Efficient Catalytic Enantioselective Nazarov Cyclizations of

Divinyl Ketoesters

Zhou Xu^{a,b}, Hai Ren^a, Lijia Wang^{a*}, Yong Tang^{a*}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345Lingling Road, Shanghai 200032, China.

^b Xuzhou Medical College, 209Tongshan Road, Xuzhou 221004, China

E-mail: wanglijia@sioc.ac.cn; tangy@sioc.ac.cn; Fax:+86-21-54925078

Supporting Information

Contents

1.	General information	S2
2.	Screening the amount of water	
3.	Typical Procedure for the asymmetric Nazarov cyclization	S4
4.	Chemical transformation of 2a to 3a	S12
5.	Crystal data of 1a	S13
6.	Reference	S14
7.	¹ H NMR and ¹³ C NMR Spectra of Compounds	S15
8.	HPLC spectra of the products	

1. General information

Unless stated otherwise, all reactions were carried out under an atmosphere of Ar using standard Schlenk techniques. All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use. ¹H NMR spectra were recorded on a VarianMercury 300 MHz or Varian Mercury 400 MHz or Agilent Mercury 400 MHz spectrometer in chloroform-d. All signals were reported in ppm with the internal TMS signal at 0.0 ppm or chloroform signal at 7.26 ppm as a standard. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a Varian Mercury 75 MHz or Agilent Mercury 100 MHz spectrometer in chloroform-d. All signals are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Enantiomeric ratios were obtained using a PerkinElmer series 200 equipped with an UV-VIS detector using one of the following chiral HPLC columns: Chiralcel AD-3 and Chiralcel AD-H column. Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Chromatography: Flash chromatography was performed on silica gel (Merck Silica Gel 60, 300-400 mesh). TLC was performed on aluminium backed silica plates (60F254, 0.2 mm) which were developed using standard visualising agents. High resolution mass spectra were recorded on a Micromass Analytical Autospec spectrometer.

The substrates **1a-1n** were synthesized according to the literature with similar methods. ¹⁻²

2. Screening the amount of water

^{*a*} All reactions were carried out with 10 mol% Cu(ClO₄)₂ and ligand L7 under Ar atmosphere; ^{*b*} Determined by ¹H NMR; ^{*c*} Determined by chiral HPLC;

3. Typical Procedure for the Asymmetric Nazarov Cyclization

A solution of Cu(ClO₄)₂·6H₂O (7.4 mg, 0.02 mmol) and Ligand (9.2 mg, 0.02 mmol) in anhyd DCE (4.0 mL) was stirred at r.t. for 3 h, then 2-benzyliden-3-oxo-4,5diphenylpent-4-enoic acid ethyl ester (**1a**, 76.5 mg, 0.20 mmol) was added, then stirred at 40 °C for 20 h. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography to afford **2a** (70.4 mg), as a white solid, EtOAc/petroleum ether 1/20, 92% yield with 90 % *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 295 nm: *t*_R (major) = 7.9 min, *t*_R (minor) = 10.9 min); [*a*]_D²⁰ = + 276.7° (*c* = 1.050, CHCl₃); The absolute configuration of the major enantiomer is (1*R*, 5*S*) by the comparison of its rotation with the data reported.^[1-2] The product **2a** was unstable in the air and it is better to store under low temperature in Ar atmosphere.

(1R, 5S)-ethyl 2-oxo-3,4,5-triphenylcyclopent-3-enecarboxylate 2a

92% yield with 90 % *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 295 nm: $t_{\rm R}$ (major) = 7.9 min, $t_{\rm R}$ (minor) = 10.9 min); $[\alpha]_{\rm D}^{25}$ = + 276.7° (c = 1.0500, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.11 (m, 15H), 5.02 (d, *J* = 2.0 Hz, 1H), 4.29-4.24 (m, 2H), 3.64 (d, *J* = 2.4 Hz, 1H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 199.2, 169.8, 168.1, 140.2, 138.4, 133.7, 131.0, 129.5, 129.4, 128.8, 128.7, 128.1, 128.0, 127.4, 127.0, 62.3, 61.6, 50.7, 13.9; IR (Film) *v*: 1704, 1634, 1144 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₃O₃⁺: 383.1642. Found: 383.1654.

(1*R*, 2*S*)-ethyl 2-(4-bromophenyl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 2b

81% yield with 88% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 20/80, 1.0 mL/min⁻¹, λ = 300 nm: $t_{\rm R}$ (major) = 7.3 min, $t_{\rm R}$ (minor)= 8.6 min); $[\alpha]_{\rm D}^{25}$ = + 112.7° (*c* = 1.4870, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.31 (m, 5H), 7.27-7.20 (m, 3H), 7.17-7.15 (m, 4H), 7.03 (d, *J* = 8.4 Hz, 2H), 5.00 (d, *J* = 2.8 Hz, 1H), 4.31-4.25 (m, 2H), 3.57 (d, *J* = 3.2 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.9, 169.2, 168.0, 139.5, 138.9, 133.7, 132.1, 130.9, 129.8, 129.7, 129.4, 128.8, 128.4, 128.3(4), 128.3(2), 121.2, 62.2, 62.0, 50.2, 14.2; IR (Film) *v*: 1705, 1488, 1177 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₂BrO₃⁺: 461.0747. Found: 461.0744.

(1*R*, 2*S*)-ethyl 2-(3-bromophenyl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 2c

80% yield with 85 % *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes= 20/80, 1.0 mL/min⁻¹, λ = 300 nm: $t_{\rm R}$ (major) = 9.3 min, $t_{\rm R}$ (minor) = 13.6 min); $[\alpha]_{\rm D}^{25}$ = + 288.2° (*c* = 0.9700, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.06 (m, 12H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7.2 Hz, 2H), 4.95 (d, *J* = 2.4 Hz, 1H), 4.29-4.24 (m, 2H), 3.63 (d, *J* = 2.8 Hz, 1H), 1.30 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 200.4, 170.8, 168.5, 156.6, 141.6, 138.5, 133.5, 130.8, 129.9, 129.6, 129.4, 128.7, 128.2, 128.1, 128.0,

119.1, 114.4, 114.3, 62.2, 62.0, 50.7, 13.8; IR (Film) *v*: 1729, 1690, 1614, 1143 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₂BrO₃⁺: 461.0747. Found: 461.0748.

(1*R*, 2*S*)-ethyl 2-(2-bromophenyl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 2d

78% yield with 86% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes= 10/90, 1.0 mL/min⁻¹, λ = 297 nm: *t*_R (major) = 9.7 min, *t*_R (minor)= 15.7 min); [*α*]_D²⁵ = + 280.3° (*c* = 0.7450, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.54 (d, *J* = 7.2 Hz, 1H), 7.33-7.09 (m, 11H), 7.04-6.93 (m, 2H), 5.62 (s, 1H), 4.33-4.26 (m, 2H), 3.47 (s, 1H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 169.5, 168.1, 140.3, 139.5, 133.5, 133.0, 131.2, 130.0, 129.6, 128.9, 128.7, 128.4, 128.3, 128.2, 128.1, 124.8, 61.9, 61.7, 49.6, 14.2; IR (Film) *v*: 1731, 1693, 1368, 1143, 1017 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₂BrO₃⁺: 461.0747. Found: 461.0748.

(1*R*, 2*S*)-ethyl 2-([1,1'-biphenyl]-4-yl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxy late 2e

92% yield with 83% ee (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ =

300 nm: $t_{\rm R}$ (major) = 12.8 min, $t_{\rm R}$ (minor) = 17.5 min); $[\alpha]_{\rm D}^{25}$ = + 250.5° (*c* = 1.1400, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.52-7.15 (m, 19H), 5.07 (d, *J* = 2.7 Hz, 1H), 4.33-4.24 (m, 2H), 3.67 (d, *J* = 2.7 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) : δ 199.3, 169.8, 168.3, 140.2, 140.0, 139.5, 138.7, 134.0, 131.2, 129.7, 129.6, 128.9, 128.7, 128.3, 128.2, 128.1(9), 128.1, 127.6, 127.3, 126.8, 62.4, 61.9, 50.5, 14.1; IR (Film) *v*: 1725, 1698, 1340, 1250, 1138 cm⁻¹; HRMS (ESI) calcd for C₃₂H₂₇O₃⁺: 459.1955. Found: 459.1956.

(1*R*, 5*S*)-ethyl 2-oxo-3,4-diphenyl-5-(4-(trifluoromethyl)phenyl)cyclopent-3-enecarboxylate 2f

83% yield with 84 % *ee* (SFC, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 214 nm: *t*_R (major) = 6.6 min, *t*_R (minor) = 8.8 min); [*α*]_D²⁵ = + 258.8° (*c* = 0.6500, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.49 (d, *J* = 8.1 Hz, 2H), 7.32-7.18 (m, 12H), 5.12 (d, *J* = 3.0 Hz, 1H), 4.31-4.26 (m, 2H), 3.58 (d, *J* = 3.0 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 198.6, 168.8, 167.9, 144.6 (d, *J* = 1.1 Hz), 139.1, 133.6, 130.9, 129.9, 129.7, 128.8, 128.4, 128.1, 126.0 (q, *J* = 3.6 Hz), 62.1, 50.4, 14.2; ¹⁹F NMR (282 MHz, CDCl₃): δ -63.0; IR (Film) *v*: 1731, 1703, 1322, 1110 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₂F₃O₃⁺: 451.1516. Found: 451.1518.

(1*R*,2*S*)-ethyl 2-(naphthalen-1-yl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 2g

89% yield with 86% *ee* (Chiralcel AD-H, ^{*i*}PrOH/hexanes= 10/90, 0.7 mL/min⁻¹, λ = 296 nm: $t_{\rm R}$ (major) = 9.5 min, $t_{\rm R}$ (minor)= 11.3 min); $[\alpha]_{\rm D}^{25}$ = + 296.5° (*c* = 0.5000, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.29 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.70-7.54 (m, 3H), 7.36-7.30 (m, 6H), 7.23-7.04 (m, 6H), 5.94 (s, 1H), 4.31-4.29 (m, 2H), 3.56 (s, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) : δ 199.4, 169.8, 168.6, 139.5, 137.5, 134.0, 133.9, 131.7, 131.5, 129.8, 129.7, 129.0, 128.9, 128.5, 128.2(7), 128.2(5), 127.7, 126.8, 126.0, 125.6, 124.6, 122.8, 62.4, 62.0, 45.3, 14.1; IR (Film) *v*: 1729, 1700, 1140 cm⁻¹; HRMS (ESI) calcd for C₃₀H₂₅O₃⁺: 433.1798. Found: 433.1800.

(1*R*, 2*S*)-ethyl 2-(naphthalen-2-yl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 2h

93% yield with 87% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 290 nm: $t_{\rm R}$ (major) = 11.0 min, $t_{\rm R}$ (minor)= 13.4 min); $[\alpha]_{\rm D}^{25}$ = + 217.7° (*c* = 0.8050, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.68 (m, 4H), 7.43-7.32 (m, 7H), 7.22 (d, *J* = 7.5 Hz, 3H), 7.12-7.06 (m, 3H), 5.20 (d, *J* = 2.7 Hz, 1H), 4.36-4.21 (m, 2H), 3.71 (d, *J* = 2.7 Hz, 1H), 1.30 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 199.4,

169.8, 168.3, 138.9, 137.8, 134.0, 133.4, 132.5, 131.2, 129.8, 129.6, 129.1, 128.9, 128.4, 128.2, 127.6, 127.1, 126.3, 126.0, 124.9, 62.4, 61.9, 51.1, 14.2; IR (Film) v: 1703, 1626, 1332, 1141 cm⁻¹; HRMS (ESI) calcd for $C_{30}H_{25}O_3^+$: 433.1798. Found: 433.1798.

(1*R*, 2*S*)-ethyl 3-(4-methoxyphenyl)-5-oxo-2,4-diphenylcyclopent-3-enecarboxyla -te 2i

91% yield with 78% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 300 nm: $t_{\rm R}$ (major) = 11.5 min, $t_{\rm R}$ (minor) = 15.3 min); $[\alpha]_{\rm D}^{25}$ = + 195.3° (*c* = 1.0000, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26-7.13 (m, 12H), 6.84 (d, *J* = 8.7 Hz, 2H), 4.97 (d, *J* = 3.0 Hz, 1H), 4.29-4.24 (m, 2H), 3.80 (s, 3H), 3.61 (d, *J* = 2.7 Hz, 1H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 199.8, 168.9, 168.3, 159.5, 140.6, 138.1, 134.3, 131.0, 129.4, 129.0, 128.8, 128.2, 127.7, 127.2, 123.3, 113.8, 62.4, 61.8, 55.1, 50.9, 14.2; IR (Film) *v*: 1718, 1657, 1511, 1249 cm⁻¹. HRMS (ESI) calcd for C₂₇H₂₅IO₄⁺: 413.1747. Found: 413.1747.

(1*R*, 5*S*)-ethyl 3,4-bis(4-methoxyphenyl)-2-oxo-5-phenylcyclopent-3-enecarboxy late 2j

90% yield with 82% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 327 nm: $t_{\rm R}$ (major) = 22.2 min, $t_{\rm R}$ (minor) = 25.7 min); $[\alpha]_{\rm D}^{25}$ = + 261.6° (*c* = 0.8200, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.22 (m, 4H), 7.19-7.14 (m, 5H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 4.96 (d, *J* = 2.8 Hz, 1H), 4.28-4.24 (m, 2H), 3.82 (s, 3H), 3.72 (s, 3H), 3.56 (d, *J* = 2.8 Hz, 1H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 199.5, 168.5, 168.3, 160.5, 159.3, 141.2, 137.0, 131.0, 130.9, 129.0, 127.6, 127.1, 126.3, 123.9, 113.9, 113.6, 62.5, 61.7, 55.1, 55.0, 50.5, 14.2; IR (Film) *v*: 1732, 1699, 1602, 1505, 1252, 1177 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₇O₅⁺: 443.1853. Found: 443.1854.

(1R, 5S)-methyl 2-oxo-3,4,5-triphenylcyclopent-3-enecarboxylate 2k

95% yield with 90% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 10/90, 1.0 mL/min⁻¹, λ = 295 nm: $t_{\rm R}$ (major) = 9.1 min, $t_{\rm R}$ (minor) = 11.6 min); $[\alpha]_{\rm D}^{25}$ = +278.4° (*c* = 0.99, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.14 (m, 15H), 5.02 (d, *J* = 1.5 Hz, 1H), 3.80 (s, 3H), 3.66 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 199.2, 170.0, 168.7, 140.4, 138.7, 134.0, 131.2, 129.7, 129.6, 129.0, 128.9, 128.3, 128.2, 127.7, 127.3, 62.3, 52.8, 51.0; IR (Film) *v*: 1725, 1695, 1341, 1139 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₁O₃⁺: 369.1485. Found: 369.1486.

(1*R*, 2*S*)-methyl 2-(4-iodophenyl)-5-oxo-3,4-diphenylcyclopent-3-enecarboxylate 21

87% yield with 90% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 3/97, 1.0 mL/min⁻¹, λ = 320 nm: *t*_R (major) = 28.1 min, *t*_R (minor) = 32.6 min); [*α*]_D²⁵ = +221.1° (*c* = 0.6450, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.31-7.16 (m, 10H), 6.91 (d, *J* = 8.0 Hz, 2H), 4.99 (d, *J* = 2.0 Hz, 1H), 3.82 (s, 3H), 3.58 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.8, 169.2, 168.5, 140.1, 138.9, 138.1, 133.6, 130.9, 129.9, 129.7, 129.6, 128.9, 128.3(9), 128.3(7), 92.8, 62.0, 53.0, 50.3; IR (Film) *v*: 1728, 1703, 1345, 1139 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₀IO₃⁺: 495.0452. Found: 495.0452.

4. Chemical transformations of 2a to 3a

A solution of **2a** (76.5 mg, 0.20 mmol) in anhyd THF (4.0 mL) was charged in a schlenk falsk, then NaH (0.21 mmol, 5.0 mg) was added in one portion. After that, NFSI (0.2 mmol) was added and the solution was stirred at rt 4h. Pure product was obtained by flash chromatography to afford **3a** (70.4 mg, 87% yield), as a white solid.

(1R, 2R)-ethyl 2-fluoro-5-oxo-2,3,4-triphenylcyclopent-3-enecarboxylate 3a³

87% yield with 90% *ee* (Chiralcel AD-3, ^{*i*}PrOH/hexanes = 3/97, 1.0 mL/min⁻¹, λ = 300 nm: $t_{\rm R}$ (major) = 16.0 min, $t_{\rm R}$ (minor) = 18.4 min); $[\alpha]_{\rm D}^{25}$ = +301.8° (*c* = 0.4, CHCl₃) ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.36 (m, 3H), 7.30-7.27 (m, 2H), 7.25-7.11 (m, 10H), 4.98 (d, *J* = 24.4 Hz, 1H), 3.87 (q, *J* = 3.2 Hz, 1H), 3.66 (q, *J* = 3.2 Hz, 1H), 0.94 (t, *J* = 7.2 Hz, 3H).

5. Crystal data of 1a (ccdc 1029676)

Table 1. Crystal data and structure refinement for cd212116.

Identification code	cd212116
Empirical formula	C26 H22 O3
Empirical formula Formula weight	382 44
Tomporatura	202(2) V
Wavalanath	275(2) K 0.71072 A
Wavelength	Manaalinia Ca
Unit cell dimensions	$ \begin{array}{c} \text{Monoclinic, } Cc \\ \text{a} = 10 \left(\left(02(0) \right) A \right) \\ \text{a} = 10 \text{ for } A \\ \text{b} = 10 \text{ for } A \\ \text{for } $
Unit cell dimensions	a = 10.6608(8) A alpha = 90 deg.
	b = 20.7410(15) A beta = 102.307(2) deg.
	c = 9.9455(7) A gamma = 90 deg.
Volume	2148.6(3) A^3
Z, Calculated density	4, 1.182 Mg/m^3
Absorption coefficient	0.076 mm^-1
F(000)	808
Crystal size	0.275 x 0.211 x 0.159 mm
Theta range for data collection	1.96 to 25.99 deg.
Limiting indices	-13<=h<=10, -25<=k<=25, -12<=l<=11
Reflections collected / unique	6373 / 2862 [R(int) = 0.0184]
Completeness to theta $= 25.99$	100.0 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.58997
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2862 / 2 / 263
Goodness-of-fit on F^2	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0371, $wR2 = 0.0969$
R indices (all data)	R1 = 0.0404, WR2 = 0.0994
Absolute structure parameter	0.4(11)
Largest diff. peak and hole	0.122 and -0.176 e.A^-3
2 1	

6. Reference

- 1. Aggarwal, V. K.; Belfield, A. J. Org. Lett. 2003, 5(26), 5075-5078.
- 2. Walz, I.; Togni, A. Chem. Commun. 2008, 4315-4317.
- 3. Kawatsura, M.; Kajita, K.; Hayase, S.; Itoh, T. Synlett 2010, 8, 1243–1246.

6. ¹H NMR and ¹³C NMR Spectra of Compounds

7. HPLC spectra of the products

PDA Ch1 295nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	7.948	5470465	234150	94,764	95.749			
2	10.868	302241	10395	5.236	4.251			
Total		5772706	244546	100.000	100.000			

PDA Ch1 300nm 4nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	7.172	337154	22204	50.336	54.584				
2	8.390	332657	18474	49.664	45.416				
Total		669811	40678	100.000	100.000				

1 PDA Multi 1/300nm 4nm

PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	7.310	2299642	123370	94.224	94.529			
2	8,581	140967	7140	5.776	5.471			
Total		2440609	130510	100.000	100.000			

1 PDA Multi 1/300nm 4nm

PeakTable PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	9.144	7082378	292134	50.412	59.058			
2	12.927	6966552	202525	49.588	40.942			
Total		14048929	494659	100.000	100.000			

PDA Ch1 300nm 4nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	9.317	2834901	113958	92.363	94.275				
2	13.572	234409	6921	7.637	5.725				
Total		3069310	120878	100.000	100.000				

1 PDA Multi 1/297nm 4nm

PeakTable PDA Ch1 297nm 4nm Area 1747501 1723491 Height 70471 42593 Area % Height % 9.860 15.988 50.346 49.654 62.328 37.672 2 3470992 113064 100.000 Total 100.000 mAU PDA Multi 1 200-698 100 15.744 0 5.0 12.5 20.0 7.5 10.0 2.5 17.5 15.0 0.0 min 1 PDA Multi 1/297nm 4nm

DA Chi 29	7nm 4nm	1	PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.698	3484827	141519	92.759	94.80
2	15.744	272038	7763	7.241	5.20
Total		3756865	149282	100.000	100.00

1 PDA Multi 1/254nm 4nm

DA Ch1 25	54nm 4nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.007	1959279	49919	49.945	57.915
2	17.826	1963610	36274	50.055	42.085
Total		3922889	86192	100.000	100.000

r	5 A I	ĸı	an	IC
r	-	κ.	ao	IC

DA Ch1 300nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	12.839	2145644	65551	91.100	92.75		
2	17.456	209609	5123	8.900	7.24		
Total	2002/2013	2355253	70673	100.000	100.00		

Area Percent Report

Sor	ted	Ву		:	Sigr	nal		
Mul	tip	lier		:	1.00	000		
Dil	utio	on		:	1.00	000		
Do	not	use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=300,16 Ref=360,40

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	8
			-				
1	6.555	MM	R	0.1394	5350.26758	609.96863	50.0839
2	8.699	MM	R	0.1937	5332.34863	436.94049	49.9161

Totals : 1.06826e4 1046.90912

Totals: 1.29760e4 1406.69816

1 PDA Multi 1/300nm 4nm

PeakTable PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	9.212	1941670	87656	50.095	54.462			
2	10.893	1934336	73293	49.905	45.538			
Total		3876006	160949	100.000	100.000			

PeakTable DA Ch1 296em 4mm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	9,497	3997850	188487	93.021	93.785		
2	11.319	299921	12490	6.979	6.215		
Total	5 000000 gg	4297770	200977	100.000	100.000		

1 PDA Multi 1/290nm 4nm

PeakTable PDA Chl 290nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	10.715	7216231	276196	50.442	55.220	
2	12.863	7089788	223977	49.558	44.780	
Total	- A.S. S. S.	14306019	500173	100,000	100.000	

PeakTable PDA Ch1 290n m 4nm Area 6837816 481688 Ret. Time 11.018 13.408 Height % 94.186 5.814 Height 228502 14106 Area % 93.419 6.581 Peak# 1

7319504

Tota

242608

100.000

100.000

1 PDA Multi 1/300nm 4nm

1 PDA Multi 1/300nm 4nm

PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	11.545	6488496	238244	88.933	91,387			
2	15.349	807474	22453	11.067	8.613			
Total		7295970	260697	100.000	100.000			

PeakTable

1 PDA Multi 1/327nm 4nm

DA Chi 32	PeakTable							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	22.566	1024857	18820	50,166	54.82			
2	26.139	1018085	15506	49.834	45.17			
Total		2042942	34326	100.000	100.00			

 PeakTable

 PDA Ch1 320nm 4nm

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 22.163
 9675184
 178683
 90.990
 92.009

 2
 25.664
 958089
 15519
 9.010
 7.991

 Total
 10633273
 194203
 100.000
 100.000

 PDA Ch1 295nm 4nm
 France

 Peak#
 Ret. Time
 Area
 Height
 Area %
 Height %

 1
 9.090
 6559833
 284801
 94.927
 95.562

 2
 11.641
 350545
 13228
 5.073
 4.438

 Total
 6910378
 298028
 100.000
 100.000

PeakTable DA Ch1 320nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	28.080	4056938	62677	50.271	54.611			
2	32.534	4013212	52094	49.729	45.389			
Total	2	8070150	114771	100.000	100.000			

PeakTable PDA Ch1 320mm 4mm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	28.084	2892114	42096	94.823	94,883		
2	32.584	157888	2270	5.177	5.117		
Total		3050002	44366	100.000	100.000		

1 PDA Multi 1/300nm 4nm

PeakTable PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	17.363	4795191	118116	50,118	53.475			
2	19.787	4772591	102764	49.882	46,525			
Total	8 8	9567782	220881	100.000	100.000			

1 PDA Multi 1/300nm 4nm

PeakTable PDA Ch1 300nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	16.039	5604246	133516	95.269	95.264			
2	18.377	278334	6637	4.731	4.736			
Total		5882580	140153	100.000	100.000			