Electronic Supplementary Information for

Studies on the Asymmetric Synthesis of Pandamarilactonines: An Unexpected syn-Selective Vinylogous Mannich Reaction of *N-tert*-Butanesulfinimines

Jian-Liang Ye,* Yu-Feng Zhang, Yang Liu, Jin-Yuan Zhang, Yuan-Ping Ruan and

Pei-Qiang Huang*

Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, Collaborative Innovation Centre of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005,

PR China

E-mail: pqhuang@xmu.edu.cn; yejl@xmu.edu.cn

Contents (24 pages):

- ¹H and ¹³C NMR spectra of compounds **10a**, **13**, *anti*-**16**, *syn*-**16**, *syn*-**17** (pp. 2-6)
- ¹H NMR of crude product of the one-pot desulfinylation cyclization coupling reaction of *syn*-16 (pp. 7)
- ¹H and ¹³C NMR spectra of the mixture of (-)-pandamarilactonines-A [(-)-1] and
 -C (3) (pp. 8)
- Chiral HPLC analysis of the (–)-pandamarilactonine-A [(–)-1] (pp. 9)
- Comparison of ¹H and ¹³C NMR data of our synthetic pandamarilactonine-A [(-)-1] with those reported (pp. 10)
- ¹H and ¹³C NMR of crude product (presumed as *syn*-20) obtained after removing the solvent of the desulfinylation reaction of *syn*-16 (pp. 11)
- ¹H and ¹³C NMR spectra of crude products of the desulfinylation cyclization reactions of *syn*-**16** (corresponding Table 1 in context, pp. 12-16)
- Comparison of ¹³C NMR data of our synthetic norpandamarilactonine-A (5) and norpandamarilactonine-B (6) with those reported (pp. 17)
- X-ray structure of *syn*-**17** (pp. 18-20)
- Computational details for compounds 5, 6, *anti*-20, *syn*-20 (pp. 21-24)

¹H and ¹³C NMR spectra of compound **10a**

¹H and ¹³C NMR spectra of alkyl iodide **13** with Z/E = 9: 1

¹H and ¹³C NMR spectra of compound *syn*-16

¹H and ¹³C NMR spectra of compound *anti*-16

¹H and ¹³C NMR spectra of compound *syn*-17

¹H NMR of crude product of the one-pot desulfinylation, cyclization and coupling reaction of *syn*-**16**

1. H. Takayama, T. Ichikawa, T. Kuwajima, M. Kitajima, H. Seki, N. Aimi and M. G. Nonato, *J. Am. Chem. Soc.*, 2000, **122**, 8635-8639.

2. H. Takayama, T. Ichikawa, M. Kitajima, M. G. Nonato and N. Aimi, *Chem. Pharm. Bull.*, 2002, 50, 1303-1304.

¹H and ¹³C NMR spectra of the mixture of (–)-pandamarilactonines-A [(–)-1] and $C_{1}(2)$

Chiral HPLC analysis conditions and results of (–)-pandamarilactonine-A (1) and -C $(3)^1$

Comparison of the chiral HPLC analysis conditions and results reported by Takayama¹ and this work

	Natural (+)-pandamarilactonine-A $(1)^1$	Our synthetic
		(–)-pandamarilactonine-A (1)
Column ²	Chiralcel OB, Daicel Chemical	Chiralcel OB-H, Daicel Chemical
	Industries, Ltd.	Industries, Ltd.
column	30 °C	30 °C
temperature		
Solvent	40% <i>i</i> -PrOH/ <i>n</i> -hexane	40% <i>i</i> -PrOH/ <i>n</i> -hexane
flow rate	0.3 mL/min	0.8 mL/min
retention time	43.2 and 51.9 min (Corresponding	16.7 and 20.0 min in ratio of 2: 87
and ratio	retention time 16.2 and 19.5 min with	
	flow rate 0.8 mL/min) in ratios of 63:	
	37	

1. Takayama, H.; Nonato, M. G. J. Am. Chem. Soc. 2000, 122, 8635-8639.

 The difference between Chiralcel OB and Chiralcel OB-H column resides only in the packing particle size: particle size in Chiralcel OB column: 10 μm, and that in Chiralcel OB-H column: 5μm. Compared with Chiralcel OB column, Chiralcel OB-H column has higher column efficiency and better resolution.

(1) reported by Tak	avama ¹		
¹ H NMR of the nature	¹ H NMR of the	¹³ C NMR of the	¹³ C NMR of the
and synthetic 1	synthetic 1 in this	nature and synthetic 1	synthetic 1 in this
reported by	work	reported by	work (100 MHz,
Takayama ¹ (500 MHz,	(400 MHz, CDCl ₃) δ	Takayama ¹ (125 MHz,	CDCl ₃) δ
CDCl ₃) δ		CDCl ₃) δ	
7.09 (dd, J = 1.5 and	7.08 (app t, $J = 1.5$	174.3	174.3
1.8 Hz, 1H)	Hz, 1H)		
6.99 (d-like, $J = 1.5$	6.99 (app d, <i>J</i> = 1.4	171.1	171.1
Hz, 1H)	Hz, 1H)		
5.18 (dd, $J = 7.9$ and	5.17 (t, <i>J</i> = 7.9 Hz,	148.6	148.6
7.9 Hz, 1H)	1H)		
4.80 (ddd, <i>J</i> = 1.8, 1.8	4.77-4.81 (m, 1H)	147.0	146.9
and 5.5 Hz, 1H)			
3.12 (dd, J = 6.7)	3.11 (t, J = 7.7 Hz,	137.7	137.7
and 7.6 Hz, 1H)	1H)		
2.88 (ddd, $J = 4.0, 7.9$	2.75-2.96 (m, 2H)	131.2	131.2
and 12.9Hz,1H)			
2.83 (m, 1H)		129.1	129.1
2.45 (m, 1H)	2.39-2.47 (m, 3H)	114.1	114.1
2.43 (dd, $J = 7.3$ and		83.4	83.4
15.0 Hz, 2H)			
2.21 (m, 1H)	2.16-2.25 (m, 1H)	65.3	65.3
1.99 (d-like, $J = 0.9$	1.98 (app dd, $J = 0.7$,	55.0	55.0
Hz, 3H)	1.2 Hz, 3H)		
1.93 (dd, J = 1.5 and	1.92 (app t, $J = 1.7$	54.2	54.2
1.8 Hz, 3H)	Hz, 3H)		
1.70-1.80 (m, 2H)	1.70-1.79 (m, 2H)	28.3	28.3
1.59-1.70 (m, 3H)	1.55-1.69 (m, 3H)	25.7	25.7
1.42 (m, 1H)	1.37-1.46 (m, 1H)	24.0	24.0
		23.8	23.8
		10.7	10.7
		10.5	10.5

synthetic

¹H and ¹³C NMR of crude product (presumed as *syn*-20) obtained after removing the solvent of the desulfinylation reaction of *syn*-16

	Cl syn-16	Conc. HCl o dioxane, rt, 1 H	$e + \frac{H_{2}N_{1}}{V_{1}} + \frac{M_{2}N_{1}}{V_{1}} + \frac{M_{2}N_{1}}{V_$	
Entry	Base (eq)	6 Time (h)	5 J	6 / 5 ^{<i>a</i>}
1	$K_2CO_3(4.0)$	12	no	94: 6
2	$K_2CO_3(4.0)$	12	washed by NH ₃ •H ₂ O	88: 12
3	$K_2CO_3(4.0)$	12	added NH ₃ •H ₂ O then	62: 38
			stayed at rt for 1 day	
4	K ₂ CO ₃ (4.0) & H ₂ O	12	no	62: 38
5	NH ₃ •H ₂ O	2	no	67: 33

^a ratios were determined by analysis of 400 MHz ¹H NMR spectra of unpurified reaction mixtures

¹H and ¹³C NMR of crude product (Table 1 entry 1) from the one-pot desulfinylation and cyclization reactions of *syn*-**16**

¹H NMR of crude product of the one-pot desulfinylation and cyclization reaction of *syn*-**16** (Table 1 entry 2) obtained with following work-up: 1) removed solvent in vacuo; 2) CH_2Cl_2 was added in the residue and organic phase was washed with ammonia, concentrated

¹H NMR of crude product of the one-pot desulfinylation and cyclization reaction of *syn*-**16** (Table 1 entry 3) obtained with following work-up: 1) removed solvent in vacuo; 2) ammonia was added in the residue then stayed 1 day; 3) extracted with CH_2Cl_2 and concentrated

¹H and ¹³C NMR of crude product of the one-pot desulfinylation and cyclization reaction of *syn*-**16** (Table 1 entry 4) obtained with following process: 1) removed solvent in vacuo; 2) K_2CO_3 and H_2O was added in the mixture and stirred for 12 h; 3) extracted with CH_2Cl_2 and concentrated

¹H and ¹³C NMR of crude product of the one-pot desulfinylation and cyclization reaction of *syn*-**16** (Table 1 entry 5) obtained with following process: 1) removed solvent of desulfinylation reaction in vacuo; 2) ammonia was added in the residue and stirred for 2 h; 3) extracted with CH_2Cl_2 and concentrated

Comparison of the ¹³C NMR data of our synthetic norpandamarilactonine-A (5) and norpandamarilactonine-B (6) with those of the isolated norpandamarilactonine-A (5) and norpandamarilactonine-B (6) reported by Takayama²

the synthetic	the crude synthetic	the synthetic	the crude synthetic
norpandamarilactonine-B	norpandamarilactonine-B	norpandamarilactonine-A	norpandamarilactonine-A
(6) of Takayama ² (600	(6) in this work (400 MHz,	(5) of Takayama ² (150	(5) in this work (100 MHz,
MHz, CDCl ₃) δ	CDCl ₃) δ	MHz, CDCl ₃) δ	CDCl ₃) δ
174.1	174.2	174.3	174.2
146.6	146.7	147.7	147.8
131.2	131.2	130.7	130.7
84.3	84.3	83.8	83.8
60.2	60.3	60.4	60.4
46.5	46.5	47.1	47.1
26.8	26.9	27.9	27.9
25.1	25.2	25.6	25.6
10.7	10.7	10.7	10.7

Crystallographic studies

Crystal Data [for *syn*-**17**]. C₁₃H₂₃NO₃S (*M*=60.76 g/mol): monoclinic, space group P2₁ (no.4), a = 10.291(2) Å, b = 5.9808(12) Å, c = 12.068(2) Å, $\beta = 103.531$ (3)°, V = 722.1(3) Å³, Z = 9, T = 273.15 K, μ (Mo K α) = 0.225 mm⁻¹, *Dcalc* = 1.2573 g/cm³, 4174 reflections measured (3.48° $\leq 2\theta \leq 56.5°$), 2885 unique ($R_{int} = 0.0142$, $R_{sigma} = 0.0234$) which were used in all calculations. The final R_1 was 0.0314 (I>=2u(I)) and wR_2 was 0.0875 (all data).

determination A suitable crystal of syn-17 was Structure selected and measured with MoKa radiation ($\lambda = 0.71073$ Å) on a Bruker SMART APEX-CCD diffractometer using a ψ - ω scan mode. The crystal was kept at 273(2) K during data collection. A total of 4174 reflections were collected in the range of 3.48° $\leq 2\theta \leq 56.5^{\circ}$, and 2885 were independent ($R_{int} = 0.0142$, $R_{sigma} = 0.0234$). Lattice determination and data collection were carried out using Bruker SMART software. Date reduction and absorption corrections were performed with SAINT version 6.28A and SADABS version 2.10, respectively. Using Olex2^[1], the structure was solved with the XS^[2] structure solution program using Charge Flipping and refined with the olex2.refine ^[3] refinement package using Levenberg-Marquardt minimisation. The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were determined with theoretical calculation. A full-matrix least-squares refinement gave the final R = 0.031, wR = 0.088 ($w = 1/[\sigma^2(F_0^2) + (0.067P)^2 + 0.0874P]$ where P = $(F_o^2 + 2F_c^2)/3)$, $\Delta \rho_{\text{max}} = 0.39 \text{ e} \text{ Å}^{-3}$, $\Delta \rho_{\text{min}} = -0.32 \text{ e} \text{ Å}^{-3}$.

^{1.} Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009), *J. Appl. Cryst.* **42**, 339-341.

^{2.} Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

^{3.} Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. (2015). *Acta Cryst.* A **71**, 59–71.

Atom	x	у	z.	U(eq)
S 1	-6193.296(8)	-377.303(8)	-4471.117(8)	20.68(4)
O3	-5724.803(8)	80.702(8)	-5538.997(8)	26.14(5)
N1	-5264.196(8)	1060.900(8)	-3389.705(8)	23.68(5)
02	-6956.398(8)	385.800(8)	-346.402(8)	42.67(5)
C5	-4116.499(8)	-147.999(8)	-2661.198(8)	23.81(5)
C6	-8377.000(8)	603.100(8)	-3654.203(8)	34.83(5)
C1	-6278.799(8)	-602.999(8)	-877.402(8)	28.45(5)
C8	-7557.501(8)	3713.200(8)	-4730.097(8)	28.76(5)
C9	-2982.499(8)	1523.899(8)	-2220.099(8)	30.03(5)
C3	-5530.704(8)	-3162.299(8)	-1958.197(8)	28.36(5)
C11	-7776.301(8)	1209.901(8)	-4654.597(8)	23.40(5)
C4	-4515.300(8)	-1345.599(8)	-1670.399(8)	26.02(5)
C13	-8643.401(8)	324.700(8)	-5776.898(8)	33.85(5)
C2	-6546.399(8)	-2766.500(8)	-1483.002(8)	28.03(5)
C12	-7769.298(8)	-4085.698(8)	-1468.803(8)	41.59(5)
C10	-1638.202(8)	431.699(8)	-1717.300(8)	40.40(5)
C7	-560.901(8)	2167.402(8)	-1254.700(8)	50.66(5)
01	-5088.704(8)	211.700(8)	-1005.599(8)	31.04(5)

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for *syn*-17. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

ORTEP drawing derived from the single-crystal X-ray analysis of syn-17

Computational Methods and Details

All calculations were performed with Gaussian 09.¹ Geometries were initially optimized at B3LYP/6-31G* level in gas phase. All structures are characterized by no imaginary frequency. The single point calculations were carried out by B3LYP/6-311++G(2d,p) with SMD solvation model in MeCN on gas phase optimized geometries.

HF=-556.1706565

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	X	Y	Z
1	6	0	-3.395346	0.214371	-0.047648
2	6	0	-2.780655	-0.090899	1.342498
3	6	0	-1.392513	-0.705228	1.014452
4	6	0	-1.273924	-0.582192	-0.534587
5	7	0	-2.270225	0.407823	-0.973935
6	6	0	0.114126	-0.224078	-1.076784
7	6	0	1.220418	-1.168277	-0.701843
8	6	0	2.183697	-0.512040	-0.044019
9	6	0	1.766313	0.914861	0.059246
10	8	0	0.541106	1.048892	-0.553477
11	8	0	2.345482	1.840316	0.572069
12	6	0	3.479896	-0.978530	0.533793
13	1	0	-1.872898	1.333949	-0.806794
14	1	0	-1.545879	-1.545221	-0.992103
15	1	0	0.030013	-0.110964	-2.166394
16	1	0	-3.986303	-0.642112	-0.398875
17	1	0	-4.050934	1.090302	-0.055482
18	1	0	-2.661502	0.835400	1.915376
19	1	0	-3.409065	-0.761231	1.938428
20	1	0	-1.310234	-1.747917	1.338559
21	1	0	-0.592988	-0.146716	1.510233
22	1	0	1.200597	-2.223615	-0.953993
23	1	0	4.318177	-0.428728	0.089952
24	1	0	3.514312	-0.781019	1.611666
25	1	0	3.633507	-2.048470	0.367575

S22

HF=-556.170233

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	-3.140998	-0.788101	-0.378499
2	6	0	-3.499541	0.648729	0.020430
3	6	0	-2.115362	1.305609	0.233436
4	6	0	-1.150169	0.122704	0.537155
5	7	0	-2.010693	-1.062504	0.508352
6	6	0	0.003809	0.062170	-0.493606
7	6	0	1.020724	1.160473	-0.374210
8	6	0	2.222438	0.646660	-0.083246
9	6	0	2.075388	-0.834501	-0.020188
10	8	0	0.760392	-1.145035	-0.279512
11	8	0	2.913088	-1.672140	0.208191
12	6	0	3.543997	1.300220	0.157785
13	1	0	-1.492090	-1.907630	0.284489
14	1	0	-0.685125	0.212332	1.527326
15	1	0	-0.421222	0.004901	-1.506021
16	1	0	-3.953302	-1.500257	-0.195576
17	1	0	-2.894677	-0.834983	-1.456694
18	1	0	-4.102942	1.165387	-0.732232
19	1	0	-4.062081	0.635641	0.959504
20	1	0	-2.122439	2.043687	1.040350
21	1	0	-1.801668	1.831146	-0.677623
22	1	0	0.772160	2.209588	-0.495258
23	1	0	4.289179	0.936763	-0.559640
24	1	0	3.922693	1.045959	1.154797
25	1	0	3.476811	2.388620	0.074340
				-	

 H_2N_{\prime} anti**-20** Cl HF=-1017.0213164 Atomic Atomic Center

Coordinates (Angstroms)

Number	Number	Туре	Х	Y	Z
1	8	0	1.880386	-1.242837	-0.141498
2	6	0	2.773659	-0.318442	0.354716
3	6	0	2.434962	1.012207	-0.223110
4	6	0	1.378561	0.845716	-1.028675
5	6	0	0.959078	-0.596563	-1.039642
6	8	0	3.654308	-0.612186	1.124745
7	6	0	3.224670	2.230021	0.130365
8	6	0	-0.500877	-0.910094	-0.615563
9	6	0	-0.853202	-0.302185	0.752481
10	6	0	-2.272590	-0.620476	1.244370
11	6	0	-3.400625	-0.267539	0.284670
12	7	0	-0.791484	-2.346205	-0.619123
13	17	0	-3.426067	1.507181	-0.159397
14	1	0	-0.129812	-2.818294	-0.002466
15	1	0	-0.640838	-2.736164	-1.548749
16	1	0	0.869877	1.608879	-1.608836
17	1	0	1.117751	-1.039384	-2.034990
18	1	0	4.279165	2.095781	-0.138231
19	1	0	2.842365	3.119166	-0.378667
20	1	0	3.198796	2.405321	1.212284
21	1	0	-1.137783	-0.446153	-1.381361
22	1	0	-0.720754	0.783739	0.699737
23	1	0	-0.139368	-0.669214	1.501002
24	1	0	-2.438637	-0.112576	2.201922
25	1	0	-2.362409	-1.698615	1.425224
26	1	0	-4.376167	-0.472711	0.728642
27	1	0	-3.318036	-0.814084	-0.655547

H₂N, , , , , , , , , , , , , , , , , 0 syn-20

HF=-1017.0217

CI

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	
Ζ					
1	8	0	2.182438	1.076017	-0.409375
2	6	0	3.111391	0.096763	-0.145633
3	6	0	2.392931	-1.202387	-0.017646

4	6	0	1.087482	-0.963222	-0.191490
5	6	0	0.858507	0.501373	-0.439116
6	8	0	4.292251	0.324486	-0.051340
7	6	0	3.135686	-2.469148	0.255551
8	6	0	-0.005241	1.230406	0.607181
9	6	0	-1.429198	0.655318	0.726442
10	6	0	-2.261004	0.712101	-0.562126
11	6	0	-3.715169	0.302374	-0.377346
12	7	0	-0.066716	2.644980	0.223581
13	17	0	-3.890946	-1.455663	0.088947
14	1	0	-0.497017	3.183255	0.974191
15	1	0	0.881989	3.000860	0.116232
16	1	0	0.283895	-1.691465	-0.171533
17	1	0	0.450035	0.694644	-1.438966
18	1	0	3.877696	-2.656426	-0.529524
19	1	0	3.691826	-2.392969	1.197341
20	1	0	2.460624	-3.327444	0.314132
21	1	0	0.498071	1.066769	1.577115
22	1	0	-1.949103	1.227956	1.508737
23	1	0	-1.376616	-0.374478	1.097050
24	1	0	-1.817667	0.082829	-1.343508
25	1	0	-2.252657	1.740782	-0.944389
26	1	0	-4.285002	0.419670	-1.300723
27	1	0	-4.202809	0.871941	0.417499

S24

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.