.2, 122.5, 122.3, 76.3, 69.4, 34.0, 26.0; HRMS (ESI) calcd for $C_{18}H_{21}N_2O$ [M+H]⁺: 281.1648, found: 281.1649.

White soild, $[\alpha]_D^{27.7}$ -30.95 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.36 – 7.17 (m, 5H), 7.08 (d, J = 7.6 Hz, 1H), 4.46 (t, J = 9.6 Hz, 1H), 4.33 (t, J = 8.4 Hz, 1H), 4.27 (s, 2H), 4.11 (dd, J = 10.4, 8.4 Hz, 1H), 0.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 161.3, 146.4, 139.0,

136.9, 129.3, 128.6, 126.5, 125.0, 121.8, 76.3, 69.4, 44.6, 34.0, 25.9; HRMS (ESI) calcd for $C_{19}H_{23}N_2O$ [M+H]⁺: 295.1805, found: 295.1810.

White solid, $[\alpha]_D^{27.8}$ -55.79 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 4.43 (dd, J = 10.4, 8.8 Hz, 1H), 4.29 (t, J = 8.0 Hz, 1H), 4.07 (dd, J = 10.4, 8.0 Hz, 1H), 2.80 (d, J = 12.4 Hz, 1H), 2.74 (d, J = 12.4 Hz, 1H), 0.95 (s, 9H), 0.94 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 160.2, 146.3, 135.8, 126.3, 121.5, 76.1, 69.4, 51.6, 34.0, 32.1, 29.5, 25.9; HRMS (ESI) calcd for $C_{17}H_{27}N_2O$ [M+H]⁺: 275.2118, found: 275.2125.

White solid, $[\alpha]_D^{27.8}$ -33.97 (c 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 4.46 (dd, J = 10.4, 8.8 Hz, 1H), 4.32 (t, J = 8.8 Hz, 1H), 4.09 (dd, J = 10.4, 8.4 Hz, 1H), 2.75 (dd, J = 12.8, 7.6 Hz, 1H), 2.72 (dd, J = 13.2, 7.2 Hz, 1H), 1.82 – 1.72 (m, 1H), 1.71 – 1.59 (m, 5H), 1.25 – 1.11 (m, 3H), 1.05 – 0.94 (m, 2H), 0.97 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 161.4, 146.6, 136.1, 125.4, 121.5, 76.2, 69.4, 46.2, 38.3, 34.0, 33.0, 26.5, 26.1, 25.9; HRMS (ESI) calcd for $C_{19}H_{29}N_2O$ [M+H]⁺: 301.2274, found: 301.2278.

Yellow solid, $[\alpha]_D^{27.8}$ -33.31 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 1H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 5.28 (s, 2H), 4.45 (dd, *J* = 10.4, 8.8 Hz, 1H), 4.31 (t, *J* = 8.8 Hz, 1H), 4.11 (dd, *J* = 10.4, 8.4 Hz, 1H), 2.16 (s, 3H), 0.96 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 162.2, 156.0, 146.6, 137.3, 123.4, 123.3, 76.3, 69.4, 66.7, 34.0, 25.9, 20.9; HRMS (ESI) calcd for C₁₅H₂₁N₂O₃ [M+H]⁺: 277.1547, found: 277.1548.

Colorless oil, $[\alpha]_D^{27.8}$ -47.46 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 4.41 (dd, *J* = 10.4, 8.8 Hz, 1H), 4.28 (t, *J* = 8.4 Hz, 1H), 4.05 (dd, *J* = 10.4, 8.4 Hz, 1H), 2.72 (d, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 2.14-2.11 (m, 1H), 0.94 (s, 9H), 0.92 (d, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 160.2, 144.1, 137.8, 133.8, 121.6, 76.1, 69.3, 43.8, 34.0, 28.9, 25.9, 22.4, 19.4; HRMS (ESI) calcd for C₁₇H₂₇N₂O [M+H]⁺: 275.2118, found: 275.2122.

Colorless oil, $[\alpha]_D^{28.0}$ -133.22 (c 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 4.41 (dd, J = 10.0, 8.8 Hz, 1H), 4.28 (t, J = 8.4 Hz, 1H), 4.07 (dd, J = 10.0, 8.4 Hz, 1H), 3.18 (d, J = 2.8 Hz, 2H), 2.78 (t, J = 5.6

Hz, 1H), 2.71 - 2.62 (m, 1H), 2.37 - 2.33 (m, 1H), 1.38 (s, 3H), 1.23 (d, J = 9.6 Hz, 1H), 0.94 (s, 9H), 0.61 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 162.8, 157.1, 144.5, 144.0, 133.3, 121.2, 76.3, 69.2, 46.6, 40.0, 39.4, 36.6, 34.0, 31.6, 25.9, 21.2; HRMS (ESI) calcd for $C_{19}H_{27}N_2O$ [M+H]⁺: 299.2118, found: 299.2120.

Colorless oil, $[\alpha]_D^{27.9}$ -8.80 (*c* 0.2, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.6 (d, J = 7.8 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 3.59 (s, 1H), 2.73 (dd, J = 13.2, 7.6 Hz, 1H), 2.69 (dd, J = 13.2, 7.6 Hz, 1H), 2.14 – 2.04 (m, 1H), 1.54 (s, 3H), 1.50 (s, 3H), 1.09 (s, 9H), 0.89 (d, J = 7.2 Hz, 3H), 0.87 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 147.4, 136.1, 124.9, 121.3, 88.5, 82.9, 47.3, 34.1, 30.7, 28.9, 27.8, 23.2, 22.4, 22.3; HRMS (ESI) calcd for $C_{18}H_{29}N_2O$ [M+H]⁺: 289.2274, found: 289.2282.

3. General Procedure for Pd-catalyzed hydroamination of styrenes.

To an oven-dried Schlenk tube, $Pd(OAc)_2$ (4.4 mg, 0.01 mmol), liagnd L13 (7.8 mg, 0.015 mmol), and NFSi (175 mg, 0.6 mmol) were dissolved in EtOAc(1 mL) under N_2 atmosphere. Then styrene (0.2 mmol), n-butyl alcohol (44.5 mg, 0.6 mmol) and triethyl orthoformate (50 μ L, 3 mmol) were added subsequently. The resulting mixture was stirred at 30 °C, and monitored by TLC. After the styrene was consumed, the solvent was removed and the residue was purified by silca gel chromatography to

give the product (See Table 1).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (bs, 4H), 7.56 (t, J = 7.6 Hz, 2H), 7.46 – 7.40 (m, 6H), 7.30 – 7.27 (m, 3H), 5.63 (q, J = 7.6 Hz, 1H), 1.65 (d, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ 140.4, 137.3, 133.5, 128.8, 128.7, 128.2, 128.1, 128.0, 60.3, 18.0; IR cm⁻¹: 1449, 1349, 1170, 1083, 959, 878, 757, 583; HRMS (ESI) calcd for C₁₀H₁₉NO₄S₂Na [M+Na]⁺: 424.0648, found: 424.0648; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 14.0 min (minor) and 19.8 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (bs, 4H), 7.60 (t, J = 7.2 Hz, 2H), 7.48-7.41 (m, 6H), 6.96 (t, J = 8.8 Hz, 2H), 5.59 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4 (d, J = 246.2 Hz), 140.4, 133.6, 133.3 (d, J = 3.8 Hz), 130.6 (d, J = 8.2 Hz), 128.8, 128.1, 114.9 (d, J = 21.6 Hz), 59.7, 18.2; HRMS (EI) calcd for C₁₉H₁₅FNO₄S₂ [M-CH₃]: 404.0427, found: 404.0422; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 12.9 min (minor) and 16.5 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (bs, 4H), 7.60 (t, J = 7.6 Hz, 2H), 7.5 (t, J = 7.6 Hz, 4H), 7.4 (d, J = 8.4 Hz, 2H), 7.2 (d, J = 8.4 Hz, 2H), 5.58 (q, J = 7.2 Hz,

1H), 1.63 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 136.0, 134.0, 133.6, 130.2, 128.8, 128.3, 128.1, 59.5, 18.0; HRMS (EI) calcd for C₁₉H₁₅ClNO₄S₂ [M-CH₃]: 420.0131, found: 420.0130; HPLC (DAICEL Chiralpak AD-H, hexane/isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 7.4 min (minor) and 9.9 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (bs, 4H), 7.46 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 4H), 7.24 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H), 5.56 (q, J = 7.2 Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 136.5, 133.6, 131.1, 130.5, 128.8, 128.1, 122.1, 59.6, 17.9; HRMS (EI) calcd for $C_{20}H_{18}BrNO_4S_2$ [M]: 478.9861, found: 478.9868; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 8/2, flow 0.7 mL/min, detection at 214 nm) retention time = 9.5 min (minor) and 14.2 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (bs, 4H), 7.60 – 7.55 (m, 4H), 7.44 (t, J = 7.6 Hz, 4H), 7.14 (d, J = 8.2 Hz, 2H), 5.54 (q, J = 7.2 Hz, 1H), 1.60 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 137.2, 137.1, 133.7, 130.7, 128.9, 128.1, 93.9, 59.7, 17.9; HRMS (ESI) calcd for $C_{20}H_{22}IN_2O_4S_2$ [M+NH₄]⁺: 545.0060, found: 545.0066; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 8.1 min (minor) and 11.3 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (bs, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 4H), 7.32 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 5.61 (q, J = 7.2 Hz, 1H), 2.36 (s, 3H), 1.65 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 137.8, 134.4, 133.4, 128.8, 128.7, 128.5, 128.2, 60.3, 21.1, 18.1; HRMS (ESI) calcd for C₂₀H₂₁NO₄S₂Na [M+Na]⁺: 438.0804, found: 438.0803; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 12.4 min (minor) and 21.1 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 4H), 7.66 – 7.54 (m, 4H), 7.54 – 7.35 (m, 11H), 5.72 (q, J = 7.2 Hz, 1H), 1.72 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 140.5, 136.4, 133.5, 129.3, 128.9, 128.8, 128.2, 127.6, 127.1, 126.7, 60.2, 18.2; HRMS (ESI) calcd for C₂₆H₂₇N₂O₄S₂ [M+NH₄]⁺: 495.1407, found: 495.1408; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 8.3 min (minor) and 10.1 min (major).

$$N(SO_2Ph)_2$$
 tBu
 $2h$

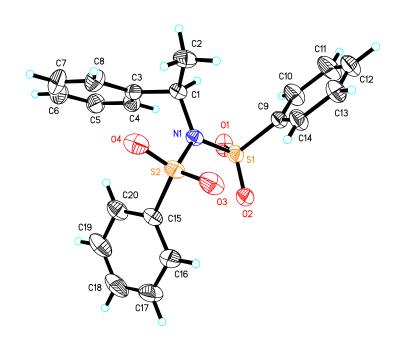
Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (bs, 4H), 7.56 (t, J = 11.2 Hz, 2H), 7.43 – 7.38 (m, 6H), 7.31 (d, J = 8.4 Hz, 2H), 5.66 (q, J = 7.2 Hz, 1H), 1.67 (d, J = 7.2 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 140.6, 134.2, 133.5, 128.7, 128.2, 125.0, 60.3, 34.6, 31.4, 18.2; HRMS (EI) calcd for C₂₄H₂₇NO₄S₂ [M]: 457.1381, found: 457.1380; HPLC (DAICEL Chiralpak AD-H, hexane/isopropanol =

9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 9.6 min (minor) and 10.7 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (bs, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.43 (t, J = 7.2 Hz, 4H), 7.26 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.15 (s, 1H), 7.09 (d, J = 7.2 Hz, 1H), 5.62 (q, J = 7.2 Hz, 1H), 2.23 (s, 3H), 1.65 (d, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 140.5, 137.6, 137.2, 133.4, 129.6, 128.6, 128.3, 128.2, 128.0, 125.6, 60.3, 21.3, 18.1; HRMS (ESI) calcd for C₂₁H₂₁NO₄S₂Na [M+Na]⁺: 438.0804, found: 438.0823; HPLC (DAICEL Chiralpak AD-H, hexane/isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 7.1 min (minor) and 9.0 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 4H), 7.60 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.6 Hz, 4H), 7.28 – 7.20 (m, 2H), 7.12 (d, J = 10.4 Hz, 1H), 7.06 – 6.90 (m, 1H), 5.57 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, J = 245.2 Hz), 140.3, 140.1 (d, J = 7.6 Hz), 133.7, 129.5 (d, J = 8.5 Hz), 128.8, 128.2, 124.3 (d, J = 3.2 Hz), 115.8 (d, J = 22.0 Hz), 114.9 (d, J = 20.4 Hz), 59.6, 59.6, 18.0; HRMS (ESI) calcd for C2₀H₂₂FN₂O₄S₂ [M+NH₄]⁺: 437.1000, found: 437.1002; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 7.8 min (minor) and 9.6 min (major).

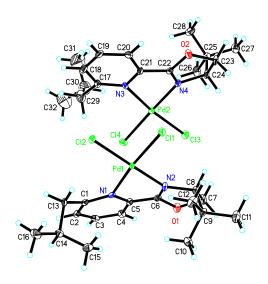
White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (bs, 4H), 7.61 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.6 Hz, 4H), 7.35 – 7.26 (m, 3H), 7.24 – 7.16 (m, 1H), 5.56 (q, J = 7.2 Hz, 1H), 1.64 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 134.1, 133.8, 129.4, 129.0, 128.9, 128.2, 128.1, 126.7, 59.6, 18.0; HRMS (ESI) calcd for C₂₀H₂₂ClN₂O₄S₂ [M+NH₄]⁺: 453.0704, found: 453.0703; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 7.7 min (minor) and 9.9 min (major).


White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (bs, 4H), 7.61 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.6 Hz, 5H), 7.44 – 7.34 (m, 2H), 7.15 (t, J = 8.0 Hz, 1H), 5.55 (q, J = 7.2 Hz, 1H), 1.63 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 133.8, 131.8, 131.1, 129.7, 128.9, 128.2, 127.1, 122.3, 59.5, 18.0; HRMS (ESI) calcd for $C_{20}H_{22}BrN_2O_4S_2$ [M+NH₄]⁺: 497.0199, found: 497.0195; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 7/3, flow 0.7 mL/min, detection at 214 nm) retention time = 7.6 min (minor) and 10.1 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (bs, 4H), 7.62 (d, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 4H), 7.25 (t, J = 7.6 Hz, 1H), 7.12 (t, J =

7.2 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 5.98 (q, J = 7.2 Hz, 1H), 1.99 (s, 3H), 1.89 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 139.0, 133.7, 133.1, 130.2, 130.0, 128.5, 128.4, 128.1, 125.7, 58.2, 19.9, 19.4; HRMS (ESI) calcd for $C_{21}H_{21}NO_4S_2Na$ [M+Na]⁺: 438.0804, found: 438.0811; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 24.9 min (minor) and 33.8 min (major).

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (br, 4H), 7.58 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 4H), 7.18 (d, J = 8.0 Hz, 1H), 7.08 – 7.05 (m, 2H), 5.63 (q, J = 7.2 Hz, 1H), 2.26 (s, 3H), 2.12 (s, 3H), 1.67 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 136.4, 136.1, 134.7, 133.4, 130.2, 129.2, 128.7, 128.2, 125.9, 60.4, 19.7, 19.5, 18.2; HRMS (ESI) calcd for $C_{22}H_{27}N_2O_4S_2$ [M+NH₄]⁺: 447.1407, found: 447.1409; HPLC (DAICEL Chiralpak AD-H, hexane/ isopropanol = 9/1, flow 0.7 mL/min, detection at 214 nm) retention time = 10.5 min (minor) and 15.0 min (major).


X-Ray structure of enantiopure 2a and (L12)PdCl₂

Crystal data and structure refinement for 2a			
Identification code	cd213489		
Empirical formula	C20 H19 N O4 S2		
Formula weight	401.48		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
space group	P2(1)		
Unit cell dimensions	$a = 8.4228(10) \text{ Å}$ $\alpha = 90 ^{\circ}$		
	b = 13.7083(17) Å β= 104.508(2) °		
	$c = 8.6714(11) \text{ Å}$ $\gamma = 90^{\circ}$		
Volume	969.3(2) Å ³		
Z	2		
Calculated density	$1.376~\mathrm{Mg/m^3}$		
Absorption coefficient	0.300 mm ⁻¹		
F(000)	420		

Crystal size	0.212 x 0.175 x 0.114 mm ³	
Theta range for data collection	2.43 to 26.00 °	
Limiting indices	-10≤h≤10, -15≤k≤16, -10≤l≤10	
Reflections collected	5776	
unique	3147 [R(int) = 0.0429]	
Completeness to theta = 26.00°	99.9 %	
Absorption correction	Empirical	
Max. and min. transmission	1.00000 and 0.46327	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3147 / 1 / 246	
Goodness-of-fit on F ²	1.059	
Final R indices [I>2sigma(I)]	$R_1 = 0.0426, wR_2 = 0.1018$	
R indices (all data)	$R_1 = 0.0450, wR_2 = 0.1040$	
Absolute structure parameter	0.05(7)	
Extinction coefficient	0.017(3)	
Largest diff. peak and hole	0.434 and -0.328 e. Å ⁻³	

X-ray of (L12)PdCl₂

Crystal data and structure refinement for mo_dm14620_0m.			
Identification code	(L12)PdCl ₂		
Empirical formula	C16 H24 Cl2 N2 O Pd		
Formula weight	437.67		
Temperature	130 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
space group	P 1 21 1		
Unit cell dimensions	a = 12.1876(18) Å	α = 90°	
	b = 9.8204(14) Å	β = 96.796(3) °	
	c =15.854(2) Å	γ = 90°	
Volume	1884.2(5) Å ³		
Z	4		
Calculated density	11.543 Mg/m ³		
Absorption coefficient	1.271 mm ⁻¹		
F(000)	888		

Crystal size	0.18 x 0.03 x 0.02 mm ³	
Theta range for data collection	1.293 to 30.495 °	
Limiting indices	-14≤h≤17, -13≤k≤13, -22≤22	
Reflections collected	18529	
unique	10955 [R(int) = 0.0640]	
Completeness to theta = 26.00°	99.9 %	
Absorption correction	Empirical	
Max. and min. transmission	1.00000 and 0.46327	
Refinement method	Semi-empirical from equivalents	
Data / restraints / parameters	10955 / 40 / 407	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2σ(I)]	$R_1 = 0.0638, wR_2 = 0.1180$	
R indices (all data)	$R_1 = 0.0974, wR_2 = 0.1327$	
Absolute structure parameter	-0.03(4)	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.263 and -1.046 e.Å ⁻³	

4. Deuterium labeled experiments

Standard conditions
L12

$$t_{\text{Bu}}$$
 t_{Bu}
 t_{Bu}

Standard conditions

 t_{Bu}
 t_{Bu}

The deuterium labeled styrene E-**1h**-d was synthesized and subjected to the standard condition, and the hydroamination product **2h**-d was obtained as a mixture of isomers with the deuterium incorporation on both α and β carbon (eq 1). The ¹H NMR spectrum of **2h**-d was shown in Figure S1.

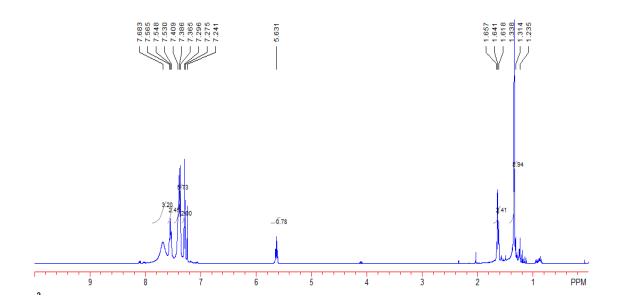


Figure S1. ¹H NMR spectrum of 2h-d obtained in eq 1

Pd(OAc)₂ (10 mol%)

L12 (15 mol%)

iPrOH-
$$d_8$$
 (3.0 equiv)

EtOAc, 30 °C, N₂
 t_{Bu}
 t_{Bu}

N(SO₂Ph)₂

CH₃*40%D

40%D

2h- d

(2)

When styrene E-**1h**-d was subjected to the standard condition with iPrOH- d_8 , the same product **2h**-d was given (eq 2), however with 40% deuterium incorporation on both α and β carbon (eq 2). The ¹H NMR spectrum of **2h**-d was shown in Figure S2.

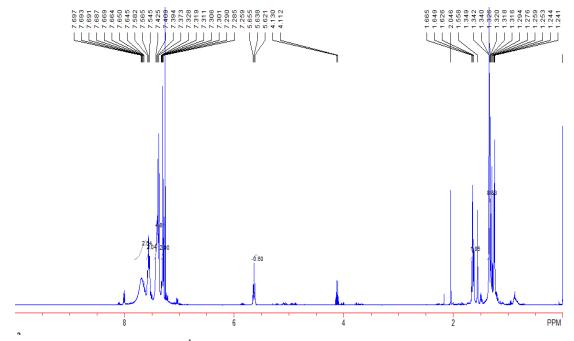
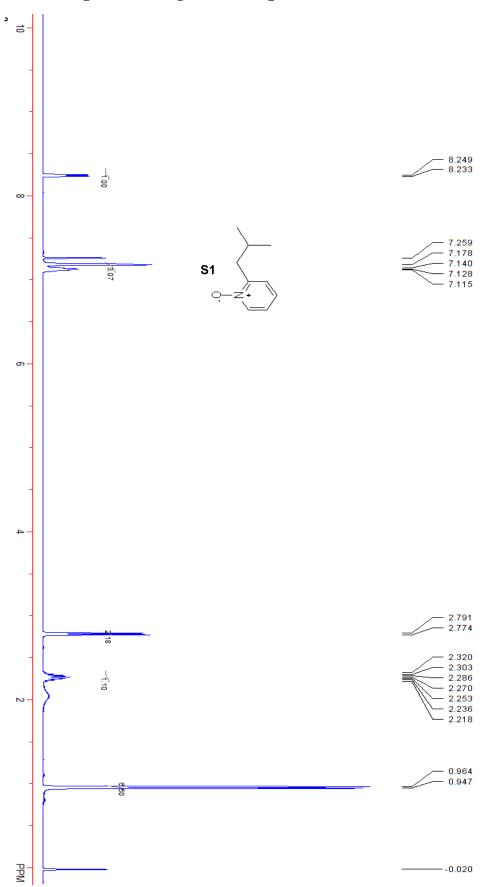
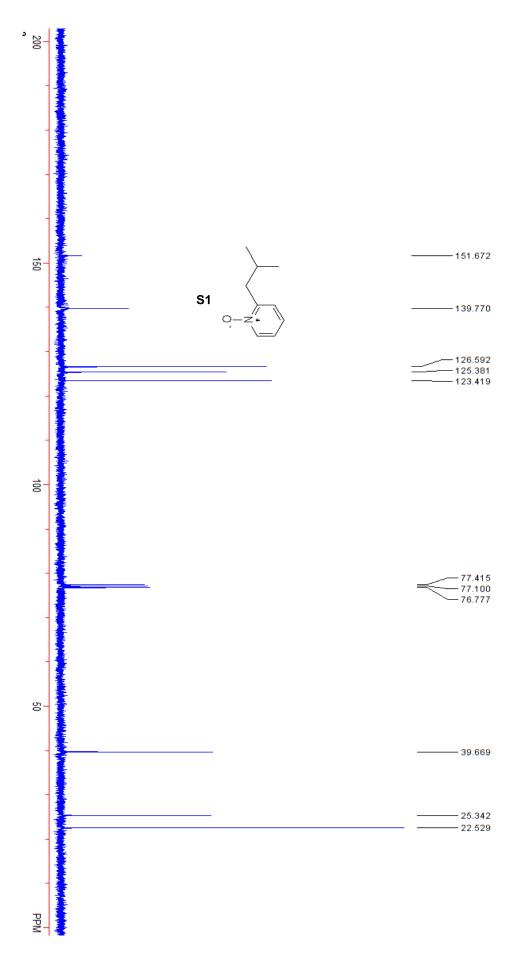
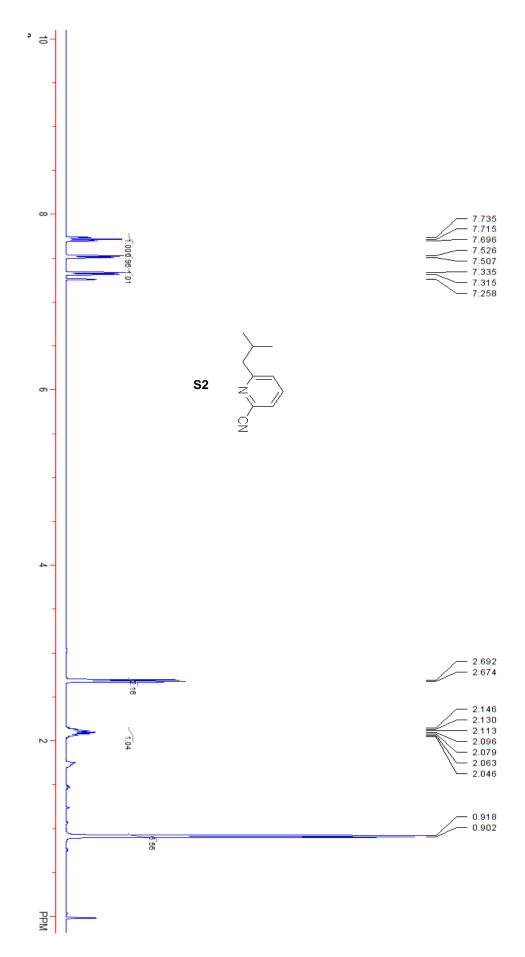


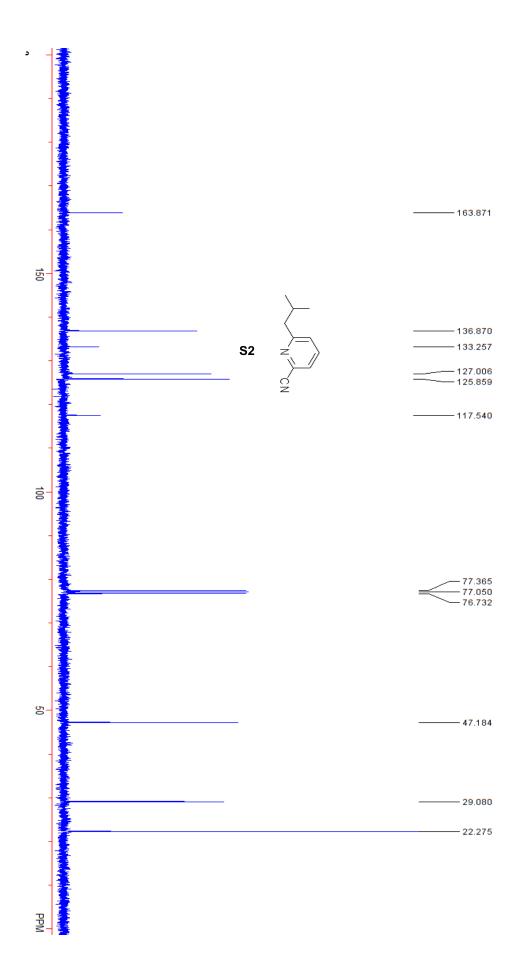
Figure S2. ¹H NMR spectrum of 2h-d obtained in eq 2

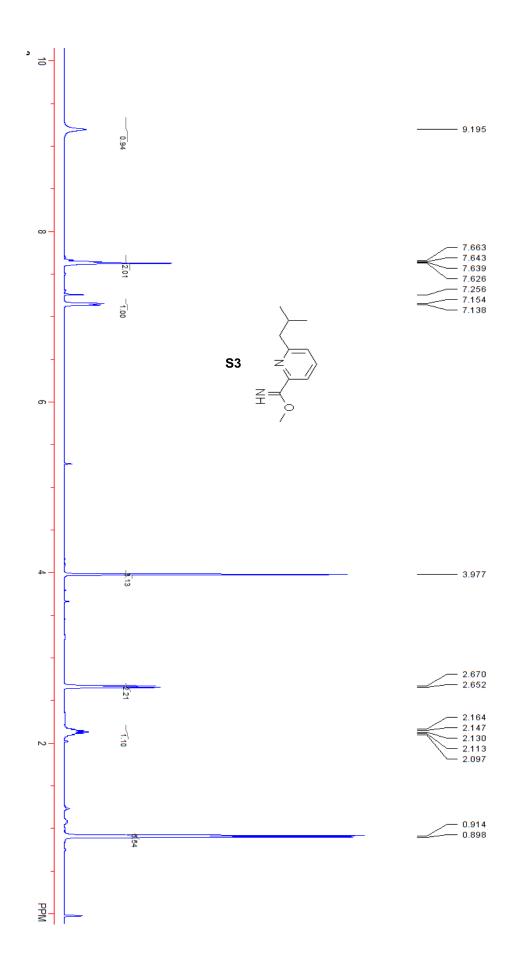
Reference

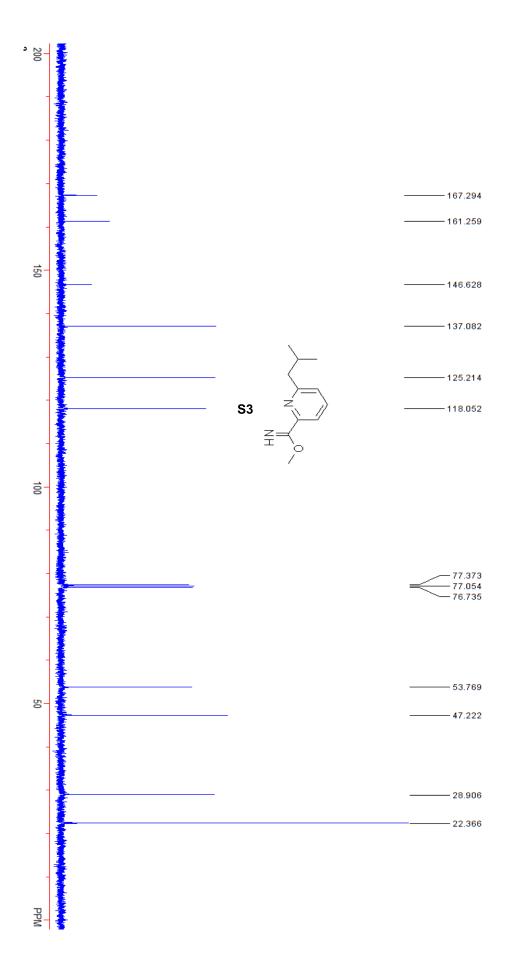


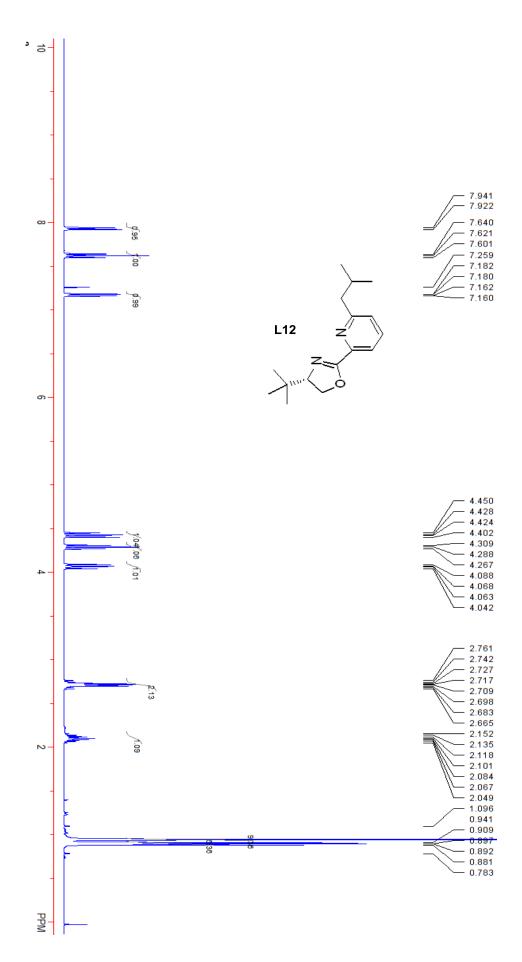

[S3] Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Enantioselective heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. *Science*, **2012**, *338*, 1455-1458.

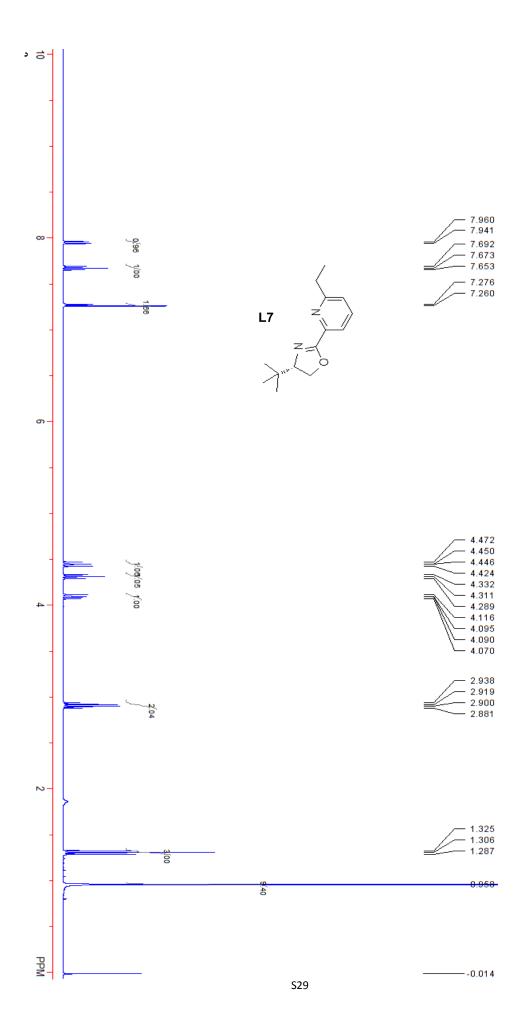

[[]S1] Shuman, R.T.; Ornstein, P. L.; Paschal, J. W.; Gesellchen, P. D. An improved synthesis of homoproline and derivatives. *J. Org. Chem.* **1990**, *55*, 738-741.

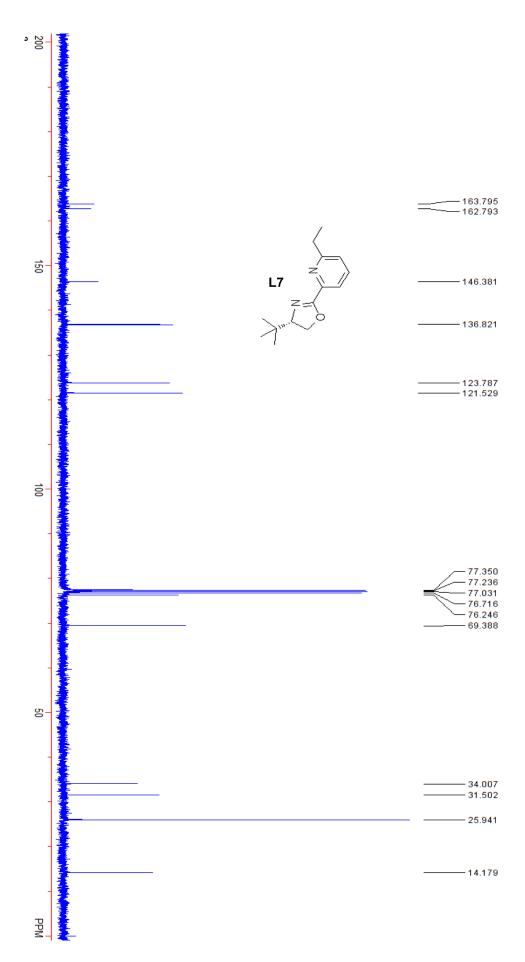

[[]S2] Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. Palladium-catalyzed asymmetric conjugate addition of arylboronic acids to five-, six-, and seven-membered β-substituted cyclic enones: Enantioselective construction of all-carbon quaternary stereocenters. *J. Am. Chem. Soc.* **2011**, *133*, 6902–6905.

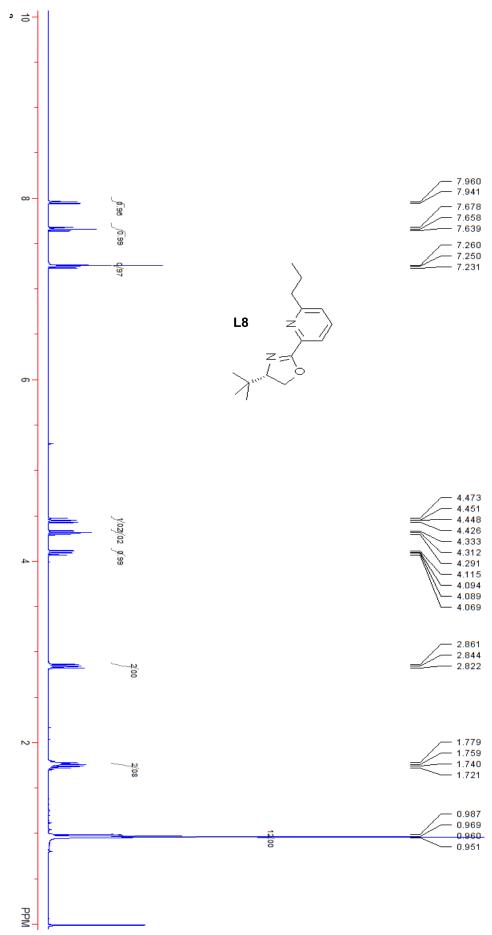

7. NMR spectra of ligands and products

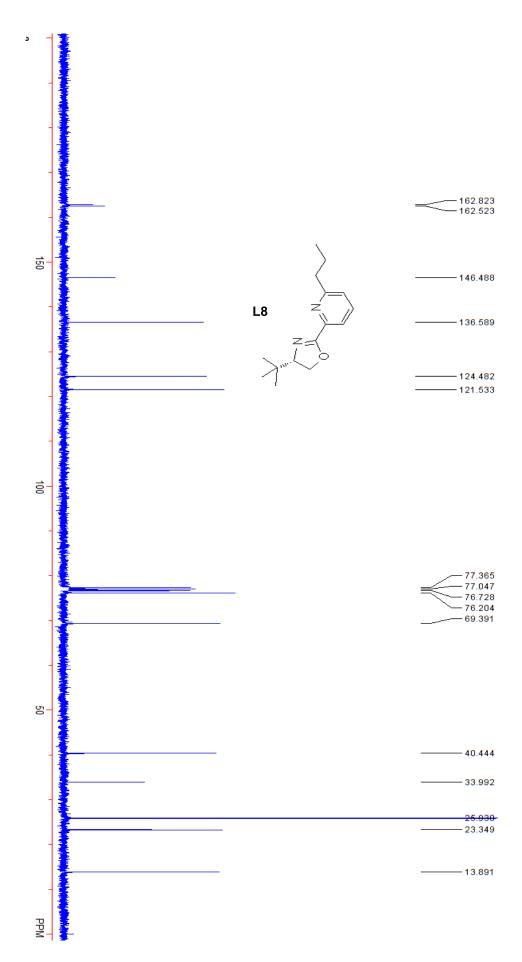


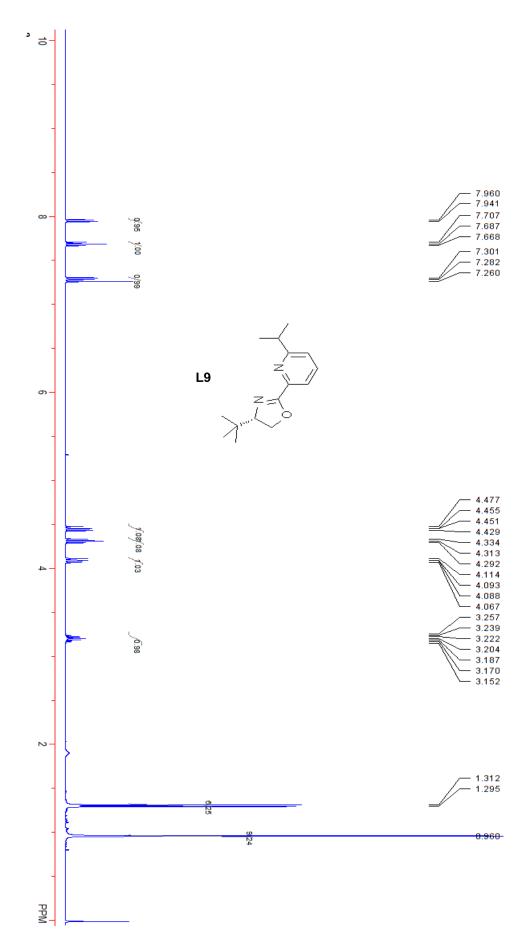


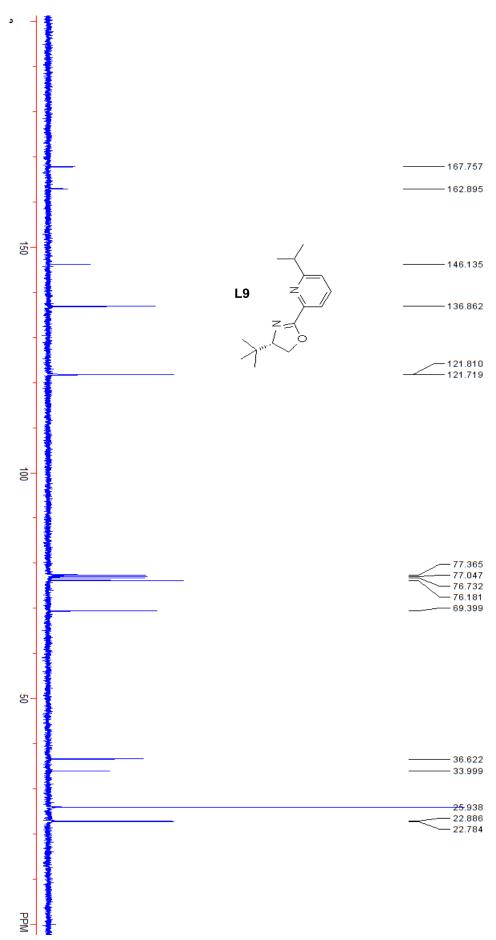


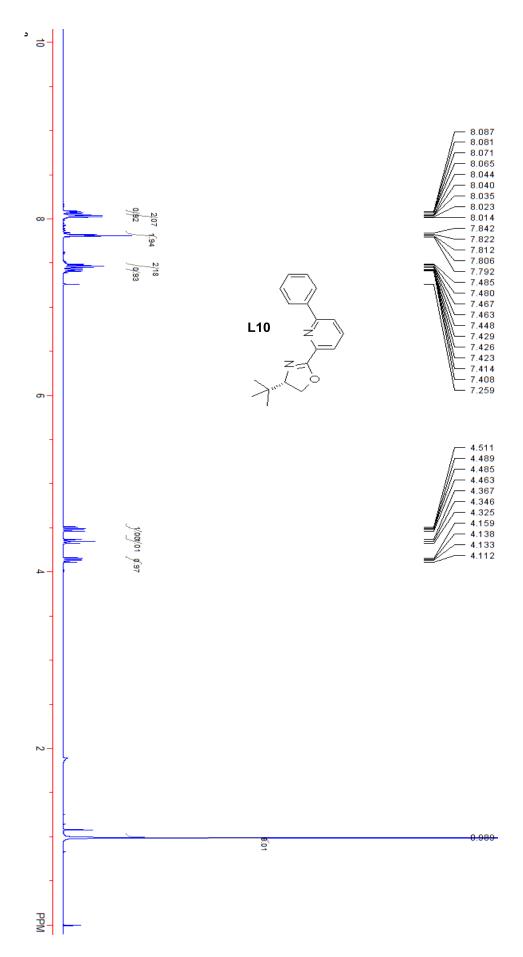


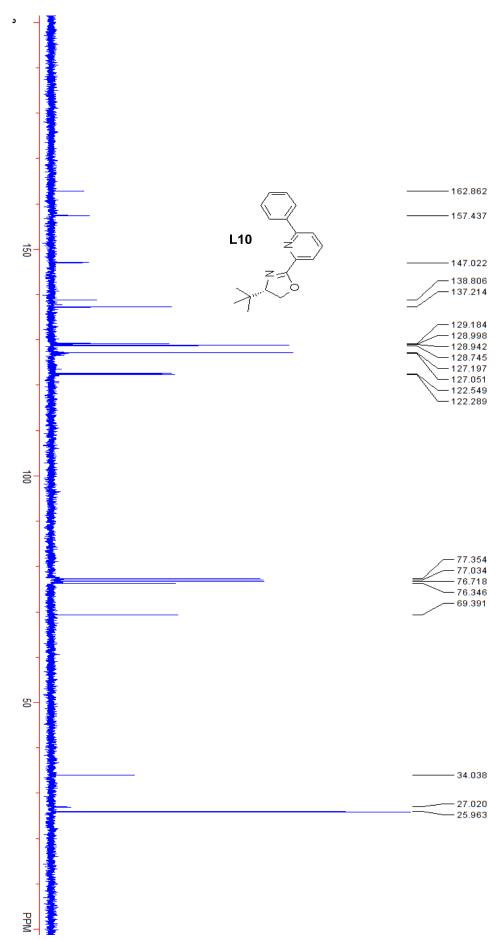


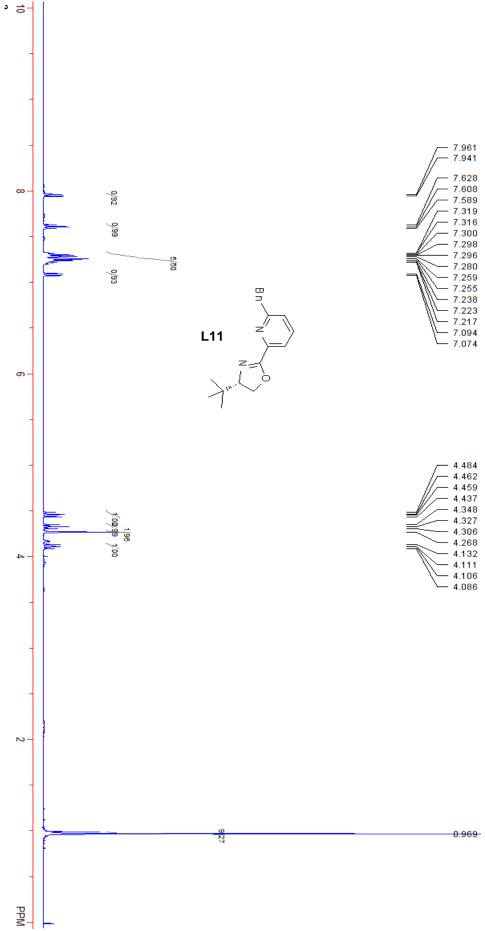


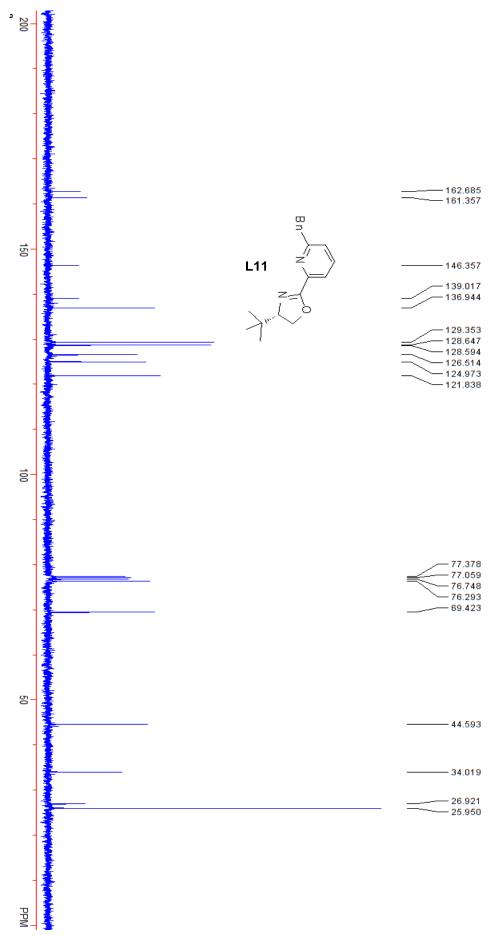


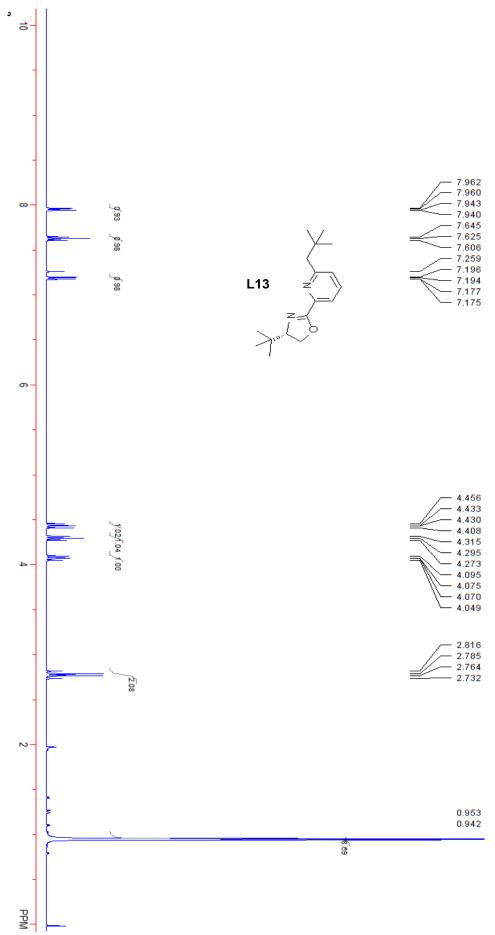


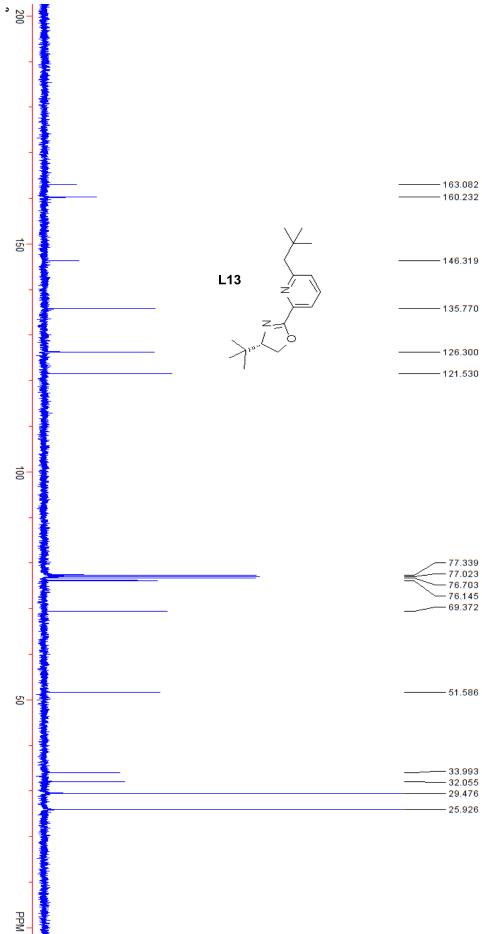


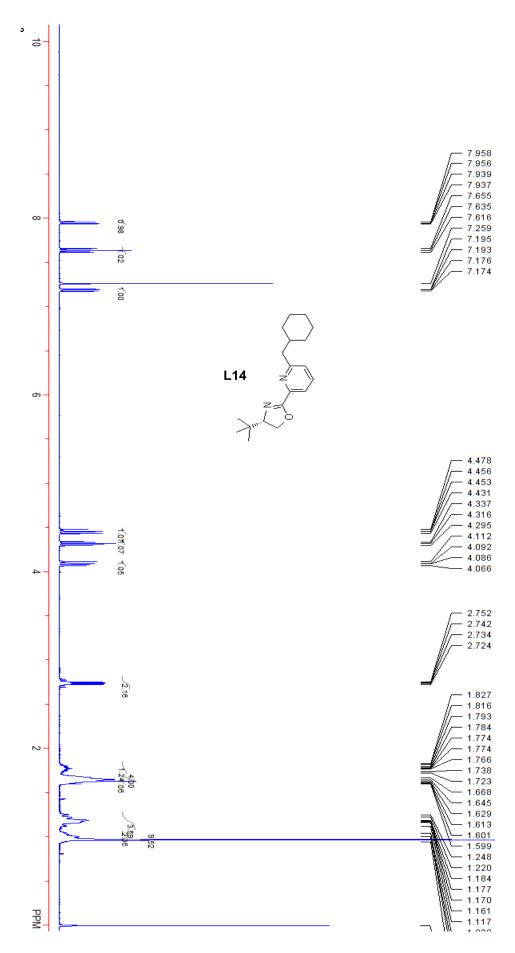


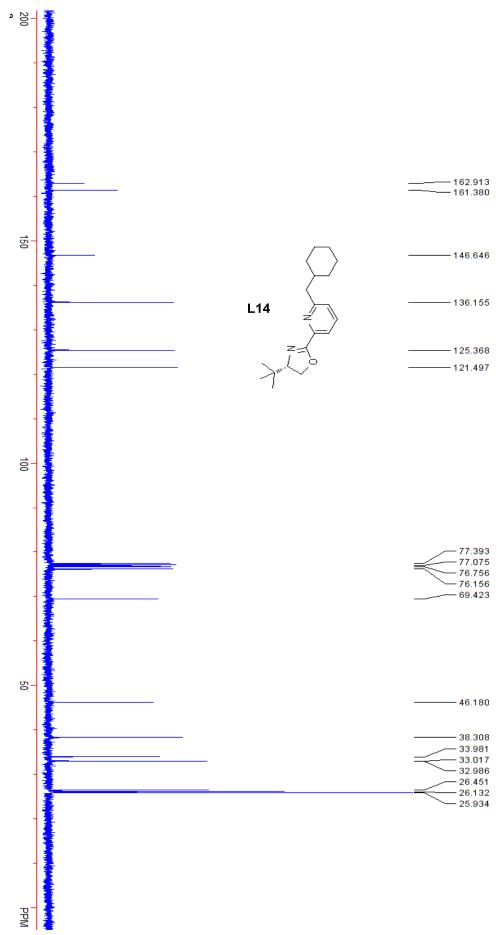


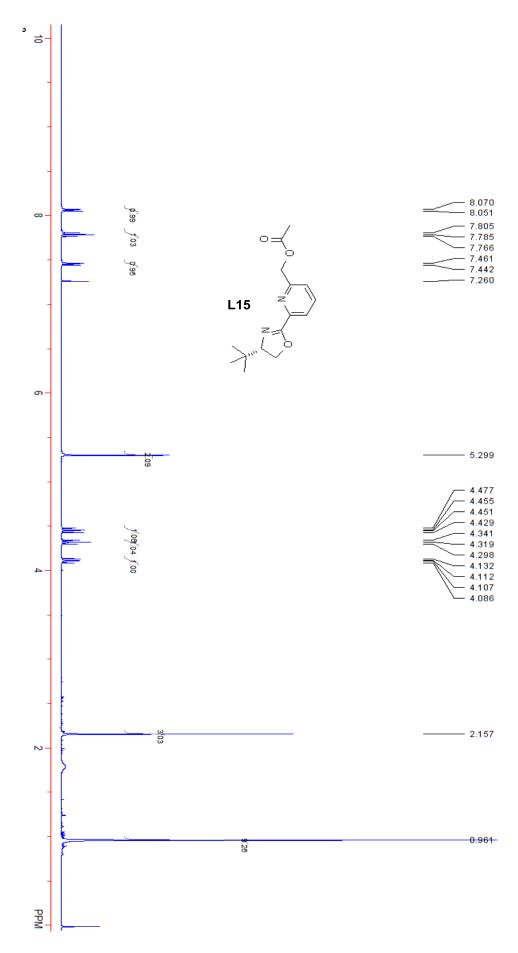


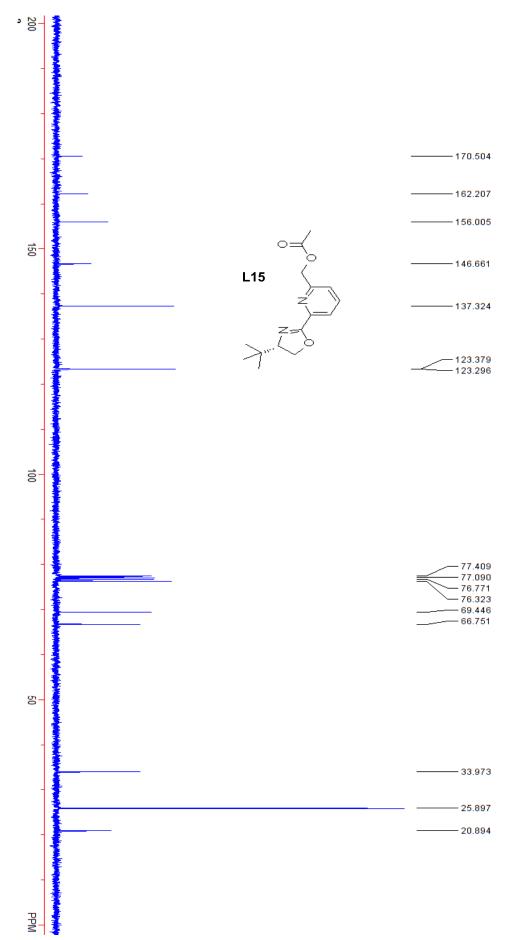


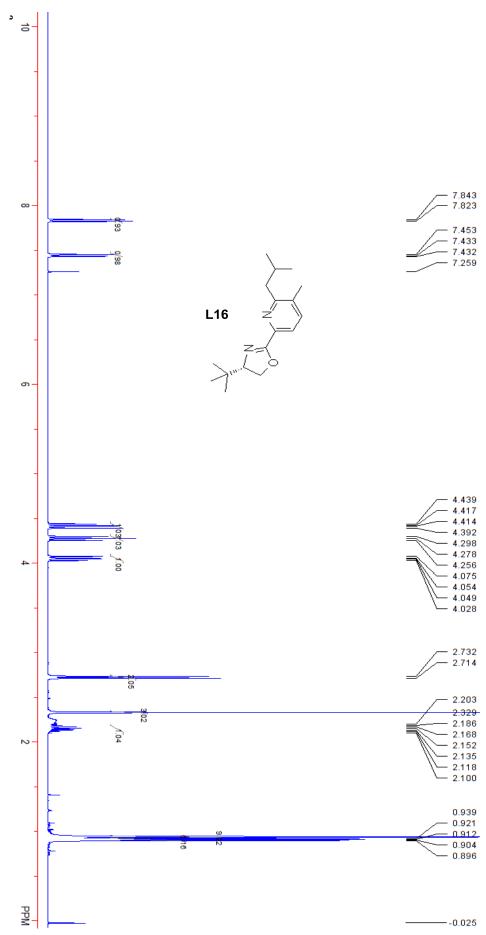


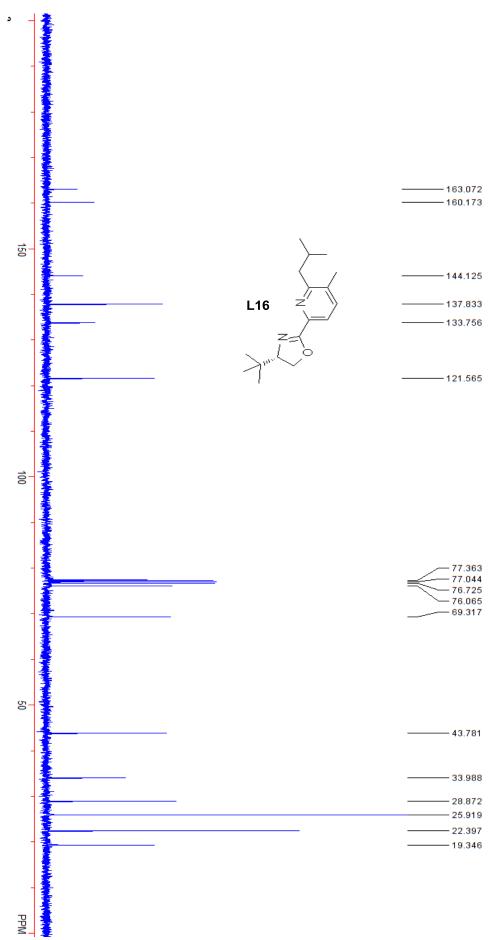


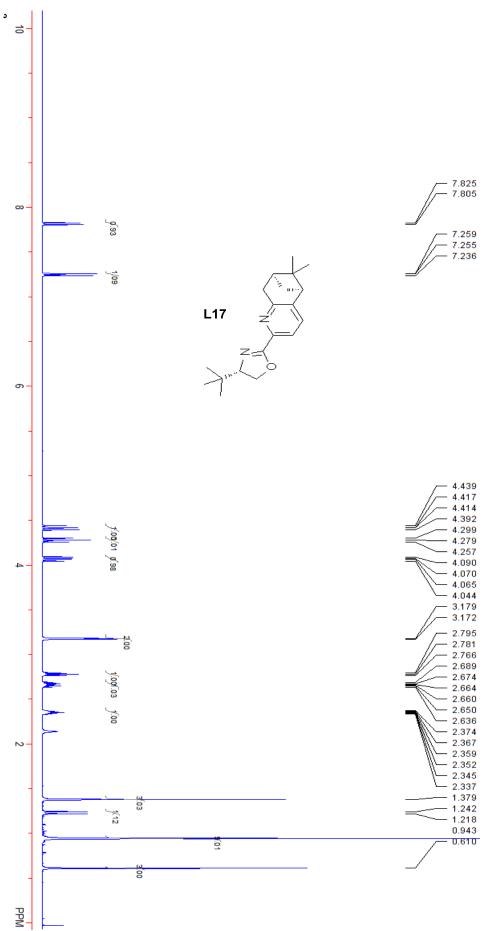


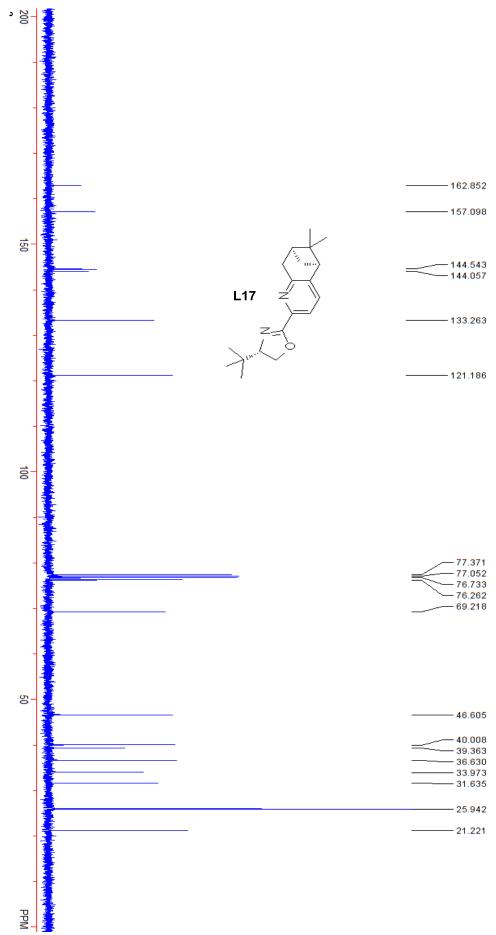


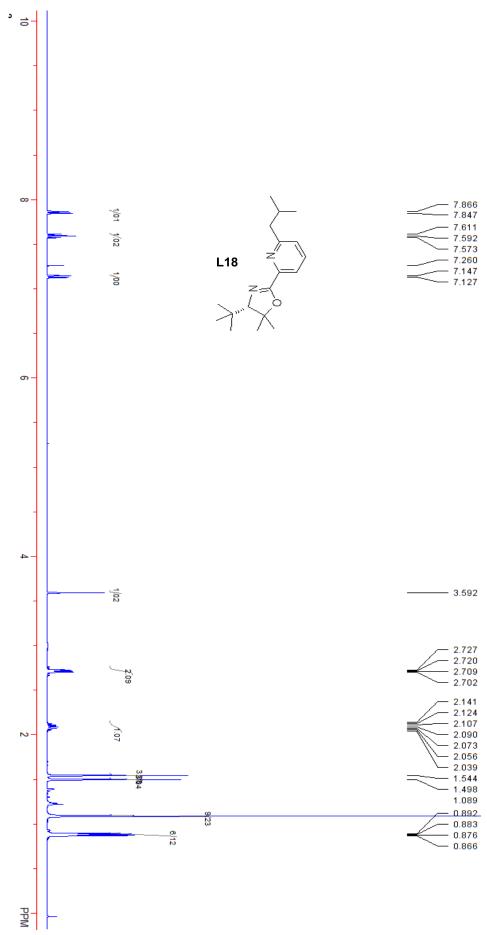


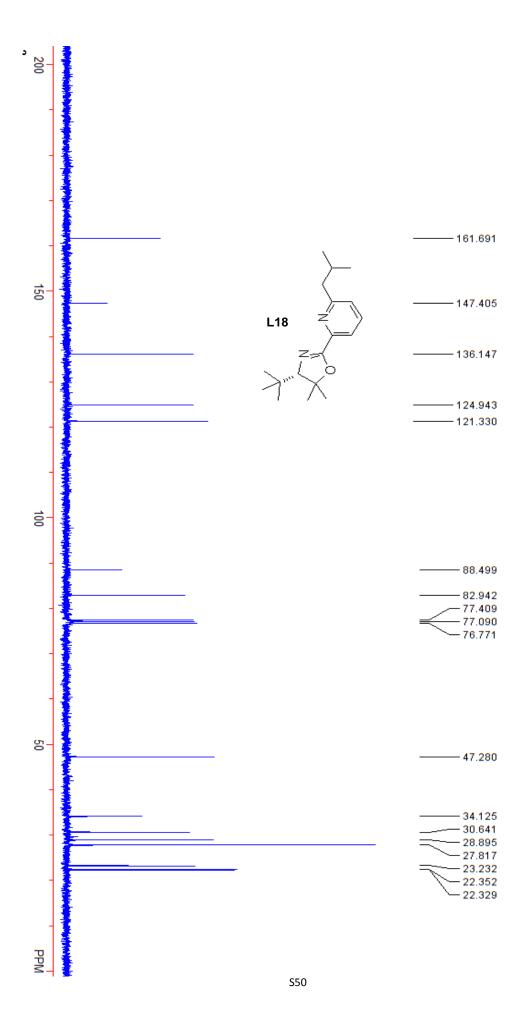


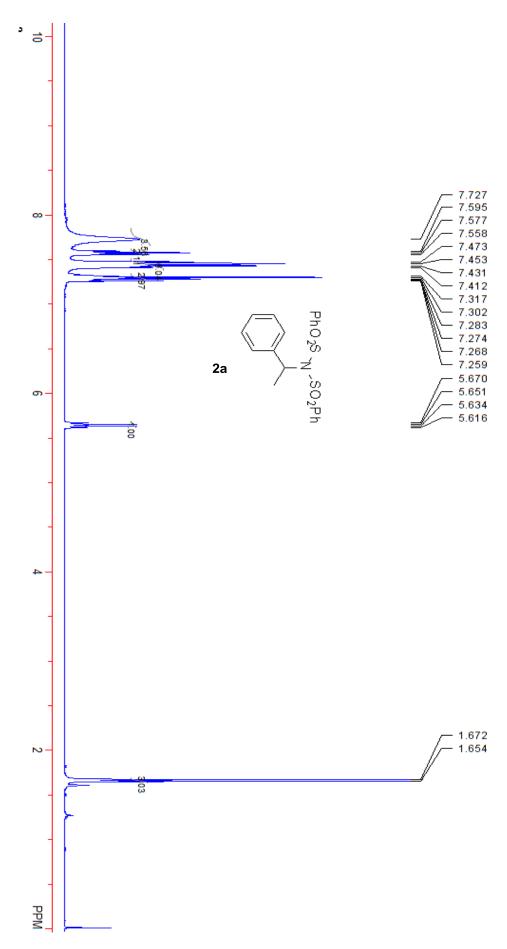


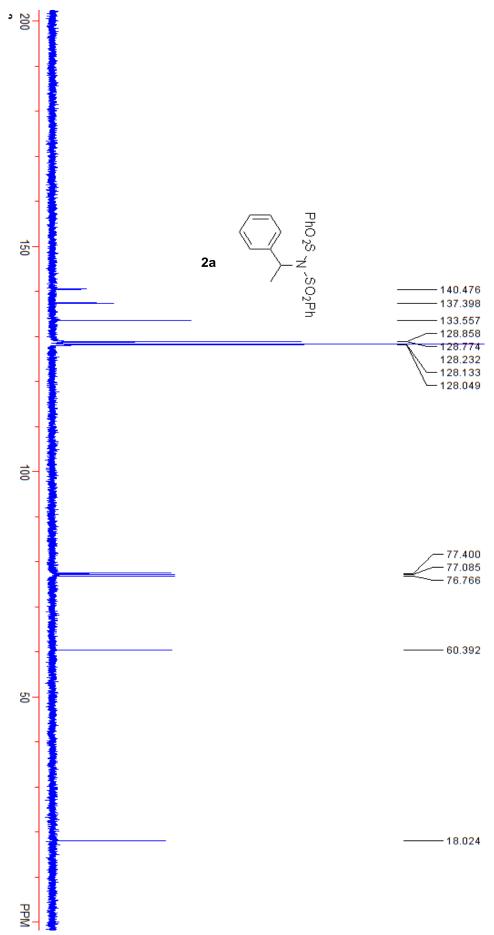


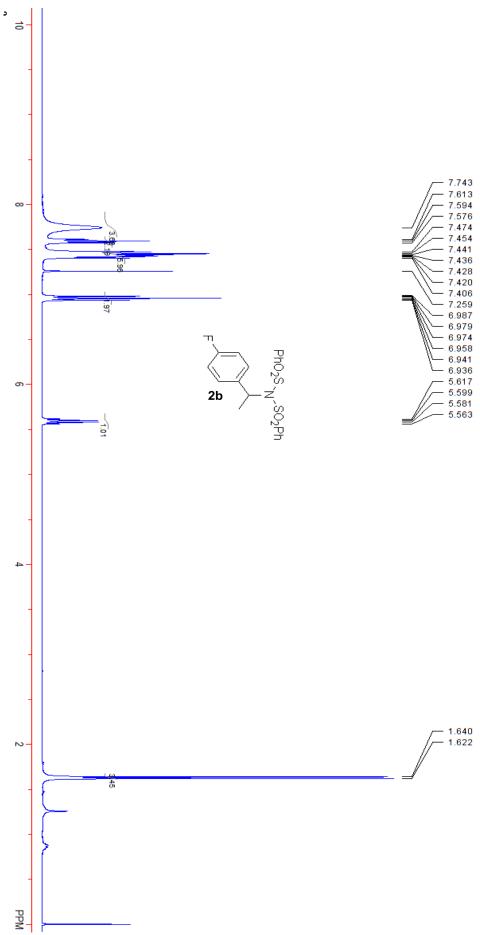


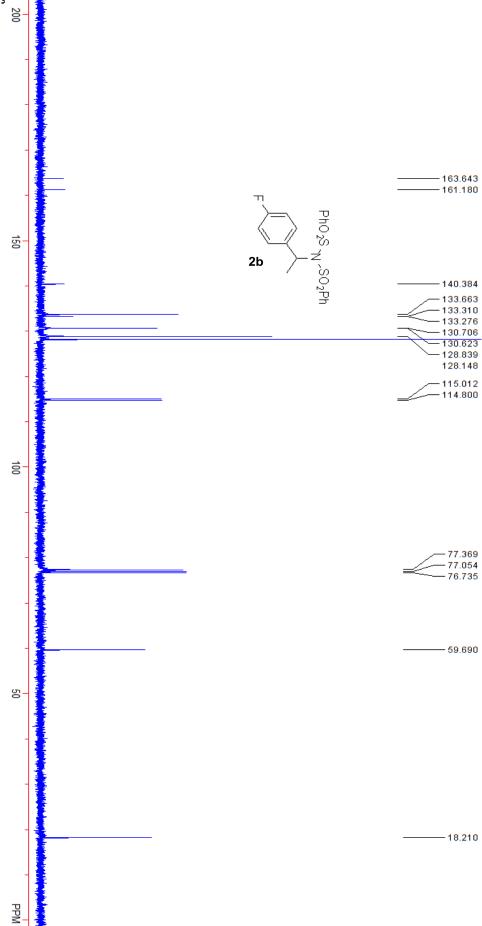


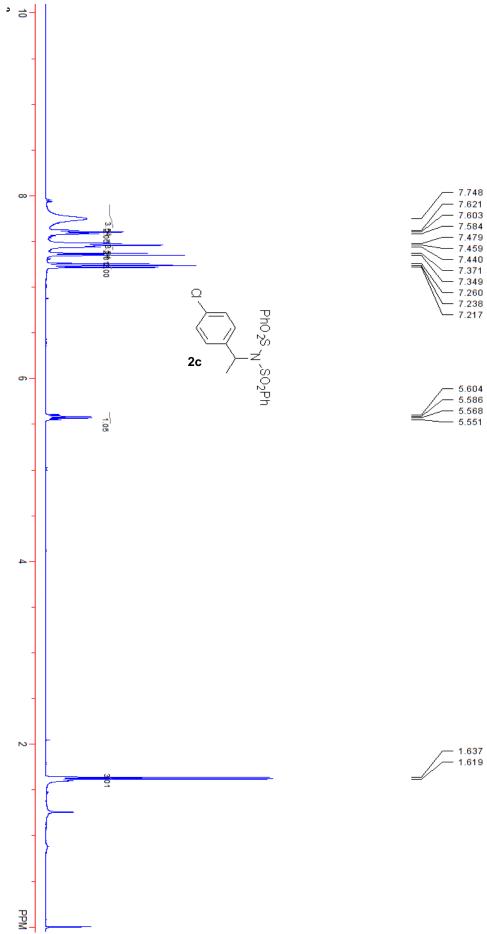


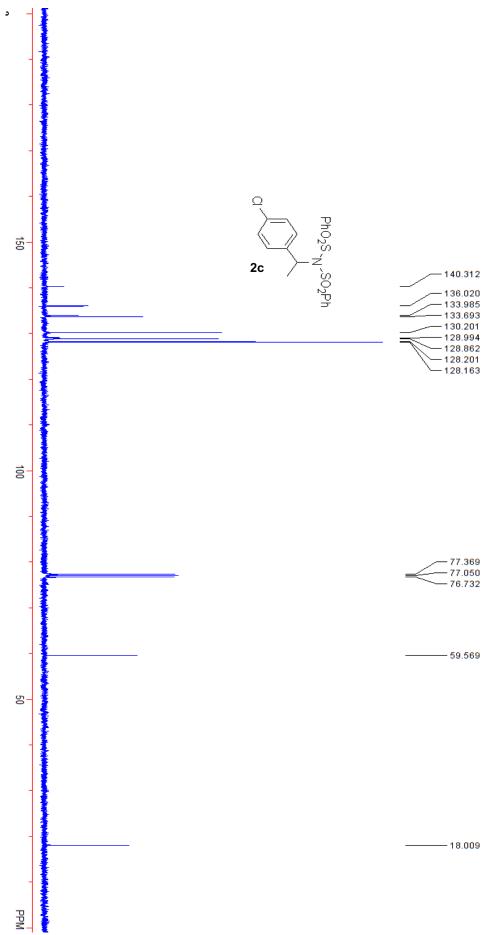


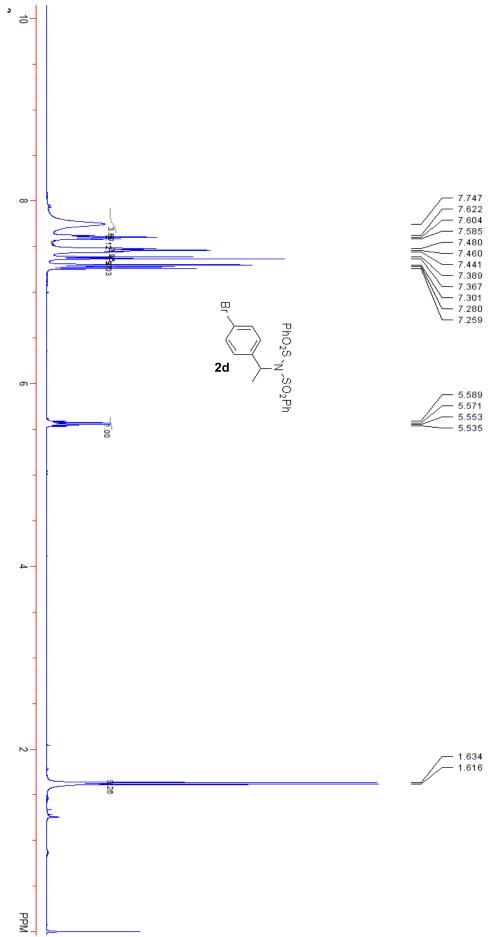


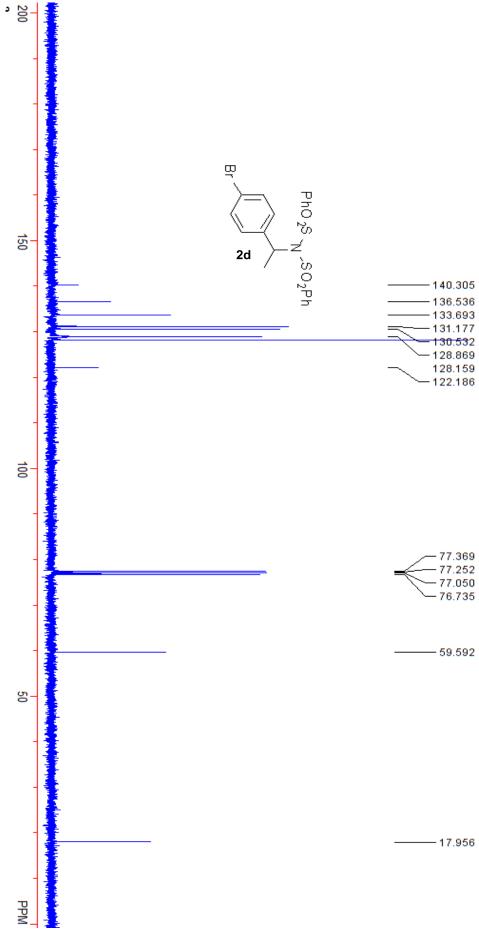


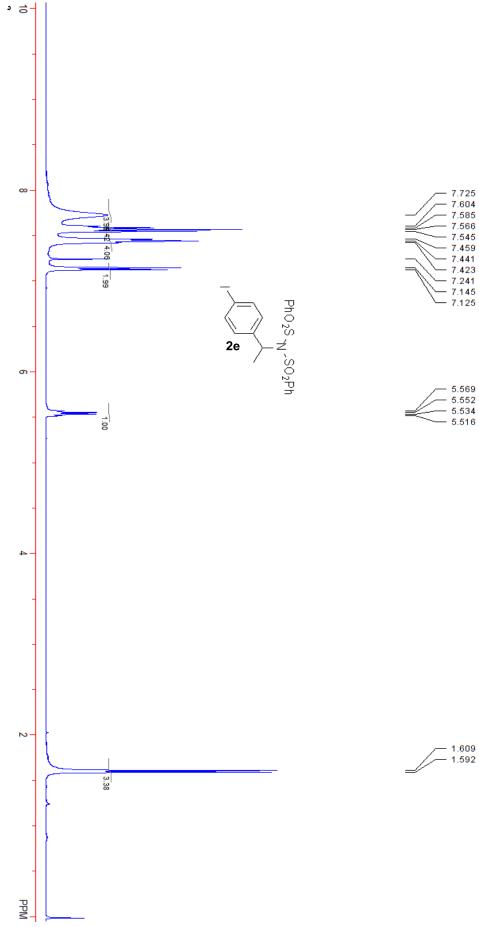


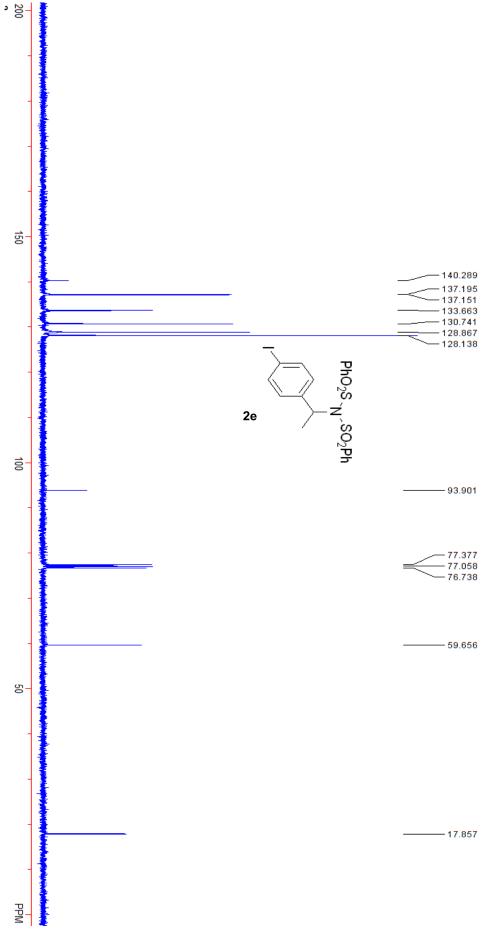


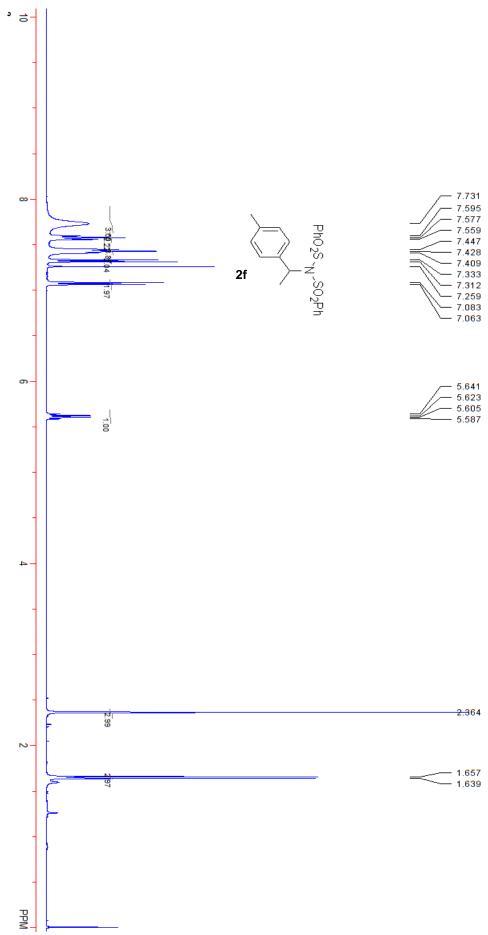


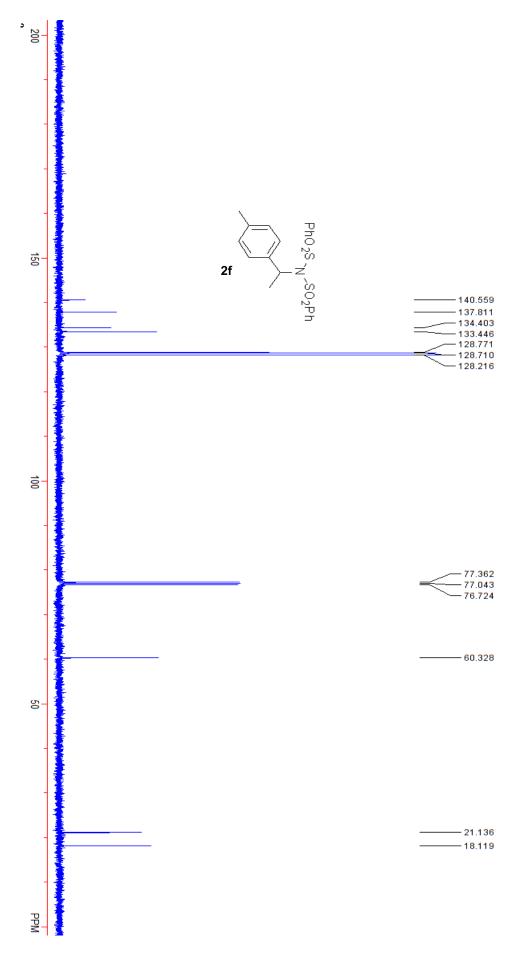


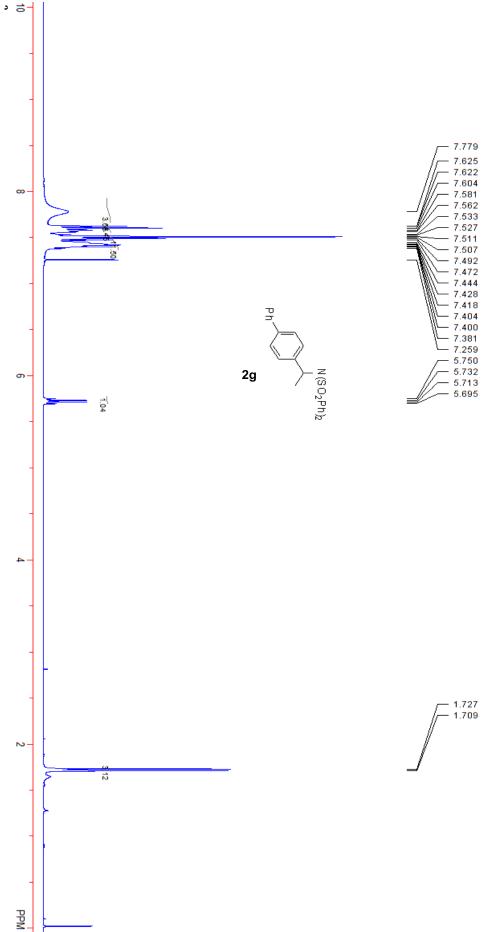


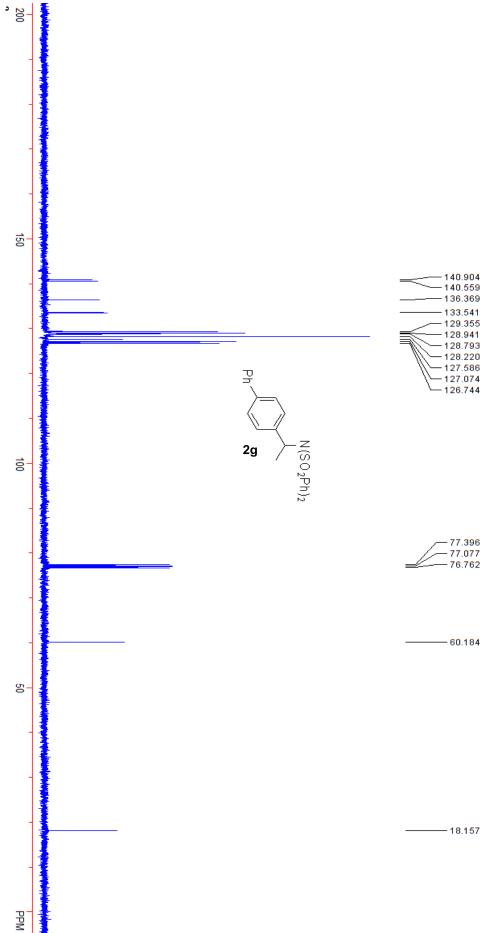


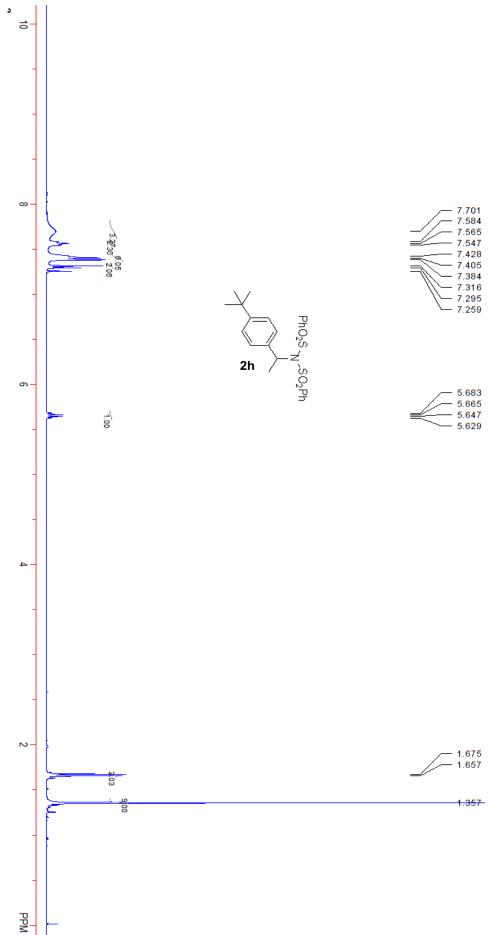


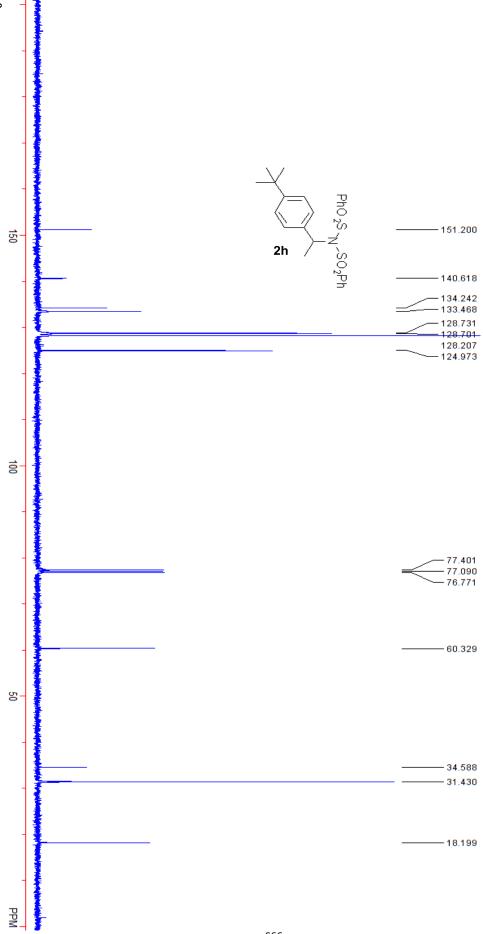


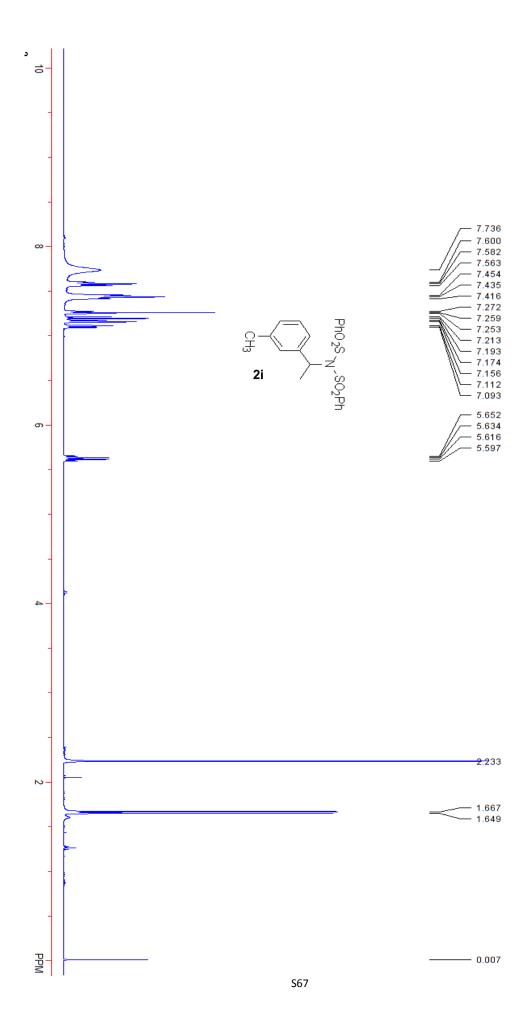


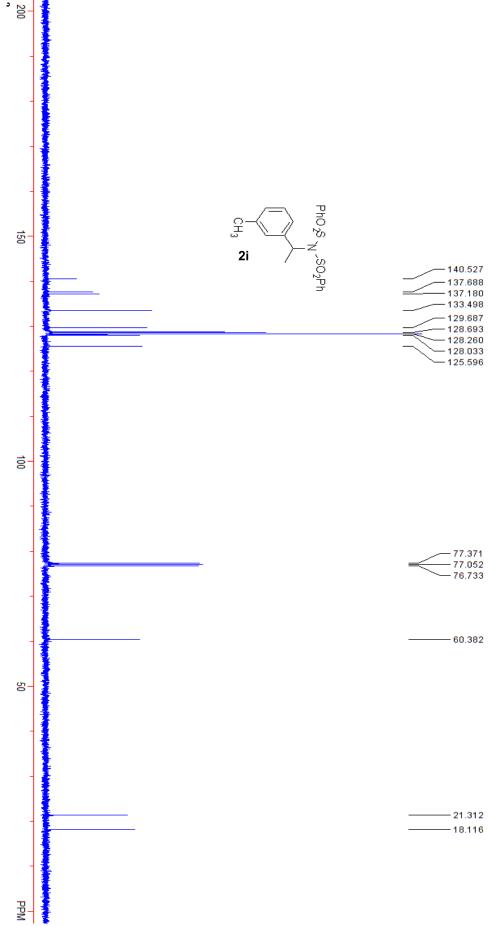


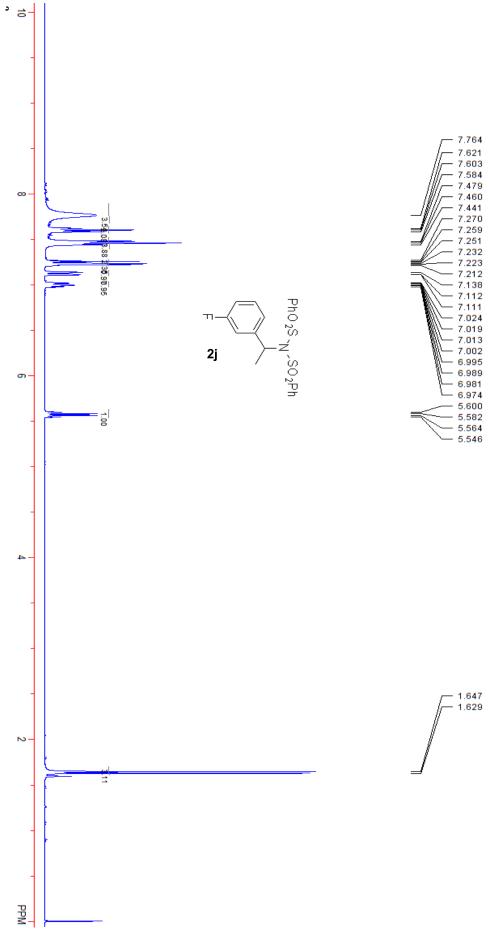


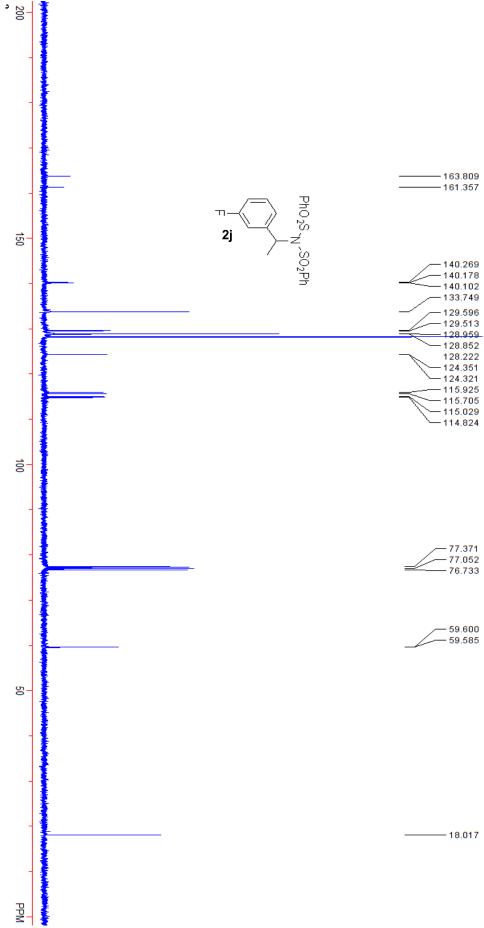


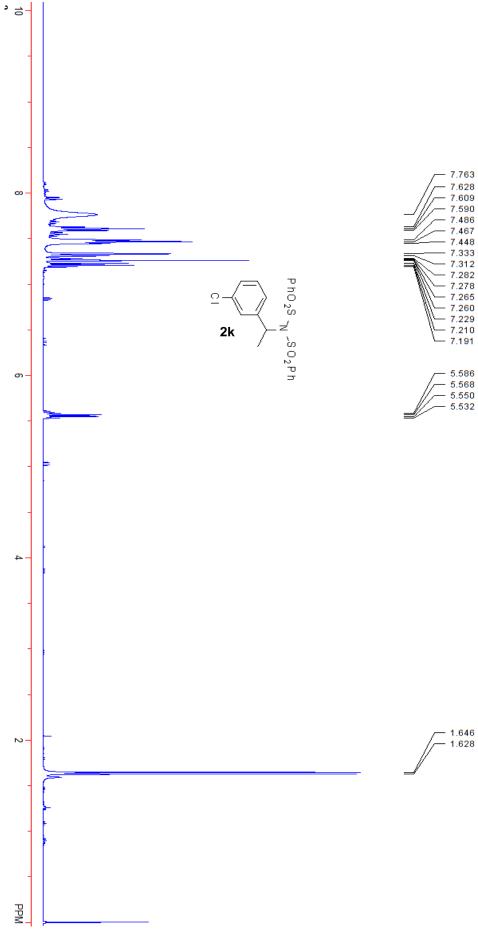


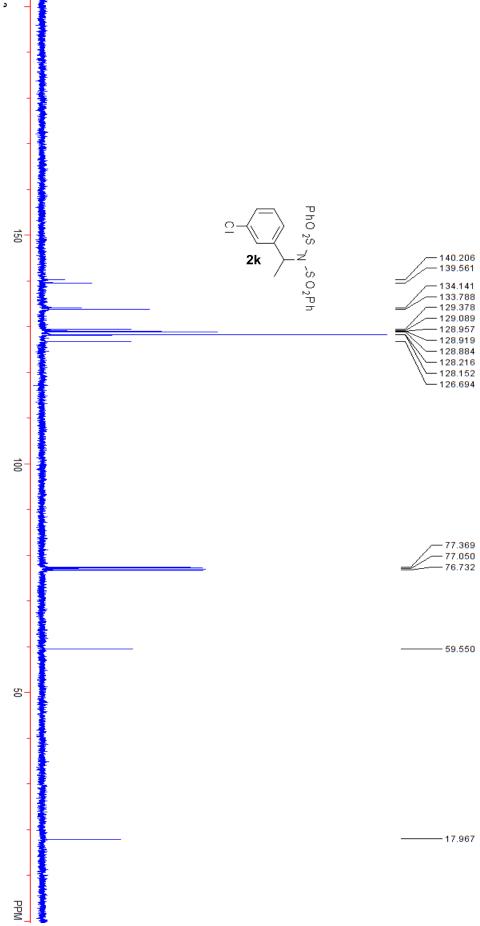


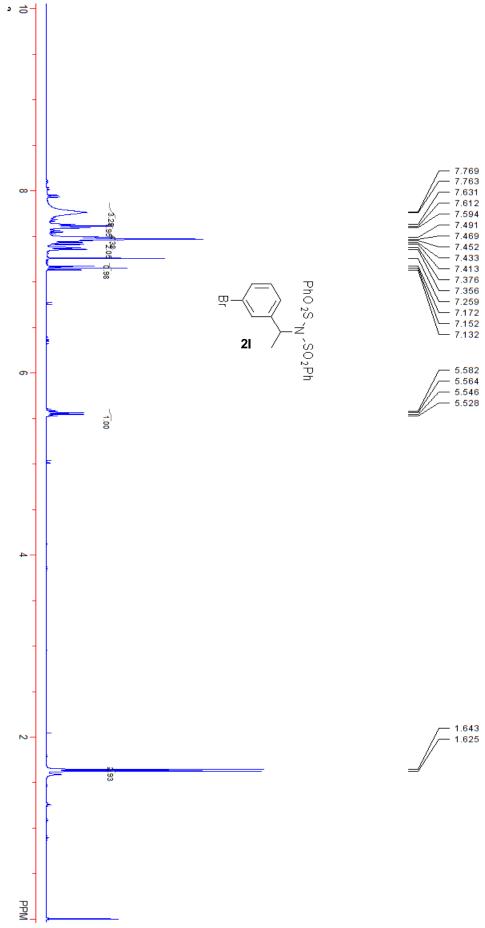


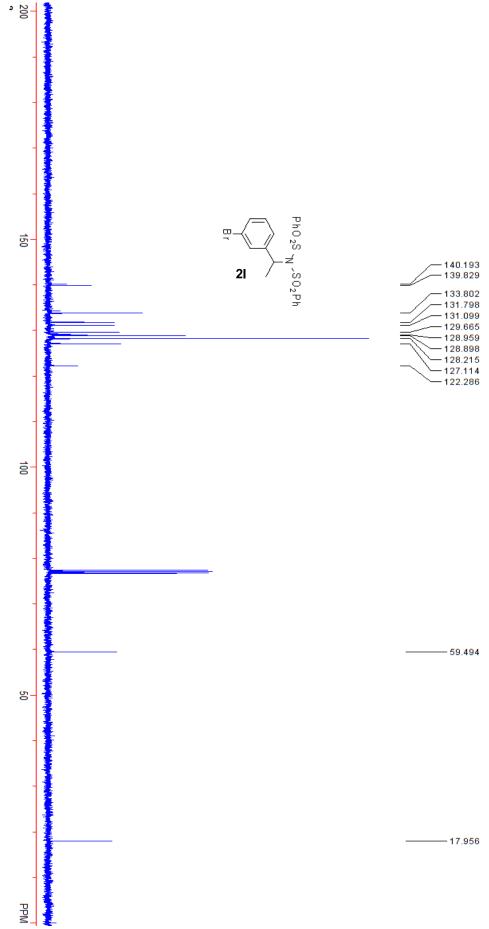


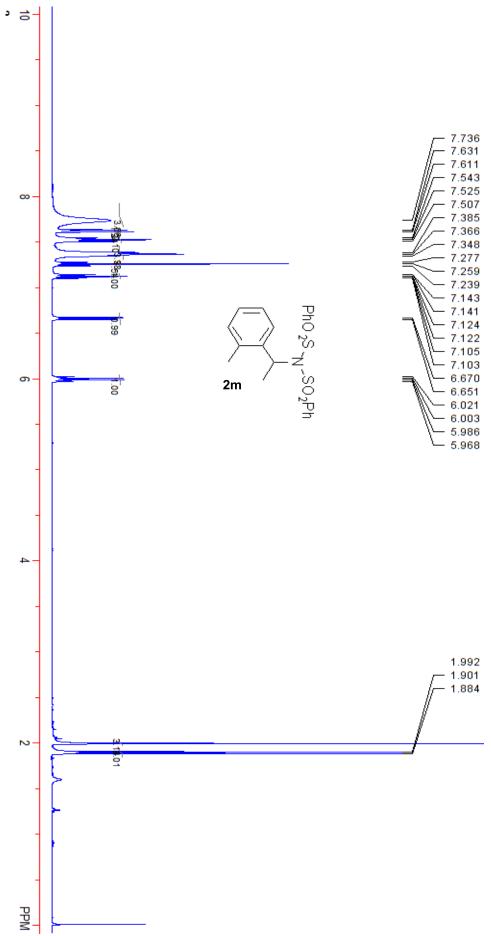




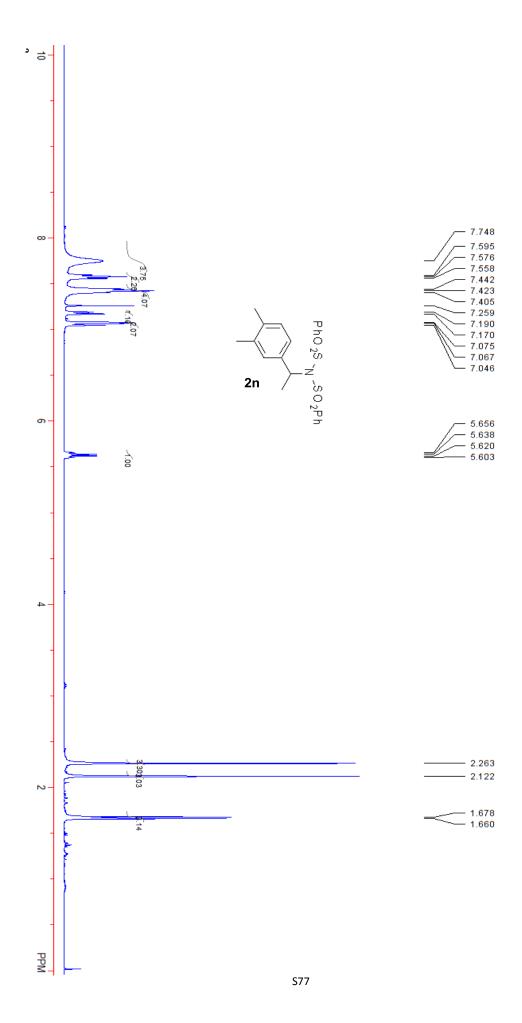


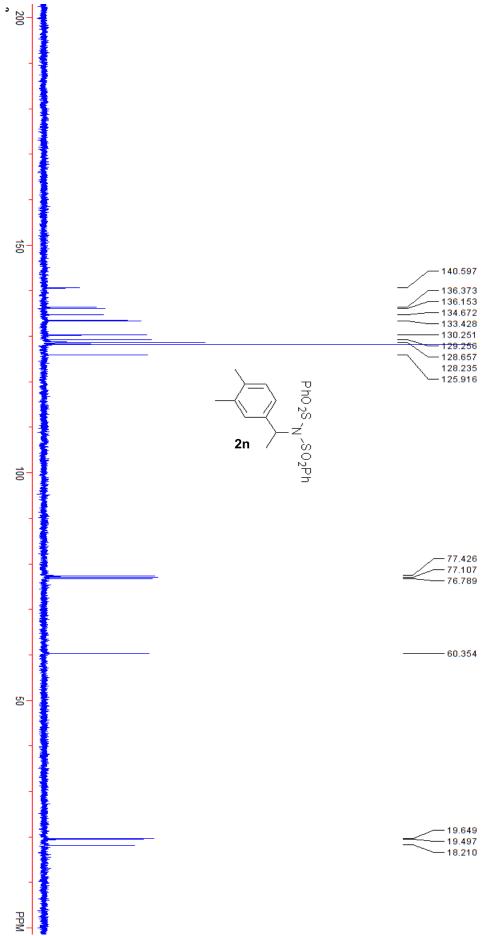


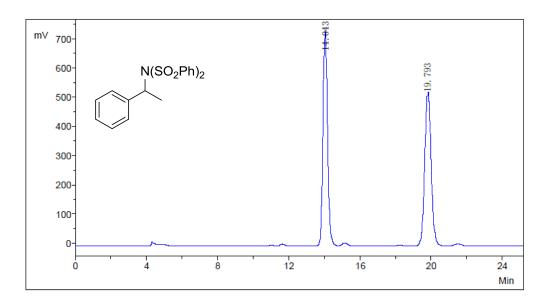


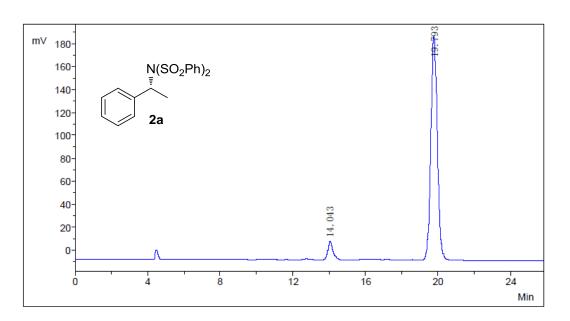


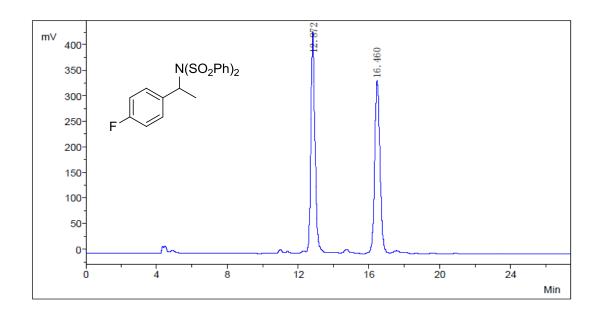


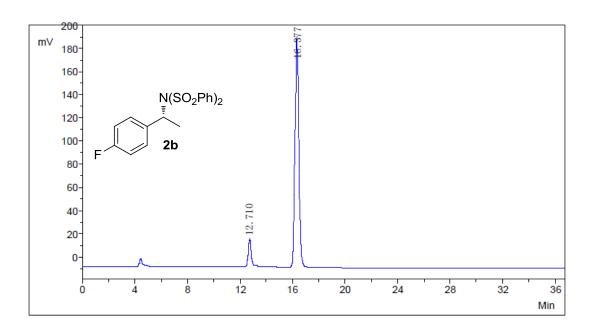


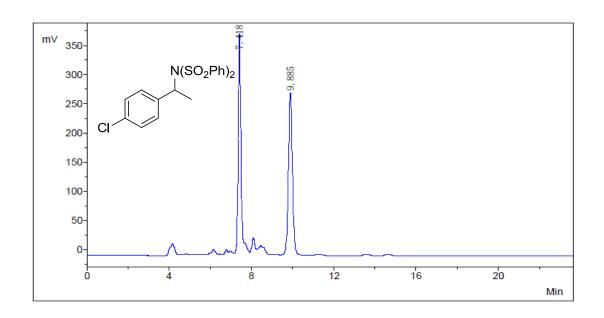


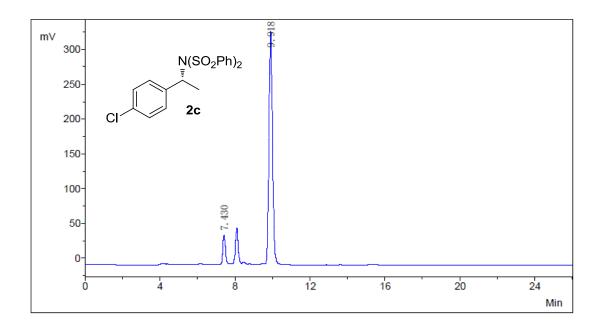


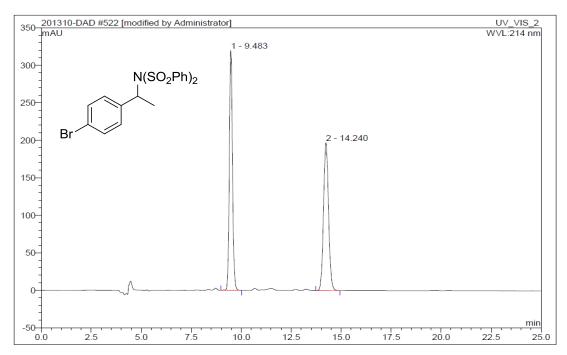


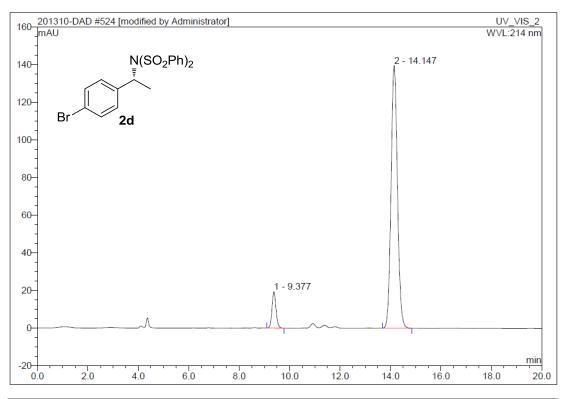

8. HPLC of products

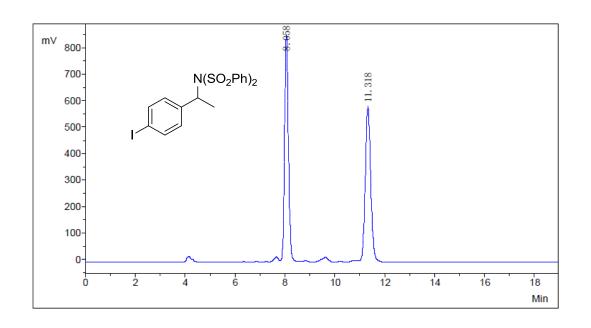

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1	1		14. 043	736454. 7	13128351.8	50. 1081	
2	2		19. 793	511380. 3	13071682.9	49. 8919	
合计:				1247835. 0	26200034.8	100. 0000	_

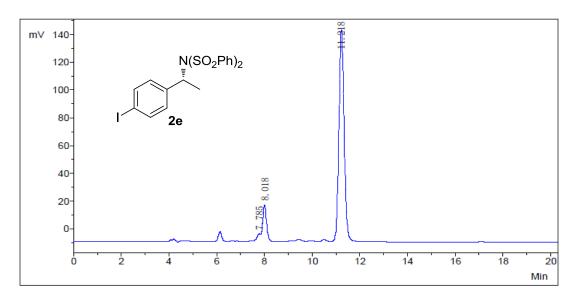

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1	1		14. 043	15976. 1	318451.2	6. 1314	
2	2		19. 793	195677. 6	4875286.5	93. 8686	
合计:				211653. 7	5193737.7	100. 0000	-

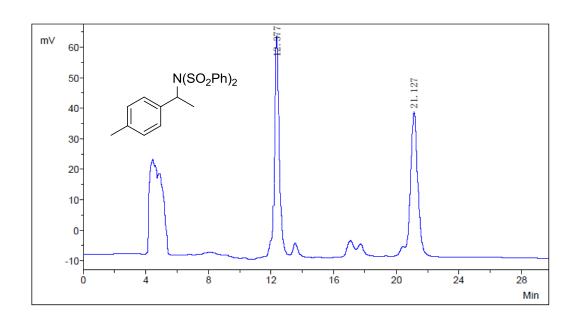

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		12.872	401725. 2	6989038.7	50. 0161
2	2		16. 460	334584. 0	6984544. 4	49. 9839
合计:				736309. 2	13973583. 1	100. 0000

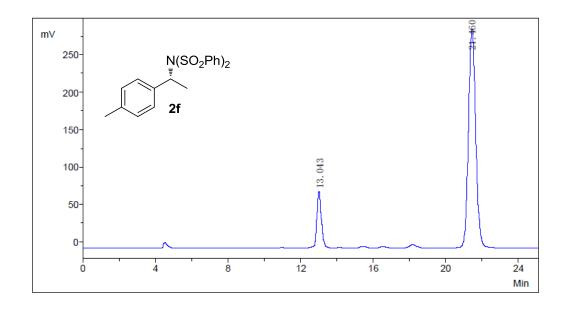

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		12.710	23547.8	407834.4	9. 2311
2	2		16. 377	189036. 3	4010217.3	90. 7689
合计:				212584. 1	4418051.8	100. 0000

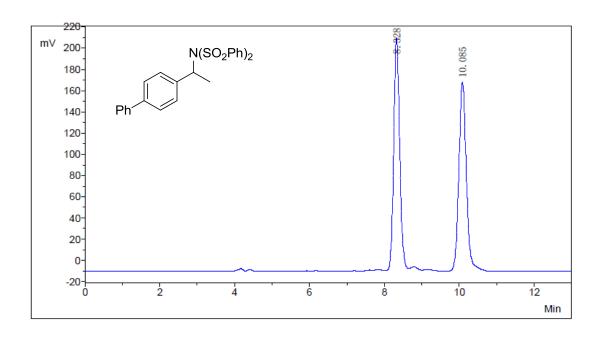

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 418	374387. 1	3624424.5	49. 2498
2	2		9. 885	274034. 4	3734842. 6	50. 7502
合计:				648421. 5	7359267. 1	100. 0000

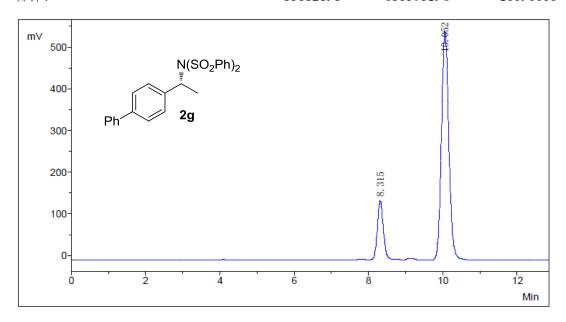

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 430	41128.6	375897.6	8. 0045
2	2		9. 918	334839. 8	4320206. 2	91. 9955
合计:				375968. 3	4696103.8	100. 0000

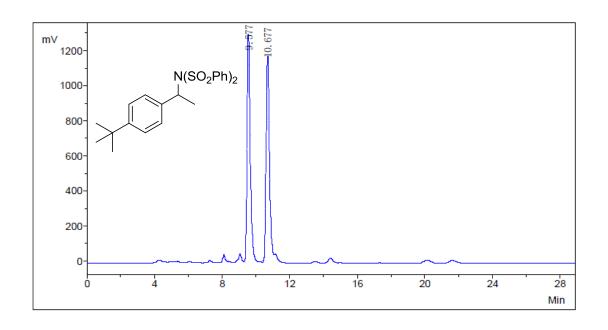

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	9.48	n.a.	319.714	57.933	50.25	n.a.	BMB
2	14.24	n.a.	197.126	57.355	49.75	n.a.	BMB
Total:			516.840	115.288	100.00	0.000	

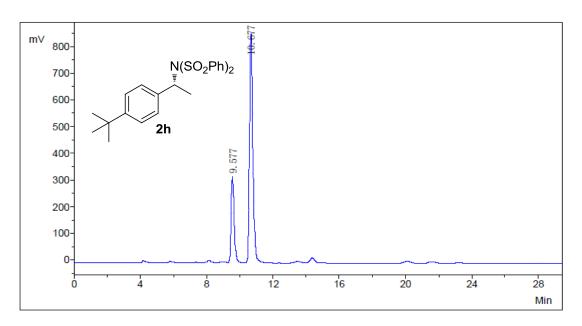

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	9.38	n.a.	19.333	3.551	7.96	n.a.	BMB
2	14.15	n.a.	139.599	41.047	92.04	n.a.	BMB
Total:			158.931	44.599	100.00	0.000	

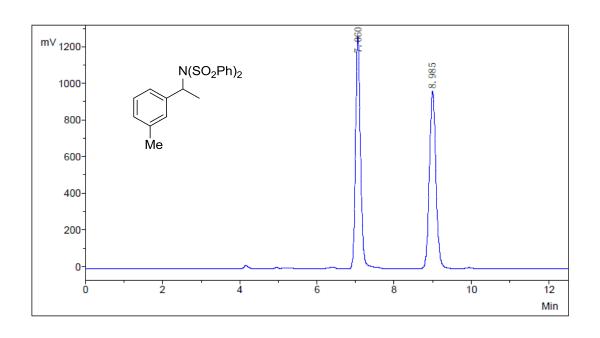

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1	1		8. 058	849964.0	8882609.6	50. 1567	
2	2		11. 318	582939. 3	8827121.5	49. 8433	
合计:				1432903. 3	17709731. 1	100. 0000	

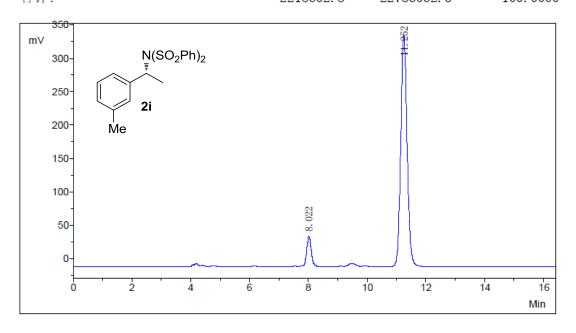

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 785	5282. 2	52273.4	1. 9877
2	2		8.018	26149.4	288979.6	10. 9887
3	3		11. 218	150506.3	2288542.7	87. 0236
合计:				181937. 8	2629795. 6	100. 0000

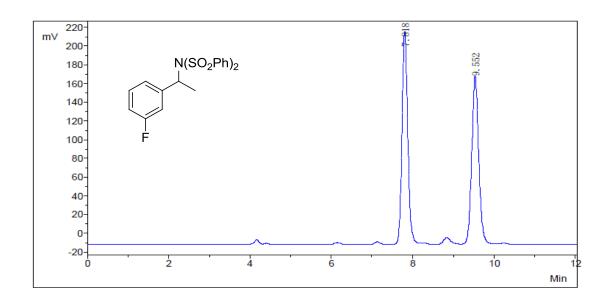

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		12. 377	72522. 3	1564777.0	49. 6294
2	2		21. 127	47358. 5	1588146.0	50. 3706
合计:				119880. 8	3152923.0	100. 0000

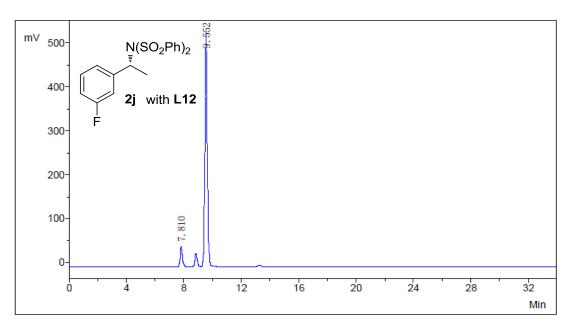

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)	
1	1		13.043	73784. 6	1295520.7	13. 8367	
2	2		21. 460	292124. 6	8067422.1	86. 1633	
合计:				365909. 2	9362942.9	100. 0000	-

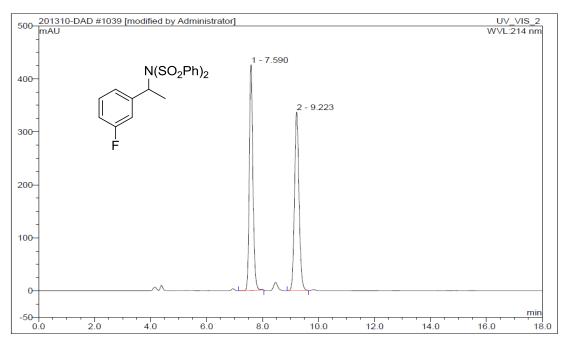

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		8. 328	218484.8	2369452.3	49. 2637
2	2		10. 085	178040. 7	2440279. 1	50. 7363
合计:				396525, 5	4809731.4	100, 0000

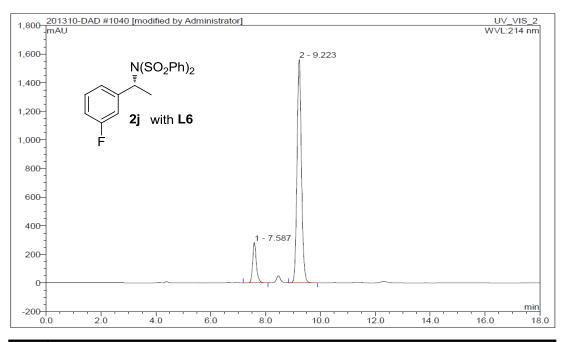

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		8. 315	136477.8	1520759.7	16. 7276
2	2		10. 052	545972. 4	7570554. 4	83. 2724
合计:				682450. 2	9091314. 0	100. 0000

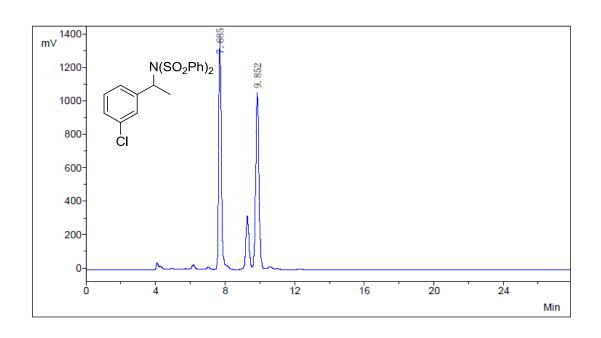

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		9. 577	1249213.6	17374564.7	49. 2154
2	2		10. 677	1143939. 2	17928515.7	50. 7846
合计:				2393152. 8	35303080. 4	100. 0000

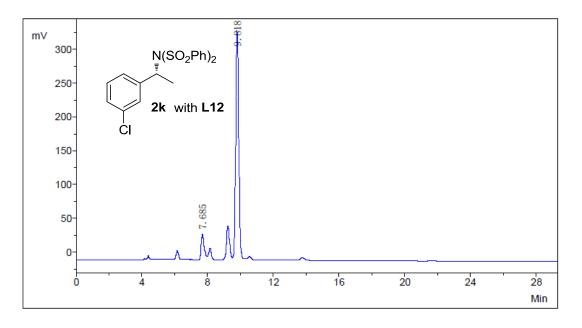

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		9. 577	316911.5	3998401.1	24. 3810
2	2		10. 677	853237. 6	12401285. 0	75. 6190
合计:				1170149. 1	16399686. 2	100. 0000

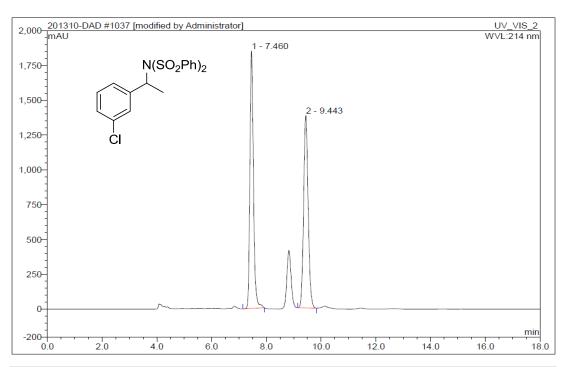

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 060	1260558. 1	11413083.5	50. 0947
2	2		8. 985	958044. 7	11369949. 0	49. 9053
合计・				2218602 8	22783032 5	100 0000

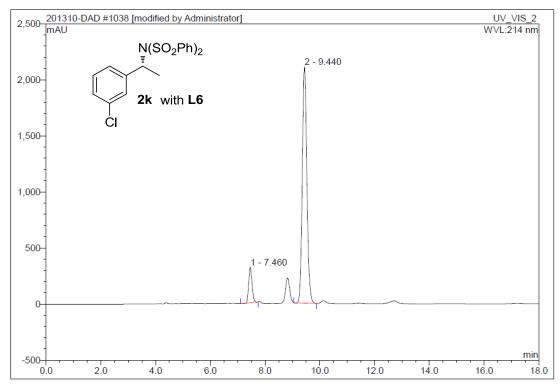

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		8. 022	44943.8	455048.0	7. 9783
2	2		11. 252	346228. 2	5248538. 5	92. 0217
合计:				391172. 0	5703586. 5	100.0000


序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 818	221728.6	2223199.3	50. 7337
2	2		9. 552	175184. 6	2158894.1	49. 2663
合计:				396913. 2	4382093. 3	100. 0000

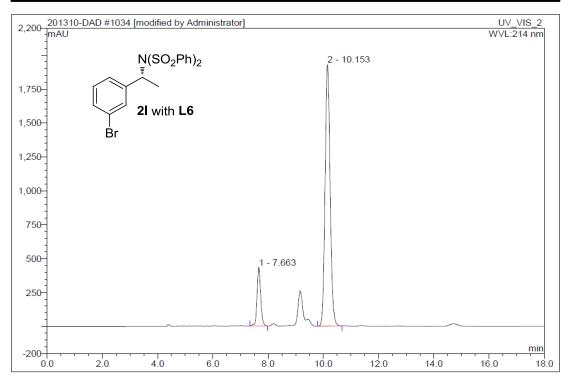

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 810	46473.5	501725.3	7. 0742
2	2		9. 552	533082. 0	6590562. 7	92. 9258
合计:				579555. 5	7092287. 9	100. 0000

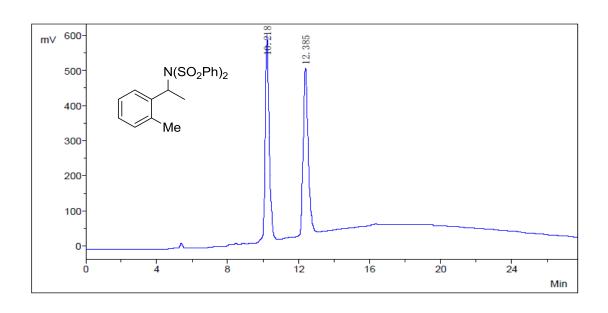

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.59	n.a.	425.948	63.452	50.19	n.a.	BMB*
2	9.22	n.a.	336.927	62.976	49.81	n.a.	BMB*
Total:			762.875	126.428	100.00	0.000	

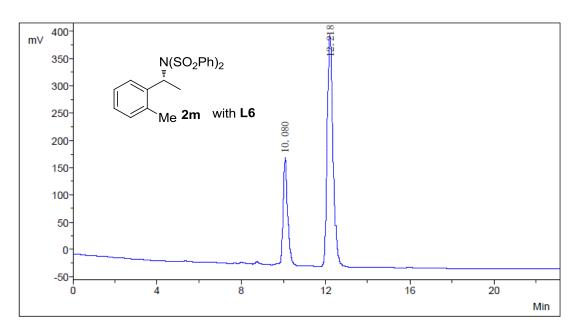

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.59	n.a.	282.216	43.802	13.02	n.a.	BMB*
2	9.22	n.a.	1561.318	292.532	86.98	n.a.	BMB*
Total:			1843.534	336.334	100.00	0.000	


序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 685	1347372. 0	14490683.6	51. 6646
2	2		9.852	1048232. 1	13556941. 1	48. 3354
合计:				2395604. 1	28047624. 7	100. 0000

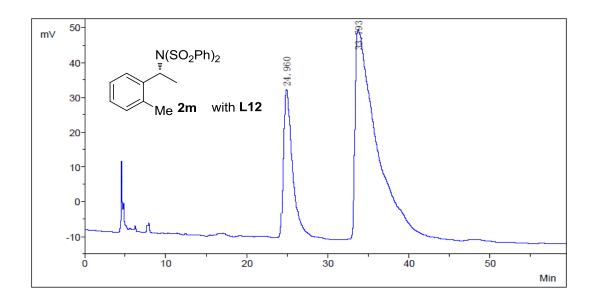

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		7. 685	36263. 9	400079.7	8. 6279
2	2		9. 818	332571. 9	4236940.8	91. 3721
合计:				368835. 7	4637020. 5	100. 0000

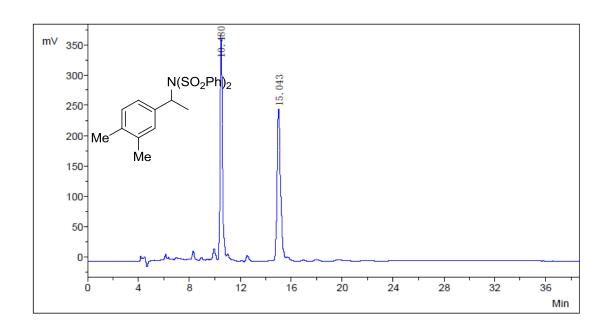

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	7.46	n.a.	1850.254	274.974	50.82	n.a.	BMB*
2	9.44	n.a.	1382.561	266.113	49.18	n.a.	BMB*
Total:			3232.815	541.087	100.00	0.000	

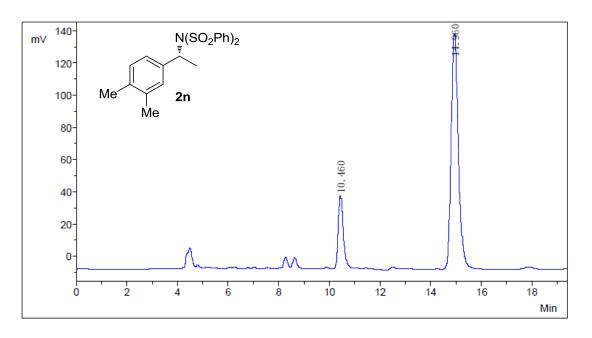

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
1	7.46	n.a.	315.979	43.543	9.63	n.a.	BMB*
2	9.44	n.a.	2107.685	408.589	90.37	n.a.	BMB*
Total:			2423.665	452.132	100.00	0.000	


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	7.63	n.a.	713.767	110.417	50.02	n.a.	BMB*
2	10.12	n.a.	513.879	110.325	49.98	n.a.	BMB*
Total:			1227.646	220.743	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Type
1	7.66	n.a.	432.373	65.879	13.88	n.a.	BMB*
2	10.15	n.a.	1927.830	408.918	86.12	n.a.	BMB*
Total:			2360.203	474.797	100.00	0.000	


序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		10. 218	586610. 1	9216559.7	49. 9724
2	2		12. 385	472255. 2	9226731.3	50. 0276
合计:				1058865. 3	18443291.0	100. 0000


序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		10.080	197004. 6	2996825.3	26. 8654
2	2		12. 218	423991. 2	8158134.3	73. 1346
合计:				620995. 8	11154959. 6	100. 0000


序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		24. 877	150376. 1	12326445.8	50. 0069
2	2		33. 793	64291.8	12323042. 2	49. 9931
合计:				214668. 0	24649488.0	100. 0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		24. 960	42637. 1	3383178.6	22. 4199
2	2		33. 793	60596. 5	11706889.4	77. 5801
合计:				103233. 6	15090068.1	100. 0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		10. 480	354210.7	4445085.6	48. 0697
2	2		15. 043	248163. 4	4802084.6	51. 9303
合计:				602374. 1	9247170. 2	100. 0000

序号	峰号	组份名	保留时间	峰高	峰面积	面积百分比(%)
1	1		10. 460	44688. 2	683248.7	19. 1841
2	2		14. 960	144825. 3	2878281.4	80. 8159
合计:				189513. 5	3561530.1	100. 0000